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Abstract

The visual system plays a predominant role in the human perception. Although all components of the eye are important
to perceive visual information, the retina is a fundamentalpart of the visual system. In this work we study the spatial
relations between neuronal mosaics in the retina. These relations have shown its importance to investigate possible
constraints or connectivities between different spatially colocalized populations of neurons, and toexplain how visual
information spreads along the layers before being sent to the brain. We introduce the V-Proportion, a method based
on the Voronoi diagram to study possible spatial interactions between two neuronal mosaics. Results in simulations as
well as in real data demonstrate the effectiveness of this method to detect spatial relations between neurons in different
layers.
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1. Introduction

In the last decades, the development of technological
advances has been largely inspired by nature and spe-
cially by biological systems. This is even more rele-
vant in the fields of artificial intelligence and cognition,
where computer scientists are often looking for models
that mimic the characteristics of perception and infor-
mation processing performed by the human brain and
by the different sensory systems attached to it.

One of the most important sensory systems in humans
is the visual system. In the human brain, 30% of the
sensory neurons belong to this system [1]. This fact cor-
roborates the predominant role of the visual sense in the
human perception. Although all components of the eye
are important to perceive visual information, the retina
is a fundamental part of the visual system. The retina
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is basically a piece of brain tissue that gets direct stim-
ulations from the outside world’s lights and images [2].
A relatively easy access to the retina, together with the
possibility of studying the information processing in an
intact portion of the nervous system make this part of
the eye a unique model to study the nervous system in
general [3] and the visual system in particular [4].

There exist several attempts to develop bio-inspired
artificial retinas with the purpose of replacing or par-
tially recovering damaged functionalities in percep-
tion [5, 6]. Moreover, retinal-inspired models have been
used to improve the vision system in robots [7, 8]. How-
ever, the complete information process inside the retina
is not fully understood yet. A central challenge is there-
fore to understand how the retina is designed to solve
the image processing task.

The retina is organized into layers formed by many
local neuronal circuits which work in parallel with each
other to asses the different aspects of an image. In each
layer, neurons of the same type are spatially distributed
into regular or irregular patterns known asretinal mo-
saics. The neurons often have dendrites that extend
in a competitive manner reducing the overlap of their
dendritic fields and resulting in a tessellation across the
retina [9, 10]. As a result, an assembly of efficiently-
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connected functional circuits between the mosaics of
different neuronal subtypes is created. The study of the
spatial relations between these mosaics is highly rele-
vant to understand how the visual information spreads
along the different layers, and how it is finally processed
before being sent to the brain.

The study of the spatial relations between neural pop-
ulations has also shown its importance to investigate
possible constrains or connectivities between different
cell types. A positive spatial dependency between two
different populations of neurons may be an indicator of
some connection patterns between them [11, 12, 13,
14]. The spatial information is moreover helpful to
study dependencies during development [15].

This paper introduces a method to study spatial rela-
tions between two neuronal mosaics in the retina. The
key idea of this work is to calculate the Voronoi diagram
in one of the populations, and then study the distribution
of neurons from the second population inside the poly-
gons of the diagram. Using polygonal areas around neu-
ronal cells is a realistic approximation, since neurons
present different irregularities in their structure [16].

The remaining part of the paper is organized as fol-
lows. After introducing some related work in Sect. 2,
we describe the Voronoi diagram in Sect. 3. The V-
Proportion measurement is presented in Sect. 4. We val-
idate this method with simulated populations in Sect. 5.
Several real neuronal mosaics from the retina are ana-
lyzed in Sect. 6. Finally, we conclude in Sect. 7.

2. Related Work

Different methods to study spatial relations between
two cell populations have been proposed in the past. An
extension of the density recovery profile (DRP) [17] for
two populations is used in the work by Kouyama and
Marshak [18] to study interdependences between two
types of S-cone cells. This extension is called cross-
correlational density recovery profile (cDRP). Opposite
to the conventional DRP, which is based on autocorrela-
tions of the same population, the cDRP uses one of the
populations as reference and calculates the correlation
of the second population.

The different DRP methods are based on circular
domains around the reference cells. In contrast to
this technique, the V-Proportion measurement is based
on polygonal domains around the cells, which gener-
ally provide more adequate spatial approximations of
dendritic fields than circles [14]. However, since our
Voronoi procedure is based solely on the locations of
cell bodies and does not produce concave corners, it
may also fail for cells with extreme dendritic domains.

Another measurement used to study spatial depen-
dencies is theK-function [19], which uses second order
analysis of stationary point processes. TheK-function
is used by Diggle [20] to analyze the spatial relation
between on- and off-cells in the retina. A multivari-
ate counterpart of theJ-function [21] is introduced by
Lieshout and Baddeley [22] to study possible interde-
pendences between two population of points. The au-
thors applied this metric to study spatial dependencies
of beta cells in the cat retina [22].

K-nearest neighbor histograms have been also ap-
plied to study possible spatial correlations between neu-
ronal mosaics. For example, Ẅassle et al. [23] apply
this method to study Beta cells in the cat retina.

In the work by Diggle et al. [24], the authors use
Monte Carlo methods for conducting likelihood-based
analysis of point process models in neuronal data. In
particular, they fit a bivariate pairwise interaction model
in point data corresponding to retinal amacrine cells.

In the previous methods, only the coordinates of the
center of the cells are used. Our V-Proportion method,
however, applies a domain around the reference cells
to study possible spatial relations between the different
populations. This domains adapt better to the dendritic
fields of neurons.

Finally, Ahnelt et al. [14] apply a first version of the
V-Proportion to analyze interactions between irregular
S-cone mosaics and axonless horizontal cells. In com-
parison to [14], this paper presents several improve-
ments. First, we solve the edge problem by ignoring
points lying on open Voronoi polygons. This approxi-
mation reduces the number of points used in the statis-
tics, however it increases the confidence of the final re-
sults. Second, in this paper we introduce a method to
determine the level of spatial correlation between two
populations. In addition, we apply the V-Proportion
to real populations whose possible spatial correlations
have not been studied before.

3. The Voronoi Diagram

The Voronoi diagram is one of the most useful geo-
metrical constructions to study point patterns, since it
provides all the information needed to study proximity
relations between points [25].

A Voronoi diagram can be defined as follows. Let
S = {s1, s2, . . . , sn} be a limited set of points in the
two-dimensional Euclidean plane. These points are also
called Voronoi sites. Now each sitesi is assigned the
rest of points in the planep < S which are nearest to it

V(si) = {p | d(p, si) ≤ d(p, s j); p < S , ∀s j , si} (1)
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Figure 1: Part of a Voronoi diagram (black lines) for a set of sites
(filled circles). Bands around the edges of the Voronoi diagram are
shown in grey. In this particular caseδ = 0.29, indicating the 29% of
the distanced between a Voronoi edge and its closest sitesi. The P
population is shown in open circles.

with d(., .) representing the Euclidean distance function.
This process creates a tessellation of the plane into

(sometimes unbounded) convex polytopes, also called
Voronoi polygons. Let V(si) be the Voronoi polygon
corresponding to the sitesi, then all the points inside
this polygon are at least as close tosi as to any other site
s j.

The edges of the Voronoi polygons form the Voronoi
diagramV(S ) of the sitesS . Note that a point lying on
one edge of the Voronoi diagram has two nearest neigh-
bors sites, and each vertex has at least three. An exam-
ple of a Voronoi diagram is shown in Fig. 1.

4. The V-Proportion Measurement

The main idea of this work is to study spatial inter-
dependences between two neuronal populations. Each
neuron is represented by a point in the two-dimensional
Euclidean plane. Usually these points correspond to the
cell bodies of the neurons.

Our method consists of two main steps. In the first
one, we select a population as the set of sites from
which we calculate the Voronoi diagram. This diagram
is extended with a set of bands around the edges of the
Voronoi polygons. In the second step, the remaining
population is superimposed on the Voronoi diagram and
a set of statistics are calculated, which represent the spa-
tial relations between both populations.

First, the Voronoi diagram of the sitesS is calculated
using the criterion in (1). After obtaining the Voronoi
diagram we establish a set of bands around the edges of
the resulting Voronoi polygons. These bands are shown

as grey areas in Fig. 1. The width of each band is not
fixed but is proportional to the distance between a given
edge and its closest site. This proportion is represented
by the parameterδ with 0 < δ < 1. We then super-
impose the set of pointsP, which corresponds to the
second population of cells, on the extended Voronoi di-
agram containing the bands.

The basic idea behind this configuration is the follow-
ing. If both populationsS andP are spatially indepen-
dent, then the occurrence of a site point should not alter
the probability of the occurrence ofP points, and the
average density ofP points should be the same inside
and outside the bands. However, it could happen that
P points show either a positive or negative spatial cor-
relation with the sites. If the sites inhibit theP points,
then the latter will appear near the edges of the Voronoi
diagram, and the number ofP points inside the bands
will be significantly higher than expected. On the con-
trary, when the number ofP points inside the band is
decreased, it will mean that the sites are positively cor-
related to them.

Using the previous concepts, we define the V-
Proportion value as the relation between the number of
points inside the bands and the total number of points

V-Proportion=
|PB|

|P|
, (2)

with the setPB ⊆ P defined as

PB = {p j ∈ P | d(p j, e j) ≤ δ·d(si, e j), if p j ∈ V(si)} ,(3)

wheree j is the nearestV(si) edge to the pointp j. The
set PB thus represents the subset ofP points lying in-
side the bands of the extended Voronoi diagram. The
V-Proportion value varies depending on the width of the
bands, which is indicated by the parameterδ.

The interpretation of the V-Proportion measurement
is as follows. If the V-Proportion is higher than ex-
pected, that would suggest a negative correlation be-
tweenS and P. On the contrary, if the measured V-
Proportion is smaller than expected, that would indicate
a positive correlation.

An example of this process is shown in Fig. 1. This
figure shows two populations of points representing two
different types of cells. Each cell is represented by the
2D coordinates of its center. The point population de-
picted in filled circles is used as sites for the Voronoi di-
agram. The resulting edges of the Voronoi diagram are
shown in black lines. Following the previous approach,
the edges were extended with bands whose sizes are de-
pendent on the distance of each edge in the direction
to its closest site (grey bands). In this particular case
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δ = 0.29, indicating that the band width is 29% of the
distanced to its closest sitesi. In a next step, the second
point populationP (marked as open circles) was super-
imposed to the obtained geometrical construction.

To test the significance of the V-Proportion, we use
a Monte Carlo test procedure. This involves generat-
ing a set of two random and independent patterns, each
with the same number of points as the two empirical
populationsS and P, and in a study area identical to
that of these patterns. We repeat the generationT times
for different values ofδ, and then the mean and the
standard deviation of each simulated V-Proportion are
calculated. The resulting plot is compared with the V-
Proportion obtained with the two realS and P popu-
lations. Whenever the real V-Proportion raises above
the random equivalent simulation, then we can assume
a negative interaction between populations, that is,S in-
hibits P. If the real V-Proportion is below the simulated
one, then a clustering process occurs in whichS points
attractP points. If the real V-Proportion is close to the
simulated one, we can not assume any significant spatial
interaction between the two populations.

Finally, an important problem when working with
point populations is the edge effect. Typically, the ob-
servation of the two point patterns is restricted to a regu-
lar sampling window, while usually the patterns extend
beyond it. Furthermore, the Voronoi polygons on the
boundary of the window are open because they have
no neighboring points in those directions as shown in
Fig. 2. This edge effect affects the sense of bands in the
Voronoi polygons adjacent to the edges. In our case, we
solve this problem by removing the Voronoi polygons
intersecting the edges of the sampling area (open poly-
gons). Similar approaches have been applied in other
works for studying cell mosaics [26, 27]. Although this
heuristic reduces the total number of points used for the
study, we think the results represent the spatial relations
in a more reliable manner.

5. Validation of the V-Proportion Measurement

In this section we present a validation of the pro-
posed V-Proportion measurement. We analyze several
pairs of simulated populations following different spa-
tial relations. In particular, we simulate pairs of pop-
ulations showing a positive correlation, a negative cor-
relation, and neither positive nor negative correlation.
We then calculate the V-Proportion for each of the sim-
ulated pair of populations. The results indicate that we
can clearly detect the three previous behaviors using the
V-Proportion measurement. We finally present some

Figure 2: Voronoi diagram (black lines) for a set of sites (filled cir-
cles). The polygons close to the borders of the sampling window re-
main open since there are no neighboring points in those directions.

guidelines to determine the level of positive/negative
correlation using the V-Proportion plot.

5.1. Detection of a Positive Correlation

The first behavior we want to detect is a positive cor-
relation between two point populations. A positive cor-
relation means that the points in one population tend to
form clusters around the points of the other population.
To simulate this behavior we apply the Poisson cluster
process introduced in [28, 29]. We first generate the site
points following a bi-dimensional Poisson process. For
each site, a set of offspring points is generated (P pop-
ulation). The positions of the offspring points relative
to their corresponding sites are independent and identi-
cally distributed according to a bi-dimensional normal
distribution. More details on the implementation can be
found in [30].

Different pairs of populations were generated follow-
ing this approach. All pairs contained the same number
of sites andP points: 50 and 300 respectively. The pop-
ulations were contained in an image area of 300× 300
pixels. For each pair of populations, a different variance
σ2 was used for the bi-dimensional normal distribution
of the offspring points. Example simulations together
with their corresponding V-Proportion plots are shown
in Fig. 3 and Fig. 4. The clusters in Fig. 3(a) were simu-
lated with a variance ofσ2 = 25 (in pixel units). In this
case the clustering was detected within a confidence in-
terval of 95% (Fig. 3(b)). The clusters in Fig. 4(a) have
a variance ofσ2 = 100. This clustering was still de-
tected within a confidence interval of 95% using the V-
Proportion measurement (Fig. 4(b)).
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(a) σ2 = 25
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Figure 3: (a) A Poisson cluster withσ2 = 25 in pixel units. The area
of the original image is 300× 300 pixels. Sites are shown as filled
circles, whereasP points are depicted as open circles. (b) Plot of the
V-Proportion with error bars drawn at the 95% confidence interval.
The clustering is clearly detected by the V-Proportion.

5.2. Detection of a Negative Correlation

The second behavior we want to detect is a negative
correlation between two point populations. A negative
correlation means that points from one population tend
to be far away from the points in the other population.
A way to simulate this kind of behavior consists of gen-
erating offspring points that can not be closer to any
site point less than a certain distance. To generate pairs
of populations with negative correlations we followed
the method presented in [31]. This approach generates
a site population in which the sites are separated each
other by a certain distance. A second population is gen-
erated whose points are not allowed to be closer to a
site point by a distance smaller than a certain thresh-
old. Fig. 5(a) presents a pair of populations following
the previous criteria. In this case the sites (filled circles)
have a minimum distance of 60-80 pixels between them.
The P points (open circles) are generated with a mini-
mum distance of 70-80 pixels to the closest site. The

(a) σ2 = 100
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(b) V-Proportion

Figure 4: (a) A Poisson cluster withσ2 = 100 in pixel units. The area
of the original image is 300× 300 pixels. Sites are shown as filled
circles, whereasP points are depicted as open circles. (b) Plot of the
V-Proportion with error bars drawn at the 95% confidence interval.
The clustering is detected within a confidence interval of 95%.

V-Proportion plot in Fig. 5(b) clearly indicates a neg-
ative correlation between both populations within the
95% confidence interval.

5.3. Lack of Spatial Correlation

The third behavior we are interested in is the lack of
spatial correlation between two populations. In our case
this means that the populations does not present neither
positive nor negative correlation. To simulate this be-
havior we randomly generate two populations in a cer-
tain area, each population following a bi-dimensional
Poisson distribution. Example of such simulation can
be shown in Fig. 6(a). In this case we generated 50
sites and 300P points in an image area of 300× 300
pixels. The resulting V-Proportion plot is presented in
Fig. 6(b). The real V-Proportion maintains inside the
confidence interval of the Monte Carlo simulated popu-
lations which indicates no spatial correlation at all.
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(a) Negative Correlation
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Figure 5: (a) The image shows two populations with a negative cor-
relation. Sites are shown in filled circles whileP points are depicted
as open circles. (b) The V-Proportion plot suggests a negative corre-
lation. Error bars are drawn at the 95% confidence interval.

5.4. Determining the Level of Correlation

As shown in the previous experiments, the V-
Proportion is able to detect positive or negative corre-
lations using different confidence intervals. Once the
level of confidence is set, the V-Proportion of the pop-
ulation to be analyzed is compared with the simulated
data. We can interpret the resulting plot is as follows.
Whenever the V-Proportion of the analyzed population
lies above (or below) the confidence intervals of the sim-
ulated population for any band widthδ, we can assume
a negative (or positive) correlation.

A way to measure the level of correlation is to cal-
culate the area between the V-Proportion curves of the
real patterns and the random simulations. Bigger areas
would imply higher levels of correlation. An example
is shown in the plot of Fig. 7(a). This plot corresponds
to the negative correlation example of Fig. 5. The area
between the real V-Proportion and the simulated one is
depicted in grey color. Alternatively, it could be inter-

(a) Random Populations
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Figure 6: (a) The image shows two random populations. Sites are
shown in filled circles whileP points are depicted as open circles. (b)
According to the V-Proportion plot there is no evidence of a positive
or negative correlation. Error bars are drawn at the 95% confidence
interval.

esting to concentrate on some specific band width subin-
terval (Fig. 7(b)).

Using this method we can find the band width subin-
terval, which is directly related to the subinterval of dis-
tances to the central body of the neurons, that gives the
best significance for the probability of containing the
major part of the second population in the mosaic.

6. Experiments with Real Populations

In this section we analyze different pairs of neuronal
mosaics in the retina of the eye. The objective is to ex-
tract possible spatial relations between them, and to ex-
plain their biological implications.

The procedure for obtaining the point patterns used in
Sects. 6.1, 6.2 and 6.3 are explained in their respective
works [23, 32, 33]. For this paper we have used the
point patterns supplied by the authors.
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(a) Complete interval
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(b) Partial interval

Figure 7: (a) Total area between the V-Proportion curves of the real
patterns and the random simulations in Fig. 5. (b) The area corre-
sponding to a subinterval.

In the case of the data points of Sect. 6.4, we man-
ually identified and demarcated the positions of cells
on transparent planes from appropriately labeled micro-
graphs or focus planes of overlying retinal layers. This
process was carried out using the image processing soft-
ware ImageJ or Photoshop. The 2d-coordinates of the
points in the resulting calibrated mosaics were identi-
fied using the ImageJ software. All point patterns can
be downloaded from [34].

When calculating the confidence intervals for the
Monte Carlo simulations we chose a value of 95% since
this is a standard value used in the literature. This value
is, however, a free parameter that the user can determine
depending on the specific situation in which the experi-
ments are carried out.

Finally, the V-Proportion is based on statistical ap-
proximations and its results should be interpreted as the
likelihood of the existence of a spatial correlation within
a certain confidence interval.

6.1. On- and Off-Beta Cells in the Cat Retina

We first study the spatial relations between beta gan-
glion cells in the retina of a cat (Fig. 8). Beta cells

are associated with the resolution of fine detail in the
cat’s visual system. They can be classified as on- or
off-cells, depending on the branching level of their den-
dritic tree in the inner plexiform layer. Analysis of the
spatial pattern provides information on the cat’s visual
discrimination. In particular, independence of the on-
and off-components would strengthen the assumption
that there are two separate channels for brightness and
darkness [23].

The pattern shown in Fig. 8 was investigated in [23]
using histograms of nearest-neighbor distances (ignor-
ing edge effects). To test the independence of the
on- and off-patterns, a random translation of the off-
component was superimposed on the on-component,
and the resulting nearest-neighbor histogram was com-
pared with the original one by a sign reversal test. The
authors in [23] concluded that both types of beta cells
form a regular lattice, which are superimposed indepen-
dently. This data was also analyzed in [22] using the
J-function with a result greater than 1, which confirmed
conclusions in [23]. Our results using the V-proportion
are shown in both plots of Fig. 9. Using a confidence
interval of 95% we cannot assume any significant spa-
tial relation between on- and off-cells. This result is in
accordance with [22] and [23].

6.2. Blue Cones vs Bipolar Cells in the Macaque Retina
The second pair of mosaics we analyze is composed

of two different types of neuronal cell populations found
in the retina of macaque monkeys: blue bipolar cells
and blue cones (Fig. 10). The mosaics used in this
study were first presented in [32]. In that work, the au-
thors suggested that blue cones tended to be close to
blue bipolar cells and that nearly all blue bipolar cell
dendrites terminated beneath the blue cones. The pos-
itive correlation of blue cones and blue bipolar cells
was confirmed by the same authors in [18] using cross-
correlational density recovery profile (cDRP). The find-
ing that the blue cones and the blue bipolar cells were
closer together than expected suggests that the position
of the perikarya of these neurons were influenced by
their synaptic connections or other development inter-
actions [18].

To analyze the mosaics from Fig. 10 we first set the
bipolar cells as sites and the blue cones asP points.
We then calculated the V-proportion following the ap-
proach presented in Sect. 4. As Fig. 11(a) shows, the V-
Proportion lies under the simulated one for a band with
ranging from 0.2 to 0.6, and within the 95% confidence
interval. This result suggets that blue cones tend to be
close to blue bipolar cells, and it confirms similar find-
ings in [18]. In a second experiment, we set the blue
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Figure 8: On-cells (filled circles) and off-cells (open circles) from a
cat’s retina [23].

cones as sites and calculated the V-Proportion of blue
bipolar cells. The resulting plot in Fig. 11(b) suggests a
positive correlation in this direction as well.

6.3. Short-Wavelength-Sensitive Cones vs Blue Cone
Bipolar Cells in the Marmoset Monkey

In a third experiment we analyzed the possible spatial
relations between short-wavelength-sensitive (SWS)
cones and blue cone bipolar cells in the retina of a mar-
moset monkey [33]. In this species the S-cone mosaic
has an irregular characteristic. In [33], the authors com-
pared the neuronal connectivity of Old World and New
World primates, concluding that there exist similarities
between them.

In this experiment we first used the blue bipolar cells
as sites and analyzed the spatial distribution of the SWS
cones. The initial distribution of points is shown in
Fig. 12. The V-Proportion of Fig. 13(a) does not show
any positive correlation within the 95% confidence in-
terval. However, when swapping the populations (plac-
ing SWS as sites), the V-Proportion (Fig. 13(b)) shows
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(a) On-cells as sites
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(b) Off-cells as sites

Figure 9: Plots of the V-Proportion of the mosaics from Fig. 8.(a)
When the on-cells are used as sites there is no significant spatial re-
lation of off-cells. (b) The lack of spatial patterns between the two
populations is even more evident when off-cells are used as sites. Er-
ror bars are drawn at the 95% confidence interval.

a possible positive correlation of blue cone bipolar cells
with respect to SWS cells. This last result is in accor-
dance with the behavior of bipolar cells in the Macaque
retina shown in Sect. 6.2.

6.4. S-Cone positions vs Irregular Positions among the
otherwise hexagonal lattice of M-and L-cones in a
Rhesus Macaque Fovea

The foveas of human and primate retinas provide
maximum acuity by having highly condensed cone mo-
saics. Such mosaics had been previously analyzed with
respect to lattice regularity [35, 36, 37] but there had
been no approach to quantitatively study a possible re-
lationship between S-cone positions and non-hexagonal
defects of the M/L-cone lattice. In this last experiment
we wanted to analyze the spatial relationships of S-
cones with a specific feature of foveal microarchitec-
ture.

The analyzed mosaic consists of a minor short wave-
length sensitive S-cone and a dominant medium and
long wavelength M/L- sensitive cone subpopulation as

8



Figure 10: Bipolar cells (filled circles) and blue cones (open circles)
from the Macaque retina [32].

shown in Fig. 14. Overall, the foveal mosaic is a highly
regular nearly crystalline lattice with predominant 1:6
(hexagonal) neighborship relations. However previous
detailed packing analyses [35, 36, 37] have revealed lat-
tice discontinuities represented by cone positions with
< 6 > cone neighbors subdividing the hexagonal mo-
saic in patchy. In a rhesus monkey foveal mosaic with
labeled S-cones these positions with irregular number of
neighbors have been identified in a previous study [35].
The current approach now allows us to evaluate the S-
cone positions in relation to these mosaic distortions.

As revealed in the plot of Fig.15(b) the foveal S-cones
tend to be negatively correlated with the irregular posi-
tions suggesting that their location is prevalently associ-
ated with an undisturbed mosaic zone. This finding has
interesting implications for understanding the processes
underlying the developmental condensation of this mo-
saic.
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Figure 11: Plots of the V-Proportion of the mosaics from Fig. 10. (a)
When the bipolar cells are used as sites, the real V-Proportion lies
under the simulated V-proportion and outside its error bars for a band
width ranging from 0.2 to 0.6. The error bars of the Monte Carlo
simulation are drawn within the 95% confidence interval. Thisresult
suggests a positive correlation between blue cones and bluebipolar
cells. (b) The V-Proportion plot is calculated when the bluecones are
used as sites. This plot also suggests a positive correlation of bipolar
cells with respect to blue cones.

7. Conclusion

This paper presented a method based on the Voronoi
diagram to study possible spatial interactions between
two cell mosaics. The new measurement, called V-
Proportion, is able to detect different types of spatial
interdependencies such as positive correlations, nega-
tive correlations, as well as lack of correlations. Addi-
tionally, the V-Proportion is calculated in a way that a
confidence interval can be attached to the resulting be-
havior eventually revealing the significant range along
the relative band widths. Results from simulations as
well as in real data sets demonstrate the effectiveness of
the V-Proportion method to detect spatial relations be-
tween subpopulations of neurons or other (biological)
entities.
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Figure 12: Blue cone bipolar cells (filled circles) and SWS cones
(open circles) from a marmoset’s retina [33].
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Figure 13: Plots of the V-Proportion of the mosaics from Fig. 12. (a)
When the bipolar cells are used as sites the real V-Proportiondoes not
show any significant correlation within the 95% confidence interval.
(b) The V-Proportion plot is calculated when the SWS cones areused
as sites. This plot suggests a positive correlation of bipolar cells with
respect SWS cones within the 95% confidence interval.

Figure 14: Subpopulation with irregular mosaic positions (< 6 >
neighbors) among the otherwise hexagonal lattice of the dominant
M/L-cones (open circles) and positions of S-Cones (filled circles) in a
rhesus macaque fovea [35].
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(b) M/L-sensitive cones as sites

Figure 15: V-Proportion plots of the mosaics from Fig 14. (a) When
the B cones used as sites, the real V-Proportion does not showany
significant correlation within the 95% confidence interval.(b) When
the M/L-cones with irregular (non-hexagonal) positions are usedas
sites, there exist a significant negative correlation within the 95% con-
fidence interval.
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[23] H. Wässle, B. B. Boycott, R.-B. Illing, Morphology and mosaic
of on- and off-beta cells in the cat retina and some functional
considerations, Proceedings of the Royal Society of London.
Series B (Biological Sciences) 212 (1981) 177–195.

[24] P. Diggle, S. Eglen, J. Troy, Case Studies in Spatial Point Pro-
cess Modelling, Springer, pp. 215–233.

[25] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Com-
putational Geometry: Algorithms and Applications, Springer-
Verlag, third edition, 2008.

[26] L. Galli-Resta, E. Novelli, Z. Kryger, G. Jacobs, B. Reese, Mod-
elling the mosaic organization of rod and cone photoreceptors
with a minimal-spacing rule, The European Journal of Neuro-
science 11 (1999) 1461–1469.

[27] C. Duyckaerts, G. Godefroy, Voronoi tessellation to study the
numerical density and the spatial distribution of neurones,Jour-
nal of Chemical Neuroanatomy 20 (2000) 83–92.

[28] J. Neyman, E. Scott, A statistical approach to problems ofcos-
mology, Proceedings of the Royal Society of London. Series B
(Methodological) 20 (1958) 1–43.

[29] P. Diggle, Statistical analysis of spatial point patterns, Academic
Press, 1983.

[30] S. M. Ross, Simulation, Academic Press, 1997.
[31] E. Fernandez, N. Cuenca, J. D. Juan, A compiled basic pro-

gram for analysis of spatial point patterns: application toretinal
studies, Journal of Neuroscience Methods 50 (1993) 1–15.

[32] N. Kouyama, D. Marshak, Bipolar cells specific for blue cones
in the macaque retina, Journal of Neuroscience 12 (1992) 1233–
1252.

[33] X. Luo, K. K. Ghosh, P. R. Martin, U. Gruenert, Analysis of
two types of cone bipolar cells in the retina of a New World
monkey, the marmoset,Callithrix jacchus, Visual Neuroscience
16 (1999) 707–7191.

[34] http://www.informatik.uni-freiburg.de/

~omartine/mosaics_data_sets.html, 2010.
[35] D. Pum, P. K. Ahnelt, M. Grasl, Iso-orientation areas in the

foveal cone mosaic, Visual Neuroscience 5 (1990) 511–523.
[36] C. Curcio, K. Sloan, Packing geometry of human cone pho-

toreceptors: variation with eccentricity and evidence forlocal
anisotropy, Visual Neuroscience 9 (1992) 169–180.

[37] D. H. Wojtas, B. Wu, P. K. Ahnelt, P. J. Bones, R. Millane,Au-
tomated analysis of differential interference contrast microscopy
images of the foveal cone mosaic, Journal of the Optical Soci-
ety of America A, Optics, image science, and vision 25 (2008)
1181–1189.

11


