81 research outputs found

    The logic of the floral transition: reverse-engineering the switch controlling the identity of lateral organs

    Get PDF
    Much laboratory work has been carried out to determine the gene regulatory network (GRN) that results in plant cells becoming flowers instead of leaves. However, this also involves the spatial distribution of different cell types, and poses the question of whether alternative networks could produce the same set of observed results. This issue has been addressed here through a survey of the published intercellular distribution of expressed regulatory genes and techniques both developed and applied to Boolean network models. This has uncovered a large number of models which are compatible with the currently available data. An exhaustive exploration had some success but proved to be unfeasible due to the massive number of alternative models, so genetic programming algorithms have also been employed. This approach allows exploration on the basis of both data-fitting criteria and parsimony of the regulatory processes, ruling out biologically unrealistic mechanisms. One of the conclusions is that, despite the multiplicity of acceptable models, an overall structure dominates, with differences mostly in alternative fine-grained regulatory interactions. The overall structure confirms the known interactions, including some that were not present in the training set, showing that current data are sufficient to determine the overall structure of the GRN. The model stresses the importance of relative spatial location, through explicit references to this aspect. This approach also provides a quantitative indication of how likely some regulatory interactions might be, and can be applied to the study of other developmental transitions

    Smoke on the Water: Comparative Assessment of Combined Thermal Shock Treatments for Control of Invasive Asian Clam, Corbicula fluminea.

    Get PDF
    Suppression of established populations of invasive alien species can be a complex and expensive process, which is frequently unsuccessful. The Asian clam, Corbicula fluminea (Müller, 1774), is considered a high impact invader that can adversely alter freshwater ecosystems and decrease their socioeconomic value. To date, C. fluminea continues to spread and persist within freshwater environments worldwide, despite repeated management attempts to prevent dispersal and suppress established populations. As extensive C. fluminea beds can often become exposed during low-water conditions, the direct application of hot or cold thermal shock treatments has been proposed as suitable mechanism for their control. Further, mechanical substrate disturbance may enhance the efficacy of thermal shock treatments by facilitating exposures to multiple layers of buried clams. In the present study, we advanced these methods by assessing combined applications of both hot and cold thermal shock treatments for control of C. fluminea, using steam spray (≥100 °C; 350 kPa), low- or high-intensity open-flame burns (~1000 °C) and dry ice (-78 °C). In a direct comparison of raking combined with hot thermal shock applications, both steam and high-intensity open-flame treatments tended to be most effective, especially following multiple applications. In addition, when hot thermal treatments are followed by a final cold shock (i.e. dry ice), steam treatments tended to be most effective. Further, when dry ice was applied either alone or prior to an application of a hot shock treatment, substantial if not complete C. fluminea mortality was observed. Overall, this study demonstrated that combined applications of hot and cold thermal shock treatments, applied following the disruption of the substrate, can substantially increase C. fluminea mortality compared to separate hot or cold treatments

    Ensemble Models of Neutrophil Trafficking in Severe Sepsis

    Get PDF
    A hallmark of severe sepsis is systemic inflammation which activates leukocytes and can result in their misdirection. This leads to both impaired migration to the locus of infection and increased infiltration into healthy tissues. In order to better understand the pathophysiologic mechanisms involved, we developed a coarse-grained phenomenological model of the acute inflammatory response in CLP (cecal ligation and puncture)-induced sepsis in rats. This model incorporates distinct neutrophil kinetic responses to the inflammatory stimulus and the dynamic interactions between components of a compartmentalized inflammatory response. Ensembles of model parameter sets consistent with experimental observations were statistically generated using a Markov-Chain Monte Carlo sampling. Prediction uncertainty in the model states was quantified over the resulting ensemble parameter sets. Forward simulation of the parameter ensembles successfully captured experimental features and predicted that systemically activated circulating neutrophils display impaired migration to the tissue and neutrophil sequestration in the lung, consequently contributing to tissue damage and mortality. Principal component and multiple regression analyses of the parameter ensembles estimated from survivor and non-survivor cohorts provide insight into pathologic mechanisms dictating outcome in sepsis. Furthermore, the model was extended to incorporate hypothetical mechanisms by which immune modulation using extracorporeal blood purification results in improved outcome in septic rats. Simulations identified a sub-population (about of the treated population) that benefited from blood purification. Survivors displayed enhanced neutrophil migration to tissue and reduced sequestration of lung neutrophils, contributing to improved outcome. The model ensemble presented herein provides a platform for generating and testing hypotheses in silico, as well as motivating further experimental studies to advance understanding of the complex biological response to severe infection, a problem of growing magnitude in humans

    Role of ultrasound, clinical and scintigraphyc parameters to predict malignancy in thyroid nodule

    Get PDF
    Background: This study aimed to evaluate clinical, laboratory, ultrasound (US) and scintigraphyc parameters in thyroid nodule and to develop an auxiliary model for clinical application in the diagnosis of malignancy. Methods: We assessed 143 patients who were surgically treated at a single center, 65% (93) benign vs. 35% (50) malignant lesions at final histology (1998-2008). The clinical, laboratory, scintigraphyc and US features were compared and a prediction model was designed after the multivariate analysis. Results: There were no differences in gender, serum TSH and FT4 levels, thyroid auto-antibodies (TAb), thyroid dysfunction and scintigraphyc results (P = 0.33) between benign and malignant nodule groups. The sonographic study showed differences when the presence of suspected characteristics was found in the nodules of the malignant lesions group, such as: microcalcifications, central flow, border irregularity and hypoechogenicity. After the multivariate analysis the model obtained showed age (>39 years), border irregularity, microcalcifications and nodule size over 2 cm as predictive factors of malignancy, featuring 81.7% of accuracy. Conclusions: This study confirmed a significant increase of risk for malignancy in patients of over 39 years and with suspicious features at US

    Experimental ‘Jet Lag’ Inhibits Adult Neurogenesis and Produces Long-Term Cognitive Deficits in Female Hamsters

    Get PDF
    Background: Circadian disruptions through frequent transmeridian travel, rotating shift work, and poor sleep hygiene are associated with an array of physical and mental health maladies, including marked deficits in human cognitive function. Despite anecdotal and correlational reports suggesting a negative impact of circadian disruptions on brain function, this possibility has not been experimentally examined. Methodology/Principal Findings: In the present study, we investigated whether experimental ‘jet lag ’ (i.e., phase advances of the light:dark cycle) negatively impacts learning and memory and whether any deficits observed are associated with reductions in hippocampal cell proliferation and neurogenesis. Because insults to circadian timing alter circulating glucocorticoid and sex steroid concentrations, both of which influence neurogenesis and learning/memory, we assessed the contribution of these endocrine factors to any observed alterations. Circadian disruption resulted in pronounced deficits in learning and memory paralleled by marked reductions in hippocampal cell proliferation and neurogenesis. Significantly, deficits in hippocampal-dependent learning and memory were not only seen during the period of the circadian disruption, but also persisted well after the cessation of jet lag, suggesting long-lasting negative consequences on brain function. Conclusions/Significance: Together, these findings support the view that circadian disruptions suppress hippocampal neurogenesis via a glucocorticoid-independent mechanism, imposing pronounced and persistent impairments on learnin

    Nutritional Systems Biology Modeling: From Molecular Mechanisms to Physiology

    Get PDF
    The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the consideration and interpretation of experimental data at widely differing scales of space and time. In this review, we discuss a selection of available modeling approaches and applications relevant for nutrition. We then put these models into perspective by categorizing them according to their space and time domain. Through this categorization process, we identified a dearth of models that consider processes occurring between the microscopic and macroscopic scale. We propose a “middle-out” strategy to develop the required full-scale, multilevel computational models. Exhaustive and accurate phenotyping, the use of the virtual patient concept, and the development of biomarkers from “-omics” signatures are identified as key elements of a successful systems biology modeling approach in nutrition research—one that integrates physiological mechanisms and data at multiple space and time scales

    Clinical anticancer drug development: targeting the cyclin-dependent kinases

    Get PDF
    Cell division involves a cyclical biochemical process composed of several step-wise reactions that have to occur once per cell cycle. Dysregulation of cell division is a hallmark of all cancers. Genetic and epigenetic mechanisms frequently result in deranged expression and/or activity of cell-cycle proteins including the cyclins, cyclin-dependent kinases (Cdks), Cdk inhibitors and checkpoint control proteins. The critical nature of these proteins in cell cycling raises hope that targeting them may result in selective cytotoxicity and valuable anticancer activity

    Conceptual Frameworks and Methods for Advancing Invasion Ecology

    Get PDF
    Invasion ecology has much advanced since its early beginnings. Nevertheless, explanation, prediction, and management of biological invasions remain difficult. We argue that progress in invasion research can be accelerated by, first, pointing out difficulties this field is currently facing and, second, looking for measures to overcome them. We see basic and applied research in invasion ecology confronted with difficulties arising from (A) societal issues, e.g., disparate perceptions of invasive species; (B) the peculiarity of the invasion process, e.g., its complexity and context dependency; and (C) the scientific methodology, e.g., imprecise hypotheses. To overcome these difficulties, we propose three key measures: (1) a checklist for definitions to encourage explicit definitions; (2) implementation of a hierarchy of hypotheses (HoH), where general hypotheses branch into specific and precisely testable hypotheses; and (3) platforms for improved communication. These measures may significantly increase conceptual clarity and enhance communication, thus advancing invasion ecology
    corecore