10,171 research outputs found

    Generalized gaugings and the field-antifield formalism

    Get PDF
    We discuss the algebra of general gauge theories that are described by the embedding tensor formalism. We compare the gauge transformations dependent and independent of an invariant action, and argue that the generic transformations lead to an infinitely reducible algebra. We connect the embedding tensor formalism to the field-antifield (or Batalin-Vilkovisky) formalism, which is the most general formulation known for general gauge theories and their quantization. The structure equations of the embedding tensor formalism are included in the master equation of the field-antifield formalism.Comment: 42 pages; v2: some clarifications and 1 reference added; version to be published in JHE

    Gauged Supergravities in Three Dimensions: A Panoramic Overview

    Get PDF
    Maximal and non-maximal supergravities in three spacetime dimensions allow for a large variety of semisimple and non-semisimple gauge groups, as well as complex gauge groups that have no analog in higher dimensions. In this contribution we review the recent progress in constructing these theories and discuss some of their possible applications.Comment: 32 pages, 1 figure, Proceedings of the 27th Johns Hopkins workshop: Goteborg, August 2003; references adde

    Design of fibre reinforced PV concepts for building integrated applications

    Get PDF
    Fibre reinforced polymers present an interesting encapsulation medium for PV-modules. Glass fibres can provide increased strength and stiffness to thin polymer layers overcoming the brittleness and limited deformability of glass-panes. Glass fibre reinforced polymers allows for transparency over a broad range of the solar spectrum while the material properties and integral production processes create possibilities for novel product concepts with embedded PV technology. To explore such possibilities, innovative design methods were used to design novel PV product concepts for applications in the build environment.\ud In our paper three conceptual designs are presented; (1) a thin film module with an adjoining interconnection system functioning as structural element for geodetic roofing structures, (2) a PV lamella with single-axis tracking utilizing a linear concentration effect caused by the geometry of the product and the materials applied, and (3) a prepreg PV-material which allows for easy shaping during the production of PV modules with complex geometries. Each concept employs a specific PV technology and demonstrates a possible application aimed at a specific market. In this way we show the potential of integration of PV technology in fibre reinforced composites. The paper will be illustrated by concept renderings

    Consistent truncation of d = 11 supergravity on AdS_4 x S^7

    Full text link
    We study the system of equations derived twenty five years ago by B. de Wit and the first author [Nucl. Phys. B281 (1987) 211] as conditions for the consistent truncation of eleven-dimensional supergravity on AdS_4 x S^7 to gauged N = 8 supergravity in four dimensions. By exploiting the E_7(7) symmetry, we determine the most general solution to this system at each point on the coset space E_7(7)/SU(8). We show that invariants of the general solution are given by the fluxes in eleven-dimensional supergravity. This allows us to both clarify the explicit non-linear ansatze for the fluxes given previously and to fill a gap in the original proof of the consistent truncation. These results are illustrated with several examples.Comment: 41 pages, typos corrected, published versio

    Geometry of The Embedding of Supergravity Scalar Manifolds in D=11 and D=10

    Get PDF
    Several recent papers have made considerable progress in proving the existence of remarkable consistent Kaluza-Klein sphere reductions of D=10 and D=11 supergravities, to give gauged supergravities in lower dimensions. A proof of the consistency of the full gauged SO(8) reduction on S^7 from D=11 was given many years ago, but from a practical viewpoint a reduction to a smaller subset of the fields can be more manageable, for the purposes of lifting lower-dimensional solutions back to the higher dimension. The major complexity of the spherical reduction Ansatze comes from the spin-0 fields, and of these, it is the pseudoscalars that are the most difficult to handle. In this paper we address this problem in two cases. One arises in a truncation of SO(8) gauged supergravity in four dimensions to U(1)^4, where there are three pairs of dilatons and axions in the scalar sector. The other example involves the truncation of SO(6) gauged supergravity in D=5 to a subsector containing a scalar and a pseudoscalar field, with a potential that admits a second supersymmetric vacuum aside from the maximally-supersymmetric one. We briefly discuss the use of these emdedding Ansatze for the lifting of solutions back to the higher dimension.Comment: Latex, 24 pages, typos correcte

    Locally supersymmetric D=3 non-linear sigma models

    Full text link
    We study non-linear sigma models with N local supersymmetries in three space-time dimensions. For N=1 and 2 the target space of these models is Riemannian or Kahler, respectively. All N>2 theories are associated with Einstein spaces. For N=3 the target space is quaternionic, while for N=4 it generally decomposes into two separate quaternionic spaces, associated with inequivalent supermultiplets. For N=5,6,8 there is a unique (symmetric) space for any given number of supermultiplets. Beyond that there are only theories based on a single supermultiplet for N=9,10,12 and 16, associated with coset spaces with the exceptional isometry groups F4(−20)F_{4(-20)}, E6(−14)E_{6(-14)}, E7(−5)E_{7(-5)} and E16(+8)E_{16(+8)}, respectively. For N=3N=3 and N≥5N\geq5 the D=2D=2 theories obtained by dimensional reduction are two-loop finite.Comment: 35 pages plain tex, CERN-TH.6612/92 THU-92-1

    Forests and climate change: adaptation and mitigation

    Get PDF
    ETFRN news No. 50: Forests and Climate Change: adaptation and mitigation. This newsletter contains interesting materials for those who think about the question how to proceed with forests and climate change after Copenhagen, with or without an agreement. Here below are presented some observations from this newsletter: • Adaptation and mitigation are separate issues in the climate discussions, but in forest practice they are two sides of the same coin. • We need forest management directed at the realization of different objectives at the same time, we do not need pure ‘carbon forests’. Not addressing ‘people’ and ‘planet’ considerations is increasingly seen – by both the public and private sector – as a business risk. • Not all countries will be able to comply with REDD rules in the short term. The voluntary carbon market will remain important. • REDD is an opportunity and a risk for local communities. Risks should be made transparent, and open and equal participation by communities in design and decision-making should be promoted • REDD and other forest-based climate change mitigation measures are likely to be low-cost and effective in the short to medium term. Some stakeholders fear that forests may become a too-cheap mitigation option and corrupt the overall climate agreement. In most calculations, however, the costs of developing, operating and managing the institutional system required to produce credible and sustainable forest carbon credits are not internalized in forest carbon prices. If they were, forest carbon prices would become much higher and more realistic. • The role of forests must be clarified and articulated in National Adaptation Programs of Action (NAPAs). At present most political attention and financing is focused on REDD, and, in general, on climate mitigation. Only recently has the concern for the role of forests in adaptation gained ground; this emanates from the growing recognition that climate change will happen anyway. Moreover, climate change will affect the most vulnerable ecosystems and poorer regions. • There is a clear need for harmonization and coherence in the certification market (SFM, and carbon, fair trade etc.). Certification is not necessarily the only credible basis for payment. As illustrated in this issue, mutual trust can be an alternative, particularly for small-scale initiatives that cannot afford the high transaction costs of certification

    Bistable Gestalts reduce activity in the whole of V1, not just the retinotopically predicted parts

    Get PDF
    Activity in the primary visual cortex reduces when certain stimuli can be perceptually organized as a unified Gestalt. This reduction could offer important insights into the nature of feedback computations within the human visual system; however, the properties of this response reduction have not yet been investigated in detail. Here we replicate this reduced V1 response, but find that the modulation in V1 (and V2) to the perceived organization of the input is not specific to the retinotopic location at which the sensory input from that stimulus is represented. Instead, we find a response modulation that is equally evident across the primary visual cortex. Thus in contradiction to some models of hierarchical predictive coding, the perception of an organized Gestalt causes a broad feedback effect that does not act specifically on the part of the retinotopic map representing the sensory input
    • …
    corecore