4,037 research outputs found
Numerical techniques for lattice QCD in the --regime
In lattice QCD it is possible, in principle, to determine the parameters in
the effective chiral lagrangian (including weak interaction couplings) by
performing numerical simulations in the --regime, i.e. at quark
masses where the physical extent of the lattice is much smaller than the
Compton wave length of the pion. The use of a formulation of the lattice theory
that preserves chiral symmetry is attractive in this context, but the numerical
implementation of any such approach requires special care in this kinematical
situation due to the presence of some very low eigenvalues of the Dirac
operator. We discuss a set of techniques (low-mode preconditioning and
adapted-precision algorithms in particular) that make such computations
numerically safe and more efficient by a large factor.Comment: Plain TeX source, 32 pages, figures include
Simultaneous observations of haemolymph flow and ventilation in marine spider crabs at different temperatures: a flow weighted MRI study
In vivo magnetic resonance imaging (MRI) and angiography were applied to the marine spider crab Maja squinado for a study of temperature effects and thermal tolerance. Ventilation and haemolymph circulation were investigated during progressive cooling from 12°C to 2°C. The anatomical resolution of MR images from Maja squinado obtained with a standard spin echo sequence were suitable to resolve the structures of various internal organs. The heart of the animal could be depicted without movement artifacts. The use of a flow compensated gradient echo sequence allowed simultaneous observations of ventilation, reflected by water flow through the gill chambers as well as of haemolymph flow. Simultaneous investigation of various arteries was possible by use of flow weighted MRI. In addition to those accessible by standard invasive flow sensitive doppler sensors, flow changes in gill, leg arteries and the venous return could be observed. Both ventilation and haemolymph flow decreased during progressive cooling and changes in haemolymph flow varied between arteries. Haemolymph flow through the Arteria sternalis, some gill and leg arteries was maintained at low temperatures indicating a reduced thermal sensitivity of flow in selected vessels. In support of previous invasive studies of haemolymph flow as well as heart and ventilation rates, the results demonstrate that the operation of gills and the maintenance of locomotor activity are critical for cold tolerance. A shift in haemolymph flow between arteries likely occurs to ensure the functioning of locomotion and ventilation in the cold
The Shape of Covariantly Smeared Sources in Lattice QCD
Covariantly smeared sources are commonly used in lattice QCD to enhance the
projection onto the ground state. Here we investigate the dependence of their
shape on the gauge field background and find that the presence of localized
concentrations of magnetic field can lead to strong distortions which reduce
the smearing radii achievable by iterative smearing prescriptions. In
particular, as , iterative procedures like Jacobi smearing require
increasingly large iteration counts in order to reach physically-sized smearing
radii 0.5 fm, and the resulting sources are strongly distorted. To
bypass this issue, we propose a covariant smearing procedure (``free-form
smearing'') that allows us to create arbitrarily shaped sources, including in
particular Gaussians of arbitrary radius.Comment: 1+15 pages, 7 figures (24 pdf images
Weak low-energy couplings from topological zero-mode wavefunctions
We discuss a new method to determine the low-energy couplings of the weak Hamiltonian in the -regime. It relies on a matching of the
topological poles in of three-point functions of two pseudoscalar
densities and a four-fermion operator computed in lattice QCD, to the same
observables in the Chiral Effective Theory. We present the results of a NLO
computation in chiral perturbation theory of these correlation functions
together with some preliminary numerical results.Comment: 7 pages. Contribution to Lattice 200
Determination of the weak Hamiltonian in the SU(4) chiral limit through topological zero-mode wave functions
A new method to determine the low-energy couplings of the weak
Hamiltonian is presented. It relies on a matching of the topological poles in
of three-point correlators of two pseudoscalar densities and a
four-fermion operator, measured in lattice QCD, to the same observables
computed in the -regime of chiral perturbation theory. We test this
method in a theory with a light charm quark, i.e. with an SU(4) flavour
symmetry. Quenched numerical measurements are performed in a 2 fm box, and
chiral perturbation theory predictions are worked out up to next-to-leading
order. The matching of the two sides allows to determine the weak low-energy
couplings in the SU(4) limit. We compare the results with a previous
determination, based on three-point correlators containing two left-handed
currents, and discuss the merits and drawbacks of the two procedures.Comment: 38 pages, 9 figure
Optimization of Multiple-Rendezvous Low-Thrust Missions on General-Purpose Graphics Processing Units
A massively parallel method for the identification of optimal sequences of targets in multiple-rendezvous low-thrust missions is presented. Given a list of possible targets, a global search of sequences compatible with the mission requirements is performed. To estimate the feasibility of each transfer, a heuristic model based on Lambert's transfers is evaluated in parallel for each target, making use of commonly available general-purpose graphics processing units such as the Nvidia Tesla cards. The resulting sequences are ranked by user-specified criteria such as length or fuel consumption. The resulting preliminary sequences are then optimized to a full low-thrust trajectory using classical methods for each leg. The performance of the method is discussed as a function of various parameters of the algorithm. The efficiency of the general-purpose graphics processing unit implementation is demonstrated by comparing it with a traditional CPU-based branch-and-bound method. Finally, the algorithm is used to compute asteroid sequences used in a solution submitted to the seventh edition of the Global Trajectory Optimization Competition
Mass Spectrum of the 3d SU(2) Higgs Model and the Symmetric Electroweak Phase
We present results for the masses of the low-lying states with quantum
numbers , and as well as Polyakov line correlations
in the Higgs and confinement regions of the 3d SU(2) Higgs model. In the
confinement phase we find a dense spectrum of bound states approximately split
into two disjoint sectors. One consists of W-balls nearly identical to the
glueball spectrum of the pure gauge theory, the other of bound states of
scalars.Comment: Talk presented at LATTICE96(electroweak), 3 pages, 3 figures using
epsf.st
- …