159 research outputs found
Investigating the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle
A 2.5-dimensional climate model of intermediate complexity, CLIMBER-2, fully coupled with the GREMLINS 3-D thermo-mechanical ice sheet model is used to simulate the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle and to investigate the ice sheets responses to both insolation and atmospheric CO<sub>2</sub> concentration. This model reproduces the main phases of advance and retreat of Northern Hemisphere ice sheets during the last glacial cycle, although the amplitude of these variations is less pronounced than those based on sea level reconstructions. At the last glacial maximum, the simulated ice volume is 52.5&times;10<sup>15</sup> m<sup>3</sup> and the spatial distribution of both the American and Eurasian ice complexes is in reasonable agreement with observations, with the exception of the marine parts of these former ice sheets. <br> A set of sensitivity studies has also been performed to assess the sensitivity of the Northern Hemisphere ice sheets to both insolation and atmospheric CO<sub>2</sub>. Our results suggest that the decrease of summer insolation is the main factor responsible for the early build up of the North American ice sheet around 120 kyr BP, in agreement with benthic foraminifera &delta;<sup>18</sup>O signals. In contrast, low insolation and low atmospheric CO<sub>2</sub> concentration are both necessary to trigger a long-lasting glaciation over Eurasia
Impact of precession on the climate, vegetation and fire activity in southern Africa during MIS4
Open access journalhe relationships between climate, vegetation and fires are a major subject of investigation in the context of climate change. In southern Africa, fire is known to play a crucial role in the existence of grasslands and Mediterranean-type biomes. Microcharcoal-based reconstructions of past fire activity in that region have shown a tight correlation between grass-fueled fires and the precessional cycle, with maximum fire activity during maxima of the climatic precession index. These changes have been interpreted as the result of changes in fuel load in response to precipitation changes in eastern southern Africa. Here we use the general circulation model IPSL_CM5A (Institut Pierre Simon Laplace Climate Model version 5A) and the dynamic vegetation model LPJ-LMfire to investigate the response of climate, vegetation and fire activity to precession changes in southern Africa during marine isotopic stage 4 (74–59 kyr BP). We perform two climatic simulations, for a maximum and minimum of the precession index, and use a statistical downscaling method to increase the spatial resolution of the IPSL_CM5A outputs over southern Africa and perform high-resolution simulations of the vegetation and fire activity. Our results show an anticorrelation between the northern and southern African monsoons in response to precession changes. A decrease of the precession climatic index leads to a precipitation decrease in the summer rainfall area of southern Africa. The drying of climate leads to a decrease of vegetation cover and fire activity. Our results are in qualitative agreement with data and confirm that fire activity in southern Africa during MIS4 is mainly driven by vegetation cover.European Research Counci
Quantifying molecular oxygen isotope variations during a Heinrich stadial
International audienceδ 18 O of atmospheric oxygen (δ 18 O atm) undergoes millennial-scale variations during the last glacial period, and systematically increases during Heinrich stadials (HSs). Changes in δ 18 O atm combine variations in biospheric and water cycle processes. The identification of the main driver of the millennial variability in δ 18 O atm is thus not straightforward. Here, we quantify the response of δ 18 O atm to such millennial events using a freshwater hosing simulation performed under glacial boundary conditions. Our global approach takes into account the latest estimates of isotope frac-tionation factor for respiratory and photosynthetic processes and make use of atmospheric water isotope and vegetation changes. Our modeling approach allows to reproduce the main observed features of a HS in terms of climatic conditions , vegetation distribution and δ 18 O of precipitation. We use it to decipher the relative importance of the different processes behind the observed changes in δ 18 O atm. The results highlight the dominant role of hydrology on δ 18 O atm and confirm that δ 18 O atm can be seen as a global integrator of hydrological changes over vegetated areas
Confronting Standard Models of Proto--Planetary Disks With New Mid--Infrared Sizes from the Keck Interferometer
We present near and mid-infrared interferometric observations made with the
Keck Interferometer Nuller and near-contemporaneous spectro-photometry from the
IRTF of 11 well known young stellar objects, several observed for the first
time in these spectral and spatial resolution regimes. With AU-level spatial
resolution, we first establish characteristic sizes of the infrared emission
using a simple geometrical model consisting of a hot inner rim and mid-infrared
disk emission. We find a high degree of correlation between the stellar
luminosity and the mid-infrared disk sizes after using near-infrared data to
remove the contribution from the inner rim. We then use a semi-analytical
physical model to also find that the very widely used "star + inner dust rim +
flared disk" class of models strongly fails to reproduce the SED and
spatially-resolved mid-infrared data simultaneously; specifically a more
compact source of mid-infrared emission is required than results from the
standard flared disk model. We explore the viability of a modification to the
model whereby a second dust rim containing smaller dust grains is added, and
find that the two-rim model leads to significantly improved fits in most cases.
This complexity is largely missed when carrying out SED modelling alone,
although detailed silicate feature fitting by McClure et al. 2013 recently came
to a similar conclusion. As has been suggested recently by Menu et al. 2015,
the difficulty in predicting mid-infrared sizes from the SED alone might hint
at "transition disk"-like gaps in the inner AU; however, the relatively high
correlation found in our mid-infrared disk size vs. stellar luminosity relation
favors layered disk morphologies and points to missing disk model ingredients
instead
The Subaru Coronagraphic Extreme Adaptive Optics system: enabling high-contrast imaging on solar-system scales
The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is a
multipurpose high-contrast imaging platform designed for the discovery and
detailed characterization of exoplanetary systems and serves as a testbed for
high-contrast imaging technologies for ELTs. It is a multi-band instrument
which makes use of light from 600 to 2500nm allowing for coronagraphic direct
exoplanet imaging of the inner 3 lambda/D from the stellar host. Wavefront
sensing and control are key to the operation of SCExAO. A partial correction of
low-order modes is provided by Subaru's facility adaptive optics system with
the final correction, including high-order modes, implemented downstream by a
combination of a visible pyramid wavefront sensor and a 2000-element deformable
mirror. The well corrected NIR (y-K bands) wavefronts can then be injected into
any of the available coronagraphs, including but not limited to the phase
induced amplitude apodization and the vector vortex coronagraphs, both of which
offer an inner working angle as low as 1 lambda/D. Non-common path, low-order
aberrations are sensed with a coronagraphic low-order wavefront sensor in the
infrared (IR). Low noise, high frame rate, NIR detectors allow for active
speckle nulling and coherent differential imaging, while the HAWAII 2RG
detector in the HiCIAO imager and/or the CHARIS integral field spectrograph
(from mid 2016) can take deeper exposures and/or perform angular, spectral and
polarimetric differential imaging. Science in the visible is provided by two
interferometric modules: VAMPIRES and FIRST, which enable sub-diffraction
limited imaging in the visible region with polarimetric and spectroscopic
capabilities respectively. We describe the instrument in detail and present
preliminary results both on-sky and in the laboratory.Comment: Accepted for publication, 20 pages, 10 figure
Constraining the Exozodiacal Luminosity Function of Main-sequence Stars: Complete Results from the Keck Nuller Mid-infrared Surveys
Forty-seven nearby main-sequence stars were surveyed with the Keck Interferometer mid-infrared Nulling instrument (KIN) between 2008 and 2011, searching for faint resolved emission from exozodiacal dust. Observations of a subset of the sample have already been reported, focusing essentially on stars with no previously known dust. Here we extend this previous analysis to the whole KIN sample, including 22 more stars with known near-and/or far-infrared excesses. In addition to an analysis similar to that of the first paper of this series, which was restricted to the 8-9 µm spectral region, we present measurements obtained in all 10 spectral channels covering the 8-13 µm instrumental bandwidth. Based on the 8-9 µm data alone, which provide the highest signal-to-noise measurements, only one star shows a large excess imputable to dust emission (η Crv), while four more show a significant (> 3σ) excess: β Leo, β UMa, ζ Lep, and y Oph. Overall, excesses detected by KIN are more frequent around A-type stars than later spectral types. Astatistical analysis of the measurements further indicates that stars with known far-infrared (y ≥ 70 µm) excesses have higher exozodiacal emission levels than stars with no previous indication of a cold outer disk. This statistical trend is observed regardless of spectral type and points to a dynamical connection between the inner (zodi-like) and outer (Kuiper-Belt-like) dust populations. The measured levels for such stars are clustering close to the KIN detection limit of a few hundred zodis and are indeed consistent with those expected from a population of dust that migrated in from the outer belt by Poynting-Robertson drag. Conversely, no significant mid-ilinfrared excess is found around sources with previously reported near-infrared resolved excesses, which typically have levels of the order of 1% over the photospheric flux. If dust emission is really at play in these near-infrared detections, the absence of a strong mid-infrared counterpart points to populations of very hot and small (submicron) grains piling up very close to the sublimation radius. For solar-type stars with no known infrared excess, likely to be the most relevant targets for a future exo-Earth direct imaging mission, we find that their median zodi level is 12±24 zodis and lower than 60 (90) zodis with 95% (99%) confidence, if a lognormal zodi luminosity distribution is assumed
Confronting standard models of proto-planetary disks with new mid-infrared sizes from the Keck Interferometer
This is the author accepted manuscript. The final version is available from American Astronomical Society/IOP Publishing via the DOI in this record.The published version is in ORE at http://hdl.handle.net/10871/30943We present near and mid–infrared interferometric observations made with the Keck Interferometer Nuller and near–contemporaneous spectro–photometry from the IRTF of 11 well known young stellar objects, several observed for the first time in these spectral and spatial resolution regimes. With AU–level spatial resolution, we first establish characteristic sizes of the infrared emission using a simple geometrical model consisting of a hot inner rim and mid–infrared disk emission. We find a high degree of correlation between the stellar luminosity and the mid–infrared disk sizes after using near–infrared data to remove the contribution from the inner rim. We then use a semi–analytical physical model to also find that the very widely used “star + inner dust rim+ flared disk” class of models strongly fails to reproduce the SED and spatially–resolved mid–infrared data simultaneously; specifically a more compact source of mid–infrared emission is
required than results from the standard flared disk model. We explore the viability
of a modification to the model whereby a second dust rim containing smaller dust
grains is added, and find that the two–rim model leads to significantly improved fits in
most cases. This complexity is largely missed when carrying out SED modelling alone, although detailed silicate feature fitting by McClure et al. (2013) recently came to a similar conclusion. As has been suggested recently by Menu et al. (2015), the difficulty in predicting mid–infrared sizes from the SED alone might hint at “transition disk”–like gaps in the inner AU; however, the relatively high correlation found in our mid–infrared disk size vs. stellar luminosity relation favors layered disk morphologies and points to missing disk model ingredients instead.The authors wish to acknowledge fruitful discussions with Nuria Calvet and Melissa McClure.
Part of this work was performed while X. C. was a Visiting Graduate Student Research Fellow at
the Infrared Processing and Analysis Center (IPAC), California Institute of Technology. The Keck
Interferometer was funded by the National Aeronautics and Space Administration as part of its
Exoplanet Exploration Program. Data presented herein were obtained at the W.M. Keck Observatory,
which is operated as a scientific partnership among the California Institute of Technology,
the University of California and the National Aeronautics and Space Administration. The Observatory
was made possible by the generous financial support of the W.M. Keck Foundation. The
authors wish to recognize and acknowledge the very significant cultural role and reverence that the
summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most
fortunate to have the opportunity to conduct observations from this mountain. Data presented in
this paper were obtained at the Infrared Telescope Facility, which is operated by the University of
Hawaii under contract NNH14CK55B with the National Aeronautics and Space Administration.
We gratefully acknowledge support and participation in the IRTF/BASS observing runs by Daryl
Kim, The Aerospace Corporation. This work has made use of services produced by the NASA Exoplanet
Science Institute at the California Institute of Technology. M. S. was supported by NASA
ADAP grant NNX09AC73G. R. W. R. was supported by the IR&D program of The Aerospace
Corporatio
First direct detection of an exoplanet by optical interferometry; Astrometry and K-band spectroscopy of HR8799 e
To date, infrared interferometry at best achieved contrast ratios of a few
times on bright targets. GRAVITY, with its dual-field mode, is now
capable of high contrast observations, enabling the direct observation of
exoplanets. We demonstrate the technique on HR8799, a young planetary system
composed of four known giant exoplanets. We used the GRAVITY fringe tracker to
lock the fringes on the central star, and integrated off-axis on the HR8799e
planet situated at 390 mas from the star. Data reduction included
post-processing to remove the flux leaking from the central star and to extract
the coherent flux of the planet. The inferred K band spectrum of the planet has
a spectral resolution of 500. We also derive the astrometric position of the
planet relative to the star with a precision on the order of 100as. The
GRAVITY astrometric measurement disfavors perfectly coplanar stable orbital
solutions. A small adjustment of a few degrees to the orbital inclination of HR
8799 e can resolve the tension, implying that the orbits are close to, but not
strictly coplanar. The spectrum, with a signal-to-noise ratio of
per spectral channel, is compatible with a late-type L brown dwarf. Using
Exo-REM synthetic spectra, we derive a temperature of \,K and a
surface gravity of cm/s. This corresponds to a radius
of and a mass of , which is an independent confirmation of mass estimates from evolutionary
models. Our results demonstrate the power of interferometry for the direct
detection and spectroscopic study of exoplanets at close angular separations
from their stars.Comment: published in A&
An overview of the mid-infrared spectro-interferometer MATISSE: science, concept, and current status
MATISSE is the second-generation mid-infrared spectrograph and imager for the
Very Large Telescope Interferometer (VLTI) at Paranal. This new interferometric
instrument will allow significant advances by opening new avenues in various
fundamental research fields: studying the planet-forming region of disks around
young stellar objects, understanding the surface structures and mass loss
phenomena affecting evolved stars, and probing the environments of black holes
in active galactic nuclei. As a first breakthrough, MATISSE will enlarge the
spectral domain of current optical interferometers by offering the L and M
bands in addition to the N band. This will open a wide wavelength domain,
ranging from 2.8 to 13 um, exploring angular scales as small as 3 mas (L band)
/ 10 mas (N band). As a second breakthrough, MATISSE will allow mid-infrared
imaging - closure-phase aperture-synthesis imaging - with up to four Unit
Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. Moreover, MATISSE
will offer a spectral resolution range from R ~ 30 to R ~ 5000. Here, we
present one of the main science objectives, the study of protoplanetary disks,
that has driven the instrument design and motivated several VLTI upgrades
(GRA4MAT and NAOMI). We introduce the physical concept of MATISSE including a
description of the signal on the detectors and an evaluation of the expected
performances. We also discuss the current status of the MATISSE instrument,
which is entering its testing phase, and the foreseen schedule for the next two
years that will lead to the first light at Paranal.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June
2016, 11 pages, 6 Figure
- …