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1 Introduction 

1.1 Purpose 

The purpose of this book is to interest student and scientist in the 
simulation of transport processes in the soil: transport of heat, salts, 
ions and water in the unsaturated phase. These processes are charac­
terized by a simultaneous change in the amount of energy or material 
with time and place. In mathematics, such distributive systems are 
described by partial differential equations, which are difficult to solve. J 
Most problems that can be solved by analytical methods are so simple, 
that they are mainly of academical interest, but of little practical^ 
value. Training in analytical methods is very important, because this 
gives a good insight into the fundamental aspects of problems. 
However, the engineer or scientist faced with the task of finding 
reasonable quantitative solutions for practical problems can hardly 
use these methods and often much of his skill is lost in the mathematical 
handling of problems. 
With problems where the elegant and not so elegant analytical solu­
tions fail, solutions may be obtained by the brute force of the 
computer. Training in numerical mathematical methods and training 
in the use of the computer is then necessary. This training should be 
available at two levels. 
For development purposes, advanced training in numerical methods 
and programming techniques is necessary, but apart from this, it is 
extremely useful to train students more inclined to engineering in 
such a way, that they are able to tackle their problems with a 
minimum expenditure of time and effort. 
Therefore computing systems have been developed in recent years to 
handle problems of numerical integration. These systems are very 
much alike in their basic approach, but vary for different machines 
and in their level of sophistication. By far the most sophisticated 
languages are 'Continuous System Modeling Program (C S M P ) ' , 
developed by IBM for its 360 series of machines, and other languages 
derived from it. 
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The student is introduced to this engineering approach. To read the 
book fruitfully, he should have an 'undergraduate' training in soil 
science and mathematics and a basic knowledge of FORTRAN. 

Since CSMP is used throughout, it is advisable to have the 'User's 
manual of the system /360 Continuous System Modeling Program', 
available through IBM offices under the number H20-0367-2. More­
over, he should have the patience to invent some alternatives for the 
given solutions and possibly carry these out on a nearby computer, 

, that can handle the system. 
Even persons who do not have access to CSMP or similar languages 
may gain enough insight in the problems to use a simulation system 
available to him or embark on programming in plain ALGOL or 
FORTRAN, although this is not advised. 

1.2 Some principles of transport processes 

The most important transport processes in soils are the transport of 
heat, water, solutes in the water (ions, organic substances) and gases 
(C02, 0 2 , water vapour). They can be described by some general 
equations. 
It is assumed that the frictional forces during movement of a substance 
are proportional to the velocity of flow and compensate the driving 
force in full. As a consequence, a uniform motion results with a 
velocity in the same direction as and proportional to the driving force. 
The equation for the rate of flow of a substance is thus assumed to be: 

FL0W=TRAN * DRIVING FORCE (1.1) 

in which T R A N, the transport coefficient, is independent of the driving 
force. 
The transport process must also satisfy the continuity condition, which 
is a direct consequence of the principle of the conservation of matter.. 
Apart from the production or release of a substance or heat"(i.e. the 
uptake of water or ions by roots, the heat of wetting and the release 
of C02 by micro-organisms) this continuity condition states simply 
that the rate of increase of a substance in a volume equals the net rate 
of flow over its boundaries. " " 
For the diffusion of molecules the driving force is proportional to the 
concentration gradient and may be expressed in gcm^cm" 1 . When 



flow is expressed in g cm - 2 min - 1 the transport coefficient has to be 
expressed in cm2 min -1. The driving force for ions does not only 
depend on their concentration gradient, but also on the electromotive 
force which results from the presence of other ions. This will be 
considered later in detail. 

Since conduction of heat is caused by the irregular thermal motion 
of molecules, heat flow may be treated in a similar way. The driving 
force is then proportional to the temperature gradient, which equals 
the gradient in volumetric heat content divided by the volumetric heat 
capacity of the soil. If the flow is expressed in cal cm - 2 min -1 , the 
transport coefBcient has the unit of cal cm"x min - 1°C~1. 
The driving force for the flow of water in soil is the potential gradient, 
which may be expressed in mbarcm-1^ When the flow of water is 
in g cm - 2 min -1 , the transport coefficient is in g cm - 'm in - 1 mbar -1 

(One mbar is about the pressure of a column of water of one cm). 
For horizontal flow and in the absence of other gradients, the potential 
gradient equals the gradient in volumetric moisture content, divided 
by the specific moisture content, which is the change in volumetric 
moisture content per unit change in potential. The gradient in. 
moisture content has the unit cm3cm - 3cm - 1 , so that the unit of the 
transport coefficient is cm2 min ~ i , when the flow is in cm3 cm ~ 2 min ~K. 
With the transport of water, the transport coefficient depends on the 
friction between the water molecules and between the water molecules 
and the surface of the soil matrix and this friction increases rapidly 
with decreasing water content, that is with the increase of the contact 
surface between the matrix and the water per unit water. Hence, the 
transport coefficient for water depends largely on the moisture content 
of the soil, a dependence which should be carefully distinguished from 
the independence of the moisture gradient. The specific water content 
of the soil also depends on the moisture content, since large pores lose 
their water first. 
Equation (1.1) has to be verified experimentally. It has been shown 
that it holds well enough for the movement of solutes, heat and water 
through the pores of a soil matrix. It should, however, be realised that 
movement of heat and solutes occurs also with the movement of water 
and that this movement has to be superimposed on the movement by 
diffusion of these substances. 



2 Flow of heat 

2.1 Basic approach 

Fig. 1 shows a uniform soil column of finite length taken from an 
infinite slab and placed on an insulating layer. It is supposed that the 
temperature at the column's upper surface changes arbitrarily with 
time. To calculate the temperature as a function of depth and time, 
the column is divided into ..25. equal compartments with thickness 
J COM. Heat flow into and out of each compartment is calculated at 
any instant of time from the temperature difference between the 
compartments and the transport coefficient. Based on the continuity 
condition, these flows are realised over a short time interval to obtain 
the volumetric heat content of each compartment a finite instant of 
time later. The calculation is then repeated to advance another finite 
interval in time. 
The calculation for any compartment, except the first and the last one, 
proceeds as follows. 
The volumetric heat content and the temperature of the Nth compart­
ment are given byVHTC(N) andTEMP(N), respectively (Fig. 1). 
At any instant of time, the temperature in each compartment may be 
calculated by dividing the volumetric heat content by the volumetric 
heat capacity ( V H C A P ) times T r. n M 
The flow from compartment (N-1) to compartment (N,) is repre­
sented by the symbol F L 0 W (N) and may be approximated according 
to Eqn (1.1) with 

FLOV^CN) = CTEMP(N-1> - TEMP(N)) * 
COND/TCOM 

COND is the heat conductivity, and TCOM the distance between the 
centres of the two compartments. This equation is only correct for 
infinite small compartments, but is applied here to compartments of 
finite size. The net flow into the Nth compartment is now 

N F L O W ( N ) = FLOW.(N> - F L O W C N + 1 ) 
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Fig. 11 Geometry of the system and symbols, used in the program for the 
flow of heat in a homogeneous soil column. 

As it is assumed that Eqn (1.1) holds for finite distances, it is also 
assumed that this net flow rate holds over a finite time interval 
DELT (delta time), so that the volumetric heat content of the Nth 
compartment a time DELT later is given by 

V H T C ( N ) f + d e l t = V H T C ( N ) , + NFLOW(N) * DELT 

The. volumetric heat content at the beginning of the experiment must 



be given to start this numerical integration. 
The flow rate from the surface into the first compartment is given by 

FLOWd) = (TMPS - T E M P ( D ) * COND/ 
(0.5*TCOM> 

in which the temperature of the surface (TMPS) is given by a forcing 
function, i.e. a function which states how the temperature changes with 
time, independent of the temperature of the underlying soil. The flow 
from the last compartment into the insulating layer is 

FL0W(26) = 0 . 

The course of the temperature with depth, 4.8 and 9.6 hours after a 
stepwise change of temperature at the surface from 20 to 10 °C, is 
given in Fig. 2, the volumetric heat capacity being 0.25 cal cm"3 °CT1 

and the thermal conductivity of the soil 0.06calcm""2min"loC_1. 

The points in the graph were obtained from a tabulated solution, given 
by Carslaw & Jaeger (1962), which is passed off as an analytical solu­
tion and the open circles were obtained by dividing the column of 
50 cm into 25 layers of 2 cm each, advancing time with intervals of about 

4.8 hours 

1.6 hours 

40 cm 

Fig. 2] Temperature distribution in a profile, 4.8 and 9.6 hours after a 
sudden drop from 20° to 10°C at the surface. 



10 minutes. The cyclic variation of the temperature at a depth of 
3 and 9 cm generated by a cyclic variation at the surface with a period 
of 24 hours and an amplitude of 10°C is given in Fig. 3. The crosses 
were obtained from an analytical solution, discussed by Van Wijk 
(1963) and the open circles were obtained by the above mentioned 
numerical method. 
In both cases there is a good agreement between the numerical and 
analytical solution (in fact, both solutions differ only at the fourth 
digit) and this shows that the numerical method used here is fully 
acceptable. A numerical solution would not have any advantages, 
if it only gave answers that could be obtained analytically. However, 
it will be shown that it can also be used to calculate the course of 
temperature in the soil in a much more complicated situation: a 
problem where the conductivity and the volumetric heat capacity of 
the soil vary with depth and where the temperature at the surface is 
governed by the balance between incoming global radiation, outgoing 
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generated by the given sinusoidal variation at the surface. 



long wave radiation and exchange of heat with the air and the under­
lying soil. 
Before this is done, it is at first necessary to show how the simple 
numerical calculation, discussed in this section, is actually carried out. 

2.2 A C S M P program for the heat flow in a uniform soil 

The problem of heat flow will be programmed in the Continuous 
System Modelling Program to show the suitability of this simulation 
language for solving jsfribjitjv£jwsjfcmg, The CSMP functions and 
constructions that are used will be explained in the text in a way that 
should be intelligible without a CSMP Manual, although it is an 
advantage to have one at hand. 
In C S M P programs, an initial and dynamic section are distinguishable. 
The equations that are needed to advance in time or to update the 
system at every time interval are in the dynamic section and the 
equations in the initial section define the invariable geometry of the 
system and provide the initial values. 
The initial section begins with the lines: 

INITIAL 
NOSORT 

The 'nosort' line means that the subsequent cards are given in order of 
computation, i.e. as an algorithm. In situations where arrays are 
handled, it is not possible to make use of the sorting capability; of 
CSMP. This capability is used in Section 6.2 and in the paper on the 
simulation of the water flow in the soil-plant system by Lambert & 
Penning de Vries (1971). 
The line: 

PARAMETER TCOM = 2., COND = 86.4, 
VHCAP = 0.25, ITMP = 20. 

indicates that the thickness of the compartment is 2 cm, the thermal 
conductivity S ^ c a l c m - M a y - 1 ^ - 1 , the volumetric heat capacity 
0.25 cal cm" 3 °C * and the initial temperature of the soil column 20 °C. 
Such comments may be entered on lines which start with an asterisk (*) 
in the first column. 



The line: 

FIXED I 

states that there is a counter I which is used to perform the necessary 
calculations for all the compartments. This counter is at first used to 
obtain the initial volumetric heat contents for 25 compartments with 
the three FORTRAN statements: 

DO 1 I = 1 ,25 
I V H T C ( I ) = ITMP*TCOM*VHCAP 
1 CONTINUE 

In this way, IVHTCCI) is calculated for the first compartment, 
then I is increased by one and IV H T C ( 2) for the second compart­
ment is calculated and so on, until IV H T C (2 5) for the last 
compartment. In this case 25 compartments are introduced which 
means, that the column is 25 x 2 = 50 cm. 
This is the end of the initial section. 
The dynamic section, in which all statements are given, that are 
necessary to calculate the flow rates at each time interval and to 
perform the integration, begins with: 

DYNAMIC 
N0S0RT 

The temperature of the 25 compartments is calculated from the 
volumetric heat content with: 

DO 2 I = 1 ,25 
TEMP( I ) = VHTC( I ) / (TCOM*VHCAP) 
2 CONTINUE 

The sinusoidal temperature variation at the surface is given by 

TMPS = TAV + TAMPL * SIN (6.2832*TIME) 
PARAMETER TAV=20., TAMPL=10. 

in which TAV is the average temperature and TAMPL the amplitude 
of the temperature wave, both in degrees centigrade. The expression 
SIN calculates the sine of the argument, TIME is expressed in the 
same time units as are used for the transportcoefficient, i.e. days and 



INITIAL 
NOSORT 
PARAMETER TCOM = 2..C0ND = 86.4.VHCAP = 0.25. ITMP = 20. 
FIXED I 

DO 1 I s 1.25 
1VHTCII) = 1TMP»TC0M*VHCAP 

1 CONTINUE 
DYNAMIC 
NOSORT 

00 2 t = 1.25 
TEMPI I) = VHTCII)/ITCOM»VHCAP) 

2 CONTINUE 
TMPS = TAV+TAMPL*SINI6.2832*TIME> 

PARAMETER TAV = 20..TAMPL = 1 0 . 
FLOWIl) = ITMPS-TEMP11))*COND/(0.5*TC0M) 

DO 3 I = 2.25 
FLOWIl) « ITEMPIt-1)-TEMPI I>)*C0ND/TC0M 

*3 CONTINUE 
FL0WI26) « 0. 

DO 4 I = 1,25 
NFLOW(I) = FLOW!I1-FLOWI1+1) 

4 CONTINUE 
VHTCI = INTGRLIIVHTC1.NFL0WI.25) 

/ EQUIVALENCE (IVHTC1. IVHTCI 1 ) ) . t VHTC 1 .VHTC ( 1) ). I NFi. OW1 . NFLOW < 1 ) > 
/ REAL TEMP125).NFL0W(25).FL0W(26) • IVHTC'SS) «VHTC(2t.) 
METHOD RECT 

Tl s TEMPI 1) 
PRTPLT TIU0..30.) 

T5 a TEMP«S> 
PRTPLT T5I10..30.) 

T15 = TEMPU5) 
PRTPLT T15(l6..30.) 
TIMER FINTIM = 4..CELT » 0.005. OUTDEL = 0.0* 
END 
PARAMETER • TAV = 10..TAMPL = 0 . 
END 
STOP 

Fig. 4a | C S M P program for the flow of heat in a homogeneous soil column. 
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MINIMUM T5 VERSUS TIME MAXIMUM 
l.OOOOE 01 3.0000E OL 

TIME 15 I I 
0 . 0 2.CCC0E 01 • 
4 .0000E-02 2.C04JE 01 t 
8.UOO0E-C2 2.C42CE 01 • 
1 .200CE-01 2.1C75E 01 • 
1 . 6 0 0 0 E - 0 1 2 . 1611E CI • 
2 .0000E-01 2.27C1E J l • 
2 .4000E-01 2.2417E 01 + 
2 .8000E-01 2.4127E 01 + 
3 .2000E-01 2.45S3E 01 + 
3 .6000E-01 2.4833E 04. + 
4.O0O0E-01 2.4825E 01 + 
4 .4000E-01 2.4559E 01 • 
4 .8000E-01 2.4049E 01 • 
5 .2000E-01 2.332 IE u l • 
6 .6000E-01 2.2416E 01 + 
6.00GOE-01 2.1390E 01 • 
6 .4000E-01 2.03C2E 01 • 
6 .8000E-01 1.922 IF 01 + 
7 .2000E-01 1.E21CE 01 • 
7.6GOUE-01 1.7333E OL. » 
8 .0000E-01 1.6642E 01 • 
8.400OE-01 l . t l M E CI + 
8 .8000E-01 1.5S76E 01 • 
9 .2000E-01 1.6C3SE 01 + 
9 .60U0E-01 1.6367E 01 * 
l .OOOOE CO 1 . 4 9 3 6 E 0 1 * 
1.040CE 00 1 .771 IE 01 : • 
1.0800E 00 • 1 .8M3E 01 • 
1.1200E 00 1.9671E 01 • + 
1.160 0E 00 2.C732E CI + 
1.2000E 00 2.1758E CI~ + 
1 .2400E 00 2.2EE4E 01 r~+ 
1.28O0E 00 2.2151E 01 + 
1 .3200E 00 2.4C11E 01 + 
1.3600E 00 2.1329E 01 : • 
1.4000E 00 2.438<iE 01 • 
1.4400E 00 2.4172E 01 + 
1.480CE 00 2.37C6E 01 + 
1 .5200E 00 2 .3C16E 01 * 
1.560 0E 00 2.2145E 01 • 
1.600CE 00 2.1147E C p • 
1.640CE 00 2.CCE4E 01 • 
1.6800E 00 1.9024E 01 • 
1.720QE 00 1.6C23E 01 - + 
1 .7600E 00 1.71T2E 01 • 
1.8000E 00 1.64S6E CI • 
1.8<iO0E CO 1.6C47E 01 
1.8800E 00 1.5854E CI 
1.9200E 00 1.5927E 01 
1.9600E 00 1.6263E 01 
2.0000E 00 1.6841E 01 

Fig. 4b | Part of the generated print-plot (PRTPLT) output of the 
CSMP program from Fig. 4a. 
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is automatically tracked by C S M P. The flow into the first compartment 
is now given by 

FLOWd) = (TMPS-TEMP(1))*COND/(0.5*TCOM) 

and the flow into the following 24 compartments is calculated with 

DO 3 I = 2 , 2 5 
FLOW(I) = < T E M P ( I - 1 ) - T E M P ( I ) ) * C 0 N D / T C 0 M 
3 CONTINUE 

The heat flow out of the 25th compartment into the insulating layer is 

FL0WC26) = 0 . 

The net flow of heat into each compartment is obtained with 

DO 4 I = 1 , 25 
NFLOW(I) = F L 0 W ( I ) - F L 0 W ( I + 1 ) 
4 CONTINUE 

The 25 integrations to keep track of the volumetric heat contents of the 
compartments ate at last carried out by the formal CSMP function: 

VHTC1 = INTGRLQVHTC1 , NFLOW1 , 2 5 ) 

The third argument of the integial function indicates that there are 
25 integrals, to keep track of the volumetric heat content of the 
25 compartments. These volumetric heat contents are stored in an 
anay V H T C. It is stressed that this array is used at the beginning of 
the dynamic section to calculate the temperature of each compartment 
at the current time. The first argument of the integral function states 
that the initial value of the volumetric heat content is given by an 
array IV H T C and the second argument states that the flow rate into 
the integral is given by the array N F LOW. The integration is always 
done by CSMP in semi-parallel fashion. This means that at the 
current time all flow rates are calculated from the state of the system, 
and that after this all integrations are performed. 
Now the arrays must be 'declared' and 'located'. 
This is done as follows: 

/ REAL TEMPC25), FL0W(26), NFLOW(25), 
VHTC(25), IVHTC(25) 
/ EQUIVALENCE (IVHTC1,IVHTC(1)),(VHTC1 , 
VHTC(1)),(NFL0W1,NFL0W(1)) 
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The two statements beginning with a slash (/) in the first column 
organise the memory of the computer and one should not attempt to 
understand them at an early stage of the game without some reason­
able knowledge of FORTRAN. _ 
If the integration is to be carried out according to the simple rectlinear 
method, as is suggested in the previous section, the line: 

METHOD RECT 

is entered. However, it will appear that it is better to use one of the 
more sophisticated methods of integration that are available in C S M P. 
To obtain a graph of the temperature of the first, fifth and fifteenth 
compartment the lines: 

T1 = TEMPd) 
PRTPLT T1 (10.#30.) 
T5 = TEMP(5) 
PRTPLT T5 (10.#30.) 
T15 = TEMP (15) 
PRTPLT T15(10.,30.) 

have to be entered. The numbers in brackets on the PRinTPLoT 
cards provide, the scale of the dependent variable. C S M P chooses its 
own scale if these figures are not provided. The independent variable 
is time, provided by CSMP. 
The necessary line: 

TIMER F I N T I M = 4 . , D E L T = 0 . 0 0 5 , OUTDEL=0.04 

means that the calculation has to be done for 4 days (FINTIM), 
that the machine has to advance in time intervals of 0.005 day (D E L T) 
and that the dependent variable of the plots is given in intervals of 
0.04day (0UTDEL). 
Now the program and the first run are ended by the line: 

END . ' ' •_ % 

By introducing here the statement: 

PARAMETER T A V = 1 0 . , TAMPL=0. 

the calculation is repeated with these parameter values. These indicate 
that at time zero the temperature of the surface is decreased from 
20 °C to 10 °C and maintained there, as may be verified by inspection 
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of the expression for the temperature of the surface (T M P S ) in the 
program. 
This run is also concluded with 

END 

and if at this stage no more calculations are necessary, the whole 
program is to be completed by the word: 

STOP 

A reproduction of the program as punched for cards and a part of the 
output is given in Figs 4a and 4b (p. 10 and 11). 

2.3 Time constant and methods of integration 

The system of integration, used in the previous example, is the simplest 
method of centralized, forward integration. At any instant of time, the 
volumetric heat contents of all boxes and the boundary conditions 
at the top and bottom of the soil column are given. These are used 
to calculate, independently of each other, the net flow rates at this 
instant of time, which are then used to update all volumetric heat 
contents over a small time interval. In this way, the integration is 
done in a semi-parallel fashion. Since all flow rates are calculated 
independently of each other, this system of explicit integration may 
be extended conveniently to much more complicated systems, as will 
be shown later. Unfortunately the time intervals are shorter than with 
implicit methods, in which actual changes over a certain time interval 
are calculated by matrix methods. However, this disadvantage is often 
more than offset by the simplicity of programming and the fewer 
actual arithmetical operations at each step. T. 

In the example a time interval (D E L T) of 0.005 days was used. The 
calculation may oscillate with larger time intervals and computer time 
is wasted with smaller time intervals. The simplest way to find the correct 
time interval is to run the system with values for D E LT a factor 2-10 
apart and to make a graph of the temperature in one of the top com-
Ln ! Z i i T D S t Du L T ^ ^ n e J i L F i g ^ A sharp transition zone 
Se Z S ? SCen b 6 t W e e n t h e r a n* e w h e r e t h e astern oscillates and xne correct range. 

intLeSTl°lDEL1 m a y b e ° b t a i n e d ^ considering the heat 
content of the first compartment and the rate of change at the onset 
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Fig. 51 The temperature of the first compartment at 0.02 day, calculated 
with different time intervals ( D E L T ) . 

of the temperature drop. There is an oscillation when during the first 
time interval so much heat is taken out of the first compartment that 
its temperature drops below the new temperature of the surface. In a 
simulation, where the temperature at the surface suddenly drops with 
a value DTMP, the maximum heat content that could be removed 
from the first compartment equals 

MHTCT1 = DTMP*VHCAP*TCOM calcm-2 
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The flow rate at time zero out of the first compartment equals 

FL0W1 = DTMP*COND/(0.5*TCOM) calcm^day"1 

The time constant is now found by dividing the maximum heat content 
to be removed by this flow rate, i.e.: 

TMCNST = MHTCT1/FL0W1 = 0.5*TCOM2* 
VHCAP/COND 

In the previous example, the volumetric heat capacity was 0.25 cal 
cm"3 °CTl, the transport coefficient 86.4 cal cm"1 day" 1°C~1 and the 
thickness of the first compartment 2 cm. This means that the time cons­
tant equals 0.5*22 x 0.25/86.4 or a little over five thousandth of a day. 

' A value of aboutj of this time constant gives a time interval (D E L T ) , 
• which is usually on the safe side. '•> ;'~ 

The time constant increases 4-fold with a twofold increase in thickness 
of the compartments. Hence, it is advantageous to divide the column 
up into as large compartments as possible. Indeed, compartments that 
are twice as large reduce the computation time 2 x 4-fold, because the 
time interval is quadrupled and the number of integrals halved. The 
importance of choosing proper compartment sizes is discussed in more 
detail in Section 6.4. 
For simulation programs of more complicated systems it may be 
difficult to judge which integral has the smallest time constant. More­
over the time constant may vary considerably with time. Hence, it is 
often more convenient to use methods of integration that evaluate 
their own time interval according to an error criterion. These methods 
also have an advantage: the rates are not only determined by the 
current values of the integrals, but their change with time is also taken 

_jnto account. 

The Milne fifth order predictor-corrector method, available in C S M P, 
is olten a good choice for distributive systems. This method is described 
m detail by Milne (1960), but to give some idea of the mathematics 

?«uVV, ftUal P r o c e d u r e °f computation, as described in the 
CSMP Manual, will be given here 

fin,?? ^ ? 1 U e , ° f t h e i n t e g r a l <*> f o r t h e c u r ™ t time (0 plus a 
finite time interval (At) is^Eredictedby means of 

y^«+A, = 7,-4, + — (8.X,-5.X, A,+4 Y _ y ^ 



in which Xt, Xt_At, Z,_2A, and Z,_3At are the rates of change of the 
integral at the current time and at time At, 2. At and 3. A? in the past. 
With the predicted values of this integral i.e. YPt+At and all other 
integrals of the problem involved, the rate of change at the time t+At 
(i.e. Xt+At) is predicted. This prediction is used to calculate a corrector 
for the value of the integral at time t+At with: 

YCt+At = t(Yt + 7.Yt-^ + 

+ ~(65.Xt+At+243.Xt + 51.X^At+X,.2At) 

Then the actual value of Yt+At is obtained by a weighted average of 
predictor and corrector, according to: 

Yt+At = 0.96116 * rC/+A,+0.03884 * YPt+At 

The time interval is adjusted at such a small value that for an absolute 
value of YC greater than 1: 

0.04 | YC-YP\ 

R x \YC\ 

and for an absolute value of YC smaller or equal to 1: 

0.04 | YC-YP\ 

R 
«S1 

The value of R is set by C S M P at 0.0001, but may be specified by the 
user at some other value. If the predicted and corrected values of one 
of the integrals are so far apart that the above criteria are not met, 
C S M P decreases the time interval with a factor two and tries again. 
Fdr very rapid changes, it may be impossible to find a small enough 
time interval to satisfy the error criterion because the numbers in a digital 
machine are of finite length. Then the computation is terminated. 
If on the other hand, the error criterion is met, CSMP increases the 
next time interval twofold. 
Another integration routine with variable time interval provided by 
C S M P is based on the fourth order method of Runge-Kutta ( R K S ) . 
Here the new values of the integrals are not based on past values of the 
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rates but on the present rate and three rates between t and a maximum 
At in the future. This method, also described by Milne (1960) and in 
the Manual, may be the most reliable, but often takes considerable 
computation time. 
By inserting the line: 

METHOD MILNE 

or 

METHOD RKS 

instead of the line: 

METHOD RECT 

in the simulation program, C S M P chooses the indicated integration 
method. 
Other methods of integration: the Adams second order, the Simpson, 
the trapezoidal and the Runge Kutta fourth order method with fixed 
time interval, are also provided by CSMP, described in the Manual, 
and discussed more thoroughly by Milne. They are of little additional 
use for solving distributive systems. 

2.4 Influence of a sand coyer on temperature regime of a peat soil 

De Vries & de Wit (1954) analysed the influence of a layer of sand on 
a peat soil on the daily temperature amplitude at the soil surface and 
thus on decreasing the risk of night-frosts. For an analytical solution, 
it is necessary to assume that both the thermal properties of the sand 
and the peat are a constant function of depth and that the exchange 
of energy between the soil and its surroundings varied sinusoidal with 
time and is independent of the temperature amplitude at the soil 
surface However, the sensible heat exchange between the surface of 
tne soil and the air and the long wave radiation loss depend to a 
considerable extent on the temperature at the surface, so that the 
nignuy drop in temperature in its turn may be affected. Since the risk 
1 S T 1 7 f d e p ? l d s ° n sma11 differences in temperature, it may be 
S S Iff • ySC t h e P r ° b l e m ^ a simulation program in which 
p r o r ^ S f r m ' l u d e d ' a n d w h i c h m a y account for changing 
properties of the sod with depth 
The main features of such a program are given here as an illustration 
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of how more complicated problems are handled by simulation. Since 
the transport of water will be discussed in a later section, the influence 
of evaporation and the resulting water movement in the soil on the 
heat budget has not been included in the analyses at this stage. 
The soil surface exchanges heat with its surroundings in various ways. 
Depending on conditions, it gains or loses heat from the underlying 
soil and gains heat generated by the absorption of the radiation from 
sun and sky. It also loses heat by long wave radiation towards the sky 
and by sensible heat exchange with the adjacent air. 
The sensible heat exchange of the surface is proportional to the differ­
ence in temperature between the soil surface and the air: 

SHL = HEC*(TMPS-TMPA) calcm~2hr_1 

The proportionality factor is the heat exchange coefficient. Penman 
(1948) used the expression: 

HEC = 0 . 4 2 * ( 1+0 .5*WS) c a l cm^h r - ^C" 1 

to estimate the heat exchange coefficient. Windspeed in msec - 1 and 
temperature of the air are measured at screen height. 
The long wave radiation loss may be estimated by the expression of 
Brunt (1932): 

LWR = 4 . 9 1 * 1 0 - 9 * < 2 7 3 + T M P S ) 4 * < 0 . 5 6 - 0 . 0 9 2 , / 
V P A ) * ( 0 . 1 0 + 0 .9*FBRGT) calcm_ 2hr - 1 

in which VPA is the vapour pressure of the air in mm Hg at screen 
height and FBRGT is the fraction of the sky that is bright. The 
numerical values in this semi-experimental formula are obtained from 
an analysis of experimental data assuming that the temperature of the 
air is measured close to the soil surface. Without a critical analysis, the 
formula is used here with the temperature of the soil surface and 
applied for shorter periods of time than intended. The short wave 
radiation is absorbed in the top few millimeters of the soil. Since we 
are interested in the temperature of the surface, the top compartment 
cannot be larger than about 0.5 cm. As the daily fluctuation of 
temperature decreases with increasing depth, the size of the compart­
ments may be increased as depth increases. By taking a thickness ofv % 

0.5,4 x 1., 1.5 and 3 x 2. cm for the first nine compartments, the depth 
is well below the layer of sand. From then on the size of the compart­
ments may be increased by 1 cm, so that with a total of 20 compart-

19 



ments a depth of 100 cm below the surface is reached. The daily 
fluctuation of temperature is negligible at this depth. 
To avoid introduction of evaporation and condensation at this stage, 
it is assumed that the air and the top 6 cm of soil are dry, be it peat or 
sand, and that from thereon the moisture content of the soil increases 
gradually until at 100 cm saturation is reached. The data for the 
thermal conductivity and volumetric heat capacity of the sand and peat 
at different moisture contents are taken from de Vries & de Wit (1954). 
The transfer of heat due to flow of water in the soil is not taken 
into account in this stage. 
The programming is again straightforward. 

INITIAL 
N0S0RT 

At first, the thicknesses of the successive compartments are given in 
the form of a table: 

STORAGE TCOM(20) 
TCOM(1-20) = 0 . 5 , 4 * 1 . , 1 . 5 , 3 * 2 . , 3 . , 4 . , 5 . , 
6. , 7 . , 8 . , 9 . , 1 0 . , 1 1 . , 1 2 . , 1 3 . 

The STORAGE statement is necessary to reserve memory space for 
tabled variables. Then a counter is defined to use in the calculation 
with 

FIXED I 

and the depth of the centre of each compartment below the surface 
and the distance between the centres of two consecutive compartments 
are calculated with 

DEPTHd) = 0.5*TC0M(1) 
DISTC1) = 0.5*TCOM(1) 

and 

DO 1 I = 2,20 
DISTCI) = 0.5*(TC0M(I)+TC0M(I-D) 
DEPTH(I) = DEPTHd-1) + DIST (I) 
1 CONTINUE 

The FORTRAN output capability may be used to print the answers 
or this calculation: 
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WRITE(6,100) DEPTH 
100 FORMAT (lHb,5HDEPTH//(10F10.4)) 

The number 6 refers to the tape, which is used by the machine and 
the number 100 specifies that the FORMAT statement with number 
100 organizes the layout of the writing. In this format, 1 H b(lank), 
indicates that a new page is taken, then the title is written with 
5HDEPTH. The two slashes ( / / ) introduce two blank lines, before 
the depths of the successive compartments are written according to 
10 F 10 . 4 , i.e. with a maximum of 10 in a row, reserving ten spaces 
for the number of which four are after the decimal point. 

• The generated output is given in Fig. 6, (p. 23) as an example. 
The value of the conductivity dependent on depth is introduced as a 
tabulated function in which the first of each pair of numbers is the 
independent variable (depth in cm) and the second of each pair the 
dependent variable (conductivity in cal cm - 1hr~ l 0C - 1 ) , as follows: 

FUNCTION C0NTBL = ( 0 . , 0 . 2 8 8 ) , ( 6 . , 0 . 2 8 8 ) , 
( 8 . , 2 . 4 8 4 ) , ( 1 0 . , 2 . 4 9 8 ) , ( 1 2 . , 2 . 5 0 6 ) , 
( 1 4 . , 2 . 5 1 3 ) , ( 1 8 . , 2 . 5 2 7 ) , ( 2 2 . , 2 . 5 3 8 ) , 
( 2 8 . , 2 . 5 4 5 ) , ( 3 4 . , 2 . 5 9 2 ) , ( 4 2 . , 2 . 6 5 7 ) , 
( 5 0 . , 2 . 7 ) , ( 6 0 . , 2 . 7 6 5 ) , ( 7 0 . , 3 . 1 3 2 ) , 
( 8 0 . , 3 . 2 1 8 ) , ( 9 0 . , 4 . 1 0 4 ) , ( 1 0 0 . , 4 . 2 8 4 ) 

Similary the value of the volumetric heat capacity in cal cm~3oC_1, 
dependent on depth in cm, is given by 

FUNCTION VHCPTB = (0.,.06),(6.,.06), 
(8.,.57),(10.,.573),(12.,.575), 
(14.,.577),(18.,.58),(22.,.583), 
(28.,.585),(34.,.6),(42.,.615), 
(50.,.625),(60.,.64),(70.,.72), 
(80.,.74),(90.,.90),(100.,.97) 

These two tabulated functions specify possible thermal properties of 
a peat soil without sand cover and with a moisture content that from 
6 cm on increases with depth. The values of the conductivity and 
volumetric heat capacity at the centre of each compartment are now 
calculated as follows: 
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DO 2 I = 1 , 20 
COND(I) = AFGEN(CONTBL,DEPTH(I ) ) 
VHCAP(I) = AFGEN(VHCPTB,DEPTH(I ) ) 
2 CONTINUE 

The A F G E N function is a C S M P function, which interpolates linearly 
in the tabulated function defined by the first name in the argument, 
using the second name in the argument as the independent variable. 
The average conductivity from the centre of one compartment to the 
centre of the following one is calculated with 

DO 3 I = 2 , 2 0 
AVCND(I) = ( T C 0 M ( I - 1 ) + T C 0 M ( I ) ) / 
( T C 0 M ( I - 1 ) / C 0 N D ( I - 1 ) + T C 0 M ( I ) / C 0 N D ( I ) ) 
3 CONTINUE 

Large equations, written in FORTRAN, need some deciphering: the 
averaging of the conductivities is done here, in the same way, as for 
electrical conductivities. Instead of averaging the conductivities 
between the compartments, it would have been possible to use a table 
with conductivities at the boundary of each compartment. It is a good 
exercise to write the program according to this suggestion. 
The initial temperature of the 20 compartments is again given in a 
table: 

STORAGE ITMP(20) 
TABLE ITMPC1-20) = 20 * 4.5 

This means that all 20 compartments have the same initial temperature 
tor which the average air temperature is choosen as a first guess. The 
initial volumetric heat content of the compartments is now obtained 

DO 4 I = 1 ,20 

4 V C 0 N ( I ) = I T M P ( I ) * V H C A P ( I > * T C 0 M ( I ) 

Here the initialization is complete, so that the program may be 
continued with the dynamic section: 

DYNAMIC 
NOS0RT 

The temperatures of the 20 compartments are again calculated with 
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DO 5 I = 1,20 
TMP(I) = VHTC( I ) / (TCOM(I ) *VHCAP( I>) 
5 CONTINUE 

and the flow of heat from one compartment to the next one with 

DO 6 I = 2 ,20 
FLOW(I) = ( T M P ( I - 1 ) - T M P ( I ) ) * A V C N D ( I ) / 
D IST( I ) 
6 CONTINUE 

The flow out of the 20th compartment is again given by 

FL0W(21) = 0 . 

because temperature variations at this depth are negligible. 
In the next part of the program, the exchange of heat between the first 
compartment and the atmosphere is considered. For this purpose the 
short wave radiation, the long wave radiation and the sensible heat 
exchange have to be calculated. 
The short wave radiation is given as a tabulated function, a bright 
day being choosen at the end of April in the Netherlands: 

FUNCTION SWRTB = ( 0 . , 0 . ) , ( 5 . , 0 . ) , 
( 6 . , 3 . 3 2 ) , ( 7 . , 1 0 . 7 8 ) , ( 8 . , 1 4 . 9 3 ) , 
( 9 . , 2 5 . 7 1 ) , ( 1 0 . , 3 9 . 8 1 ) , ( 1 1 . , 5 2 . 2 5 ) , 
( 1 2 . , 4 8 . 9 3 ) , ( 1 3 . , 5 1 . 4 2 ) , ( 1 4 . , 3 1 . 5 1 ) , 
( 1 5 . , 2 7 . 3 7 ) , ( 1 6 . , 1 8 . 2 4 ) , ( 1 7 . , 8 . 2 9 ) , 
( 1 8 . , . 8 3 ) , ( 1 9 . , 0 . ) , ( 2 4 . , 0 . ) 

with the independent variable in hours and the dependent variable 
in calcm_2hr_1. 
In order to allow time for the development of a stationary situation, 
it may be necessary to operate the simulation program for more than 
one day. To avoid introducing experimental data for a longer period, 
it is assumed that the chosen day repeats itself. For this purpose the 
tabulated function is not read with time itself, but with DTI ME, 
denned as: 

DTIME = AM0D(TIME,24.) 

This function makes at the first day D TIM E equal to TIM E, at the 
second day equal to TIM E-24, at the third day equal to TIM E -48 , 
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and so on, hence introduces the required repetition. Now the short 
wave radiation at any time of the day is obtained with 

SWR = AFGEN(SWRTB,DTIME) 

Some radiation is reflected, so that the absorbed short wave radiation 
equals 

ASWR = ABSC*SWR 

in which ABSC, the absorption coefficient for short wave radiation, 
is given by 

PARAMETER ABSC = 0.9 

for dark peat soils. 
For the calculation of the long wave radiation, the fraction of the sky 
that is bright and the vapour pressure of the air at screen height 
(in mm Hg) are needed. Under conditions where night-frosts occur, 
the daily variation of both weather parameters may be small, so that 
these are introduced as constants with 

PARAMETER VPA = 5., FBRGT = 0.95 

Hence, it is supposed that the air is dry and the sky is clear: conditions 
that favour large temperature fluctuations at the soil surface. The long 
wave radiation is now calculated with 

LWR = 4 . 9 1 E - 9 * ( T M P S + 2 7 3 ) * * 4 * 
( . 5 6 - . 0 9 2 * S O R T ( V P A ) ) * ( . 1 0 + 0 . 9 * F B R G T ) 

expressed in cal cm - 2hr_ 1 , E-9 standing for 10"9, and SQRT being 
a FORTRAN function, that provides the square root of the argument. 
To calculate the sensible heat loss, the heat exchange coefficient is 
needed, which depends on the wind speed. The assumption that the 
wind speed during the day hours is 3 m s - 1 and during the night 
0.5 m s _ 1 is again introduced with a tabulated function: 

FUNCTION WSTBL = ( 0 . , 0 . 5 ) , ( 5 . , 0 . 5 ) , 
( 5 . 1 , 3 . 0 ) , ( 1 9 . , 3 . 0 ) , ( 1 9 . 1 , 0 . 5 ) , ( 2 4 . , 0 . 5 ) 

in hours and msec - 1 , respectively. This table is read again with 
DTI ME, defined before: 

WS = AFGEN(WSTBL,DTIME) 
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The heat exchange coefficient is now given with 

HEC = 0 . 4 2 * ( 1 + 0 . 5 * WS) in c a l c n T ^ r ^ C - 1 

Now, the temperature of the air is tabulated, for a bright day at the 
end of April: 

FUNCTION TMPATB = ( 0 . , 1 . 3 ) , ( 1 . , 1 . 9 ) , 
( 2 . , 0 . 7 ) , ( 3 . , - 0 . 3 ) , ( 4 . , - 0 . 1 ) , ( 5 . , 0 . 5 ) , 
( 6 . , 0 . 7 ) , ( 7 . , 2 . 0 ) , ( 8 . , 2 . 8 ) , ( 9 . , 3 . 5 ) , 
( 1 0 . , 4 . 2 ) , ( 1 1 . , 5 . 5 ) , ( 1 2 . , 7 . 2 ) , ( 1 3 . , 8 . 2 ) , 
( 1 4 . , 8 . 8 ) , ( 1 5 . , 9 . 0 ) , ( 1 6 . , 9 . 1 ) , ( 1 7 . , 9 . 0 ) , 
( 1 8 . , 8 . 0 ) , ( 1 9 . , 6 . 5 ) , ( 2 0 . , 4 . 8 ) , ( 2 1 . , 3 . 9 ) , 
( 2 2 . , 3 . 8 ) , ( 2 3 . , 3 . 0 ) , ( 2 4 . , 1 . 3 ) . 

in hours and °C, respectively. This table is read with 

TMPA = AFGEN(TMPATB,DTIME) 

At last the sensible heat loss can be calculated with 

SHL = (TMP(1)-TMPA)*HEC 

in which the temperature of the first thin compartment is substituted 
for the temperature at the surface. 
The flow of heat from the atmosphere towards the soil is then given by 

FLOWd) = ASWR-SHL-LWR 

We may proceed with calculating the net flow of heat into each com­
partment with 

DO 7 I = 1 ,20 
NFLW(I) = FL0W(I) -FL0W(I+1) 
7 CONTINUE 

The 20 integrations are finally carried out with the formal CSMP 
function: 

VHTC1 = INTGRL(IVHTC1,NFLW1,20) 
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Now the arrays used have to be 'declared' and 'located' with 

/ REAL DEPTH(20), COND(20),VHCAP(20), 
AVCND(20), IVHTC(20) , TMP(20), 
/ REAL FL0W(21), NFLW(20)# VHTC(20), 
D I S T ( 2 0 ) . 
/ EQUIVALENCE(VHTC1,VHTC(1)) # (IVHTC1, 
IVHTCC1))., (NFLW1 ,NFLW(1)) . 

This is also the time to check whether all units of the variables are 
consistent. 
The integration is done by the method of Milne and the simulation 
run is at first, extended over a period of four days, answers being 
needed every hour. This is achieved with 

METHOD MILNE 
TIMER FINTIM=96. f 0UTDEL=1. 

It should be noted that it is unnecessary to define the size of the time 
interval, when Milne's method is used for the integrations. 
Since the temperature at the surface is of main interest, this tempera­
ture is plotted with 

T1 = TMP(1) 
PRTPLT T1 

The scale is not specified, because the range is not known. 
The temperature of the other 20 compartments may be printed by 
using the FORTRAN capability for printing arrays. If the PRINT 
routine of C S M P is used, which has the advantage of an organised 
layout, it is necessary to 'undimensionalize' the temperature with the 
statements: 

T2 = TMP(2) 
T3 = TMP(3) 

T20 = TMP(20) 

and then to specify: 

PRINT T l f T 2 , T3 , , T20. 
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Printing is then carried out at hourly intervals as specified by 0 U T D E L. 
An example of the layout is given in Fig. 7 (p. 23), where it may be 
noted that the time, provided by CSMP, is also printed. 
Since some other runs have to be made, it is convenient to add title cards, 
the text of which is repeated on all pages with printed output: 

TITLE HEAT FLOW IN LAYERED SOILS 
TITLE WHOLE PROFILE CONSISTS OF 
PEAT, ABSC = 0.9 

This is then the 

END 

of the program and of the first run. 

Other runs may be made: when the whole profile or the first 6, or the 
first 12 cm of the profile consists of sand and for various absorption 
coefficients at the surface. For this purpose, functions of the thermal 
properties of the profile have then to be redefined, and new title cards 
are added: 

TITLE WHOLE PROFILE CONSISTS OF SAND, 
ABSC = 0.9 
FUNCTION CONTBL = (0.,2.160), 
(5.9,2.160),(6.1,12.6),(100.,12.6) 
FUNCTION VHCPTB = (0.,.27),(5.9,.27), 
(6.1,.38),(100.,.38) 
END 
TITLE FIRST 6 CM OF PROFILE SAND, 
FURTHER ON PEAT, ABSC = 0.9 
FUNCTION CONTBL = (0.,2.160), 
(5.9,2.160),(6.1,2.484),(8.,2.484), ... 
FUNCTION VHCPTB = (0.,.27),(5.9,.27), 
( 6 . 1 , . 5 7 ) , ( 8 . , . 5 7 ) , . . . 

and so on, as in the tables for peat. 
END 

It may be prudent to simulate also the influence of a smaller absorption 
coefficient of the soil surface, which consists now of lighter coloured 
sand: 
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TIME 
0 .0 
1.000IE 00 
2.0000G 00 
3.0000F 00 
4.00006 00 
5.0000E 00 
6.0000F 00 
T-OOOOE 00 
8.00006 00 
9.00006 00 
1.00006 01 
1.1000? 01 
1.2000F 01 -
1.30006 01 
I.4000F 01 
1.5000F 01 
1.6000E 01 
1.7000F 01 
l.HOOOF 01 
1.9000F 01 
2.00006 01 
2.10006 01 
2.2000F 01 
2.30006 01 
2-4000F 01 
2.5000F 01 
2.6000E 01 
2.7000F 01 
2.B00OF f)l 
2.9000F 01 
J.OOOOF 01 
3.100OF 01 
3.20006 01 
3-3O0O6 01 
3.4000F 01 
3.50006 01 
S.frOOOE 01 
3.70006 01 
3.B0f»0E 01 
3.90006 01 
4.000OF 01 
4.10006 01 
4.200OF 01 
4-30006 01 
4.400O6 01 
4.5000F 01 
4.6000* 01 
4.7000F 01 

*.*nooF o i 
*.«OnOF Ql 
5.0000F 01 

TKPS 
4.50006 00 

-1.0705F. 01 
-1 . I970E 01 
-1.2906F 01 
-1.2950F 01 
-1-25926 01 
-4.714QF 00 

1.5621F 00 
5.47966 00 
1.3457F 01 
2.3935E -01 
3.36666 01 
3.36496 01 
3.60446 01 
2.39626 01 
2.0500F 01 
1.4324E 01 
7.1762F 00 
B."iOO»P-Ol 

- 1 . 43366 00 
-B.54196 00 
-9.54426 00 
- * . *6716 00 
- 1 . 04586 01 • 
-K1662F 01 
- 1 . 14736 01 
-1-2226F 01 
-1 .30056 01 
-1.299«6 01 
-1 .2614* 01 
-4.7244E 00 

1.5536F 00 
5.47306 00 
1.3451E 01 
2.3A24F Ml 
3.36A6F 01 
3.3644F 01 
3.6041E 01 
2.3950F 01 
2.04«7* 01 
1.43216 01 
T.1736F 00 
8.47MF-01 

-1.4357F 00 
-4 .5454E 00 
-9.5878F 00 
-9 .870*6 00 
- 1 . 04616 01 
-1 .U6AF 01 
- 1 .1476601 
-1 .2229F 01 

MINIMUM 
•1.30526 01 

TMPS VERSUS TIMf MAX!HUN 
3.6044E Ok- " 

1 TEHP2 
4.5000E 00 

' -7.4*136 00 
-9.3171F 00 
-1.03996 01 
- 1 . 07246 01 
- 1 . 05*06 01 
~4.6?0TE 00 

2.04A5E-O1 
4.0*106 00 
1.014*6 01 
1.0621E 01 
2.7251E ni 
2.04TTE ni 
3.13F0E 0 | 
7.41746 01 
1.96fl5E 01 
1.4415E 01 
8.*5406 00 
•».]<»23E 00 
2.65B«E-01 

-5 .732IE 00 
-7 .2571E 00 
-7 .F2305 no 
-N.3?67E 00 
-9 .3062E 00 
- 9 . 47426 00 
~9 ,977« 00 
-1 .0*616 01 
-1.04546 "1 
-1.0655E 01 
-4.714AE 00 
* 1.T15TE-P1 

4.05406 00 
1.0165E OJ 
W8A07E Ot 
2.T233E 01 
2.94626 01 
3.13666 01 
2.4161E 01 
l . 9 6 7 « 01 
1.44046 01 
8.4437E 00 
3.1A25E 00 
2.56ATE-01 

- 5 .7*216 00 
-7.2666E 00 
-T.8331E 00 
-8.36506 00 
-9.31466 *10 
-9.4*23E 00 
-9.9852E «0 

TEHP4 
4.50006 00 

-4-49416-01 
-3 .1272E 00 
-••2954E 00 
-4.4950E 00 
-5.06976 00 
-2.B751E 00 
-2.95216-01 

2.47706 00 
5.4344E 00 
9 . «*«!}£ 00 
1.51526 01 
I.4T46E 01 
2.02326 01 
1.91106 ni 
1.56696 01 
1.30356 Ol 
9.73916 Oft 
6.19056 00 
3.4549E 00 
1.28906-01 

-1.7S55E 00 
-2.61666 00 
-3.0965E Oft 
-3 .6*226 00 
-4.lft«RE 00 
-4 .37376 00 
-4.472AE 00 
- 5 . 1 6 * 6 6 <V» 
-1.74066 00 
-2.94546 00 
-3 .«*666-0t 

2.349T6 oft 
4.>4<t46 00 
".430 2E 00 
1.51016 01 
1.4T006 01 
2.01O0F 0 | 
l .«09t6 01 
1.56346 01 
1.30O76 01 
9.7013E 00 
6 . 1 6 U 6 00 
1.42966 Oft 
1.02596-01 

- 1 . 78076 00 
-7.640TE 00 
-3.119A6 00 
-1.6744F 00 
-4.1302E 00 
-*.J942E 00 

Fig. 81 Part of the output, generated with the print-plot (PRTPLT) 
routine. 

PARAMETER ABSC = 0-6 
END 
TITLE FIRST 12 CM OF PROFILE SAND, 
FURTHER ON PEAT, FIRST 6 CM DRY, 
ABSC = 0.6 
FUNCTION VHCPTB = (0.,.27)r(6.,.27), 
( 6 . 1 . , . 3 . 3 5 ) , ( 1 0 . , . 3 8 0 ) , ( 1 1 . 9 . , . 3 8 0 ) , 
( 1 2 . 1 , - 5 7 5 ) , . . . 
FUNCTION CONTBL = ( 0 . , 2 . 1 6 0 ) , ( 5 . 9 , 2 . 1 6 0 ) , 
( 6 . 1 , 1 2 . 6 ) , ( 8 . , 1 2 . 6 ) , ( 1 0 . , 1 2 . 6 ) , 
( 1 1 . 9 , 1 2 . 6 ) , ( 1 2 . 1 , 2 . 5 0 6 ) , . . . 

and so on, as in the tables for peat. 
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temperature _.—_ whole profile is peat, ABSC=0.9 
. . « . - - 6cm sand on top, ABSC =0.9 
„«....„ 12cm sand on top, ABSC s 0.9 
, -A ._ , 12 cm sand on top, ABSC s 0.6 

=*Stes*afe3 
^ = * ^ 

— • - •- i-» i u io £\j t£ t** nour* 

Fig. 91 The variation of the temperature of the first 0.5 cm of the soil on 
the fourth day for various soil conditions. 

, whole profile Is peat, ABSC =0.9 
- * - - 6cm sand on top, ABSC =0.9 
A— 12cm sand on top, ABSC=Q9 
.o..... 12 cm sand on top, ABSC =0.6 

~&^ TIMS 

24 hours 

Fig 101 Heat flow from the air to the soil on the fourth day for various soil 
conditions. 
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END 
TITLE FIRST 12 CM OF PROFILE SAND, 
FURTHER ON PEAT, ABSC = 0.9 
PARAMETER ABSC = 0.9 
END 
STOP 

A print-plotted output is reproduced in Fig. 8. In Fig. 9 the temperature 
of the first compartment of 0.5 cm is given for the fourth day and for 
all profiles. It appears that ;the layer of sand, considerably reduces the 
temperature drop at night, mainly because of a higher conductivity 
and volumetric heat capacity than peat. The effect is still greater when 
black sand is used, as is illustrated by the result of a run with 12 cm 
sand and an absorption coefficient of 0.9. The heat flow into the soil 
during the day and out of the soil during the night for the profiles is 
given in Fig. 10. In accordance with Fig. 9 for the temperature, it 
appears that the heat exchange with the underlying soil is much higher 
on the sand than on the peat soil. 

It is impossible to find an analytical solution for the problem which has 
been solved here in a very elementary way. It is, therefore, also impos­
sible to check the solution, except by experiments. This has been done 
in another situation by Wierenga & de Wit (1970), who also considered 
the influence of temperature on the thermal conductivity of the soil, 
to account for heat transfer in the vapour phase. 
In general, common sense and the knowledge that in more simple 
situations correct answers are obtained must give confidence in the 
results. 
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3 Transport of a salt 

3.1 Basic equations 

Saline soils are often reclaimed by keeping a layer of fresh water on 
top of the soil. In situations where water does not drain to deeper layers, 
the salt is removed from the soil by diffusion to this fresh water. This 
diffusion process is similar to the diffusion of heat into the soil and may 
be simulated in principle with the heat flow program of Section 2.2, the 
proper values for the diffusion characteristics of the main salt in the soil 
and the proper initial conditions being substituted. 
The diffusion coefficient (DI F) is expressed in cm2 day - 1 and the 
concentration (CON C) in mmol cm"3, so that, if the gradient is in 
mmol cm - 3 cm -1, the rate of diffusion is in mmol cm - 2 day -1 . The 
diffusion coefficient in soil is less than in pure water for two reasons. 
Firstly, .only part of the. s0jl volume is occupied by water and diffusion 
is restricted to this part. Secondly, the water-filled pores in the soil are 
not straight capillaries in the vertical direction, but form a labyrinth, 
so that the diffusion length between two surfaces is longer than their 
distance apart. To obtain the diffusion coefficient in the soil the 
coefficient in water must be multiplied by the water content (WC) and 
the labyrinth factor (LAB). The water content is expressed in cm3 

water per cm soil, and the labyrinth factor is dimensionless* This 
abynnth factor depends on the water content. So little is known about 
™? f a c t o r . that it is generally assumed to be a constant less than one. 
i he rise m temperature of a soil compartment is found by dividing the 
net flow of heat by the thickness of the compartment and the specific 
™ i i ? S t h e nse in concentration of the salt in a compartment is 
™ d ^ dividing the net flow of salt by the thickness and the water 
content of the compartment. 

to F i gT lh d i f f U S i ° n i D t 0 C O m p a r t m e n t *> t h e geometry being given 
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DFFLOW(I) = CONC(I-_1_)-CONC(I) # H ( . # 

TCOM 

LAB * DIF (3.1) 

if the soil is unifonn and divided into equal compartments with thick­
ness TCOM. The concentration rise due to this flow into the compart-

SALTUP 

T 
FLOWO) 

t 
DPBR 

( I ) 

t 
TCOM(l) 

I 
WC(I) 
VOLW(I) 
CONC( I ) 
AMSI I ) 

NFLOWH) 
FL 

1 

RFLOW 

•OW(I) 

( I ) 

t-1 

DIFD(I) 

THCKNS 

FLOW{l.1) 

FLOW1N.I) 
SALTLW 

Fig. 111 Geometry of the system and symbols, used in the program for the 
vertical transport of salt. 
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ment over the finite time interval D E LT is 

ACON = D F F L 0 W * DELT =&0NC(I-1>-
TC0M*WC 

CONC(I))* LAB * DIF * D E L T. (3.2) 
J TCOM2 

The water content does not enter the final expression. 
iThe time interval and the thickness of the compartments occur only in 
the combination DELT/TCOM2, which was also encountered during 
the derivation of the time constant of these distributive systems in 
Section 2.3. Therefore a drop in concentration at depth x and time t, 
will also occur at depth n.x at time n2.t and a simulation program, 
which gives correct answers after a short time at shallow depths, will 
also give correct answers after a long time at a great depth. 
This conclusion is not valid when the salt is also transported by mass 

• flow of water in the profile. A mass flow term has then to be added to 
the expression for the diffusion flow. 
The mass flow in the ( I - 1 ) th compartment is C 0 N C ( 1 -1 )*FLRW 
and in the Ith compartment CONC(I)*FLRW, in which the flow 
rate of the water ( F LRW) is positive or negative, depending on its 
direction. The mass flow (MFLOW ( I ) ) from the middle of the 
( I - 1 ) th compartment to the middle of the I th compartment may be 
obtained by averaging the flow in both compartments, i.e.: 

MFLOW(I) = F L R W * ( C 0 N C ( I - 1 ) + C 0 N C ( I ) ) / 2 (3.3) 

This expression does not contain the thickness of the compartments 
as a parameter, so that the time and length variable do not occur in the 
combination D E L T / T C 0 M 2 and the system is no longer invariant to 
linear changes in time, combined with quadratic changes in depth. 

The effect of the water flow is not completely accounted for by the above 
equations, because the pores in the soil form a labyrinth with channels of 
various size and direction. The water moves fast in the wide channels 
and with it the salt in these channels and slowly in the narrow channels 
and more or less dead spaces. This disperses the salt in the direction of 
the movement of the water. The dispersion flow is proportional to the 
concentration gradient and the absolute flow rate of water: 
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DPFLOW(I) = DISP * |FLRW| * 
CONC(I -1 ) -CONC(I ) (3.4) 

TCOM 

When the concentration gradient is expressed in mmp'l cm - 3cm - 1 , the 
dispersion flow in mmolcm - 2day - 1 and the absolute flow rate of 
water in cm day -1, then the dispersion factor (DISP) has the 
unit cm. According to Frissel et al. (1970), its value ranges from 
about 0.7 for coarse sand to 7 cm for loss. With a very small water 
flow of 1 cm day - * and a dispersion factor of 3 cm, the product of 3 cm2 

day"l is already 10 times larger than the product of diffusion coefficient, 
water content and labyrinth factor (1 x 0.5 x 0.6). Thus, under far the 
most conditions the influence of diffusion on the transport of ions is small 
compared with dispersion. The influence of both of them may be 
again small compared with the influence of mass flow of water. 

The above approach seems straightforward, but the introduction of 
compartments of finite size to simulate the transport by mass flow may 
lead to serious errors. To show this error a saturated soil is considered 
with a sharp boundary between salt and fresh water. It is assumed that 
the diffusion coefficient of the salt and the dispersion coefficient of the 
soil are negligibly small and that the soil is infiltrated at a constant rate 
perpendicular to the sharp front. In this situation the boundary moves 
with a velocity equal to the infiltration rate divided by the water 
content and does not disperse during the movement. However, if this 
situation is simulated by means of compartments of finite size, consi­
derable distortion of the concentration profile occurs, as is illustrated 
in Fig. 12. Glueckauf (1955) showed that this distortion is negligible 

/wBernffieTfiickness of the compartments is taken smaller then two times 
the dispersion factor plus the quotient of the apparent diffusion 
coefficient and the flow rate, i.e. when: 

TCOM < 2 * ( D I S P + WC*LAB*DIF/FLRW) 

That this is indeed the case is shown in Figs 13 and 14 where analytical 
and simulated concentration profiles are compared in two limiting 
situations. 



mmot em"3 _—— onolytlcol 
— simulation 

» = TIME= 10days 
• : T IME = 20days 

DISP = O 
DIF =0 , 
FURW: 0.5 cm.day 
LAB = 0.67 
WC = 0.5 cm? cm"3 

Fig. 121 The distortion of the salt profile with a compartmentalized 
simulation program in situations where a sharp boundary persists. 

mmol cm*3 

0.5-

artalytica! solution 
simulation 

concentration 

OIF s lcmfday* 1 

TIME s lOdays 
DISP = 0 . 

•*• o a 1U IX. cm 

Fig. 131 Analytical and simulated concentration profile in the absence of 
dispersion. • 
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analytical solution 
simulation 

7 
TCOM = 7.5 cm ,. 
DISP r 3 cm 
TIME = 10 days 
DIF s 1 cm* day"' 
FLRW =0.5 cm. day"1 

LAB j 0.67 
WC = 0.5 cm? cm"3 

Fig. 141 Analytical and simulated concentration profile in the presence of 
dispersion. 

3.2 Simulation program for linear system 

The simulation program for the diffusion of salt out of a profile is in 
principle the same as for the diffusion of heat. However, the possibility 
of a stationary flow of water has to be introduced and since this may 
be accompanied by a moisture gradient within the profile, it is also 
necessary to introduce a variable water content. Moreover, it is 
convenient to introduce a regular increase of compartment sizes and to 
define in the initial section the number of compartments and the total 
depth of the profile, rather than the thickness of the first compartment. 
The symbols used in the subsequent program are given in Fig. II. 
The program starts again with the initial section:, 

INITIAL 
NOSORT 

The lines: 

FIXED I, N, K 
PARAMETER N=13 

state that there are counters I and K, to be used in the 4D0-loops' 
and that the number of the compartments is 13. 
With the line: 
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PARAMETER THCKNS=100. # RITC0M=1.2 

it is stated that the thickness of the profile to be considered is 100 cm 
and the relative geometric increase in compartment size equals 1.2. 
According to the formula for the geometric progression, the thickness 
of the first compartment may be calculated with 

TCOMd) = (THCKNS*(1 - - R I T C 0 M ) ) / 
(1 . -RITC0M**N) 

and the thickness of the other compartments with 

DO 1 I = 2,N 
TCOM(I) = RITCOM * T C O M U - 1 ) 
1 CONTINUE 

The diffusion distance from the surface to the middle of the first 
compartment is now 

DIFDC1) = 0.5*TCOM(1) 

and the depth of the first compartment 

DEPTHd) = D I F D d ) 

The diffusion distances from the Ith to the (1+l)th compartment and 
the depth of the I-th compartment are now given by 

DO 2 I = 2,N 
DIFD(I ) = 0 .5*<TCOM(I-1)+TCOM(I)> 
DEPTH(I) = DEPTH (1 -1 )+DIFD( I ) 
2 CONTINUE 

The depth should be printed for further inspection with 

WRITE(6,100) DEPTH 

100 FORMAT ( lHb,5HDEPTH//<10F10.4>> 

The diffusion coefficient of NaCl in water is given with 

PARAMETER DIF=1. . 

the units cm2 day-1, define both, the length and time scale of the 
program. 
The water content of the successive compartments is obtained with 
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FUNCTION WCTTB=(0.#0.5),(1000.,0.5) 
DO 3 I = 1,N 
WC(I) = AFGEN(WCTTB, DEPTH(D) 
3 CONTINUE 

The program is written in such a way that it can be used with only 
slight changes for the diffusion in a cylindrical or spherical system. 
Under these conditions, the surface area between the compartments 
should also be defined. In the present case of linear geometry, this is 
done with 

K = N + 1 
DO 4 I = 1,K 
AREA( I ) = 1 . 
4 CONTINUE 

there being one more boundary than compartments. The volume of 
water in each compartment is now calculated with 

DO 5 I = 1,N 
VOLW(I) = 0 . 5 * ( A R E A ( I ) + A R E A ( I + 1 ) ) # 
TC0M(I)*WC(I) 
5 CONTINUE 

In cylindrical and spherical systems, the flow rate of water depends 
on the distance from the centre. It is therefore convenient not to define 
the rate of flow but the volume of flow in cm3 per day (for cylinder 
and sphere), or cm3 per day (per cm2) for the linear case, with 

PARAMETER VOLFLW = 3., DIRFLW = 1 . 

The flow is taken as positive in the downward direction. Now the 
flow rates over the boundaries are obtained with 

DO 55 I = 1,K 
RFLOW(I) = VOLFLW/AREAU) 
55 CONTINUE 

which means for the linear case that the rate of flow equals the volume 
of flow as the area is 1 cm2. For the cylindrical and the spherical 
system, the flow rate will decrease with increasing distance from the 
centre. 
The apparent diffusion coefficient, divided by the diffusion distance is 
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calculated for the boundary between two consecutive compartments 
with 

DO 6 I = 1,N 

The depth of each boundary is 

DPBR = DEPTH( I ) -0 .5*TCOM(I ) 

and the product of water content and labyrinth factor at each boundary: 

WCTLB = AFGEN(WCTTBfDPBR)*AFGEN(LABTB, 
DPBR) 
FUNCTION LABTB = C O . , 0 . 6 7 ) f ( 1 0 0 0 . r 0 . 6 7 ) 

and the product of dispersion factor and flow rate of the water at 
each boundary: 

FUNCTION DISPTB = (0.,3.),(1000. ,3 .) 
DSFW = AFGEN(DISPTB # DPBR)*RFL0W(I) 

so that the apparent diffusion coefficient, divided by the diffusion 
distance equals 

APDIF( I ) = AREA(I)*(WCTLB*DIF+DSFW)/ 
D IFD( I ) \ 
6 CONTINUE ^ u * " u ^ - " V 

The more sophisticated way of averaging as used in the heat flow 
program (Section 2.2) could be used here to account for the difference 
in thickness of the compartments. However, this is not worth the 
trouble because the parameters do not change rapidly with depth and 
are anyhow not exactly known. For the flow of the first compartment 
to the surface, it is also of little importance whether the parameters 
are read at 0 . 5*DEPTH (1 ) or at the surface. 
The amount of salt in each compartment is now initialised with 

FUNCTION INTCNT = ( 0 . , 0 . 5 ) , ( 1 0 0 0 . , 0 . 5 ) 

this being the concentration of sea water in mmolcm -3, dependent 
on depth and with 

DO 7 I = 1,N 
IAMS(I) = VOLW(I)*AFGEN(INTCNT, 
DEPTH(D) 
7 CONTINUE 
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The program may be written more concisely, but this does not 
improve readability and it is not worth saving the computer time. 
Now we may proceed with the dynamic section: 

DYNAMIC 
NOSORT 

The concentration of salt is calculated from the amount of salt in 
each compartment with 

DO 8 I = 1,N 
CONCCI) = AMS(I)/VOLW(I) 
8 CONTINUE 

and the concentration at the surface is 

PARAMETER CONCS = 0 . 

The flow of salt from the surface into the first compartment is 
calculated with 

FL0WC1) = A P D I F ( 1 ) * ( C 0 N C S - C 0 N C ( 1 ) ) + 
VOLFLW*DIRFLW * (CONCCI) + C 0 N C S ) / 2 . 

The flow over the other boundaries is 

DO 9 I = 2,N 
FL0W(I )=APDIF( I ) * (CONCCI-D-CONC (I) ) + 
V0LFLW*DIRFLW*CC0NCCl)+C0NCCl-1))/2. 
9 CONTINUE 

whereas the flow out of or into the N-th compartment is 

FLOWCN+1) = VOLFLW*DIRFLW*CONCCN> 

It is supposed that concentration changes in this compartment are 
still negligible. The net flow into the compartments is 

DO 10 I = 1 ,N 
NFLWCI) = FL0WCD-FL0WCI + 1 ) 
10 CONTINUE 

The integration is again carried out with 
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AMS1 = INTGRLUAMS1 , NFLW1 ,30) 
/ EQUIVALENCE(AMS1,AMS(1)), (IAMS1, 
IAMSC1)),(NFLW1 ,NFLW(D) 
/ REAL AMS(30),IAMS(30),NFLW(30) 

It is impossible to substitute N for the number of integrals in this 
structural CSMP statement and to define N on a parameter card. 
Therefore, a sufficiently large.number, 30, of integrals is generated to 
allow for a variable number of compartments. 
The amounts of salt that pass the upper and lower boundary of the 
profile are 

SALTUP=INTGRL(0 . ,FLOW(1) ) 
SALTLW=INTGRL(0. ,FLOW(N+1)) 

As before, all arrays which are not used in the integral function, have 
to be declared on STORAGE cards, the method of integration has 
to be defined, the timer specified and the output organised. 
Table 1 gives the results of some runs with zero water flow. 

Table 1 The diffusion rate of salt in mmol cm -2 day"1 out of a profile 
with an initial salt concentration of 0.5 mmol cm - 3 as calculated from the 
analytical solution and as simulated for soil profiles with different thick­
nesses, without water flow. 

THCKNS(cm) 
N 
RITCOM 
TC0MC1) (cm) 
DELT (days) 

TIME (days) 

10 
40 

100 
200 

1000 

simulated 

22 44 -
13 13 
1.2 1.2 
0.5 1.0 
0.2 0.4 

diffusion rates 

0.0365 0.0367 
0.0182 0.0182 
0.0115 0.0115 
0.0086 0.00815 

88 
13 
1.2 
2.0 
0.769 

0.0379 
0.0184 
0.0116 
0.00816 

100 
13 
1.2 
8.75 
3.57 

0.0116 
0.00816 
0.00364 

analytical 

0.0366 
0.0183 
0.0115 
0.00816 
0.00364 

42 



A comparison with the analytical solution shows that the simulation 
with thin layers and consequently a small time interval gives correct 
results after 10 days. Deviations occur after 200 days because by 
then the concentration in the last compartment is altered. On the 
other hand, the simulation with thick layers gives wrong results in 
the early stage, but correct results after 100 days. This was to be 
expected from the occurence of the time and depth parameter in the 
combination DELT/TCOM2, only. 
The simulated concentration profiles after 40 days with a downward 
water flow of 0. and 0.5 cm day - 1 are given in Fig. 15 and the total 
amounts of salt removed from the profile after 10, 20 and 40 days 
in Table 2. To avoid distortion, the thickness of the compartments 
was set equal to two times the dispersion length. As is to be expected, 
the salt is only removed from the profile by diffusion if the infiltration 
of water in the soil is negligible. If some infiltration 'occurs, no salt is 
removed by diffusion and all measures to improve infilimion have to 
be taken to remove any salt at all. 

: VOLFLOW = O cm.day*' 
. — : VOLFLOW s OS cm .day"' 

mmol cm - ' , „ 
TCOMs 3 cm 
DISP =1.5 cm 0.5 concentration ^*—- TIME s 4 0 days 

- * • D1F = O cm.'day -1 

WC a o .5cm*.cnr* 
LAB =0.67 

t 
Fig. 151 Simulated concentration profiles after 40 days with a downward 
waterflow of 0. and 0.5 cm day-1. 
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SALTUP 
(mmol cm 
0. 

0.6567 
0.9855 
1.4286 

- 2 ) 
0.5 

0.0468 
0.0505 
0.0518 

SALTLW 
(mmol cm" 
0. 

0. 
0. 
0. 

0.5 

2.50 
4.99 
9.37 

2) 

Table 2 Total amounts of salt in mmol cm -2 removed from a profile of 
100 cm with an initial concentration of 0.5 mmol cm -3, with a downward 
flow of 0 and 0.5 cm day- *. S A L T U P through upper boundary, SALTLW 
through lower boundary. 

VELOCITY (cm day-1) 

TIME (days): 10 
20 
40 

3.3 Simulation program for cylindrical system 

To simulate the transport of salt towards a root, it is only necessary 
to change the geometry of the system by replacing a part of the 
initial section of the simulation program. The thickness of the cylinder 
to be considered now, is the distance of the centre of the root to the 
midpoint between this root and the next one, which may be 2 cm. 
To calculate the thickness of the compartments the radius of the root, 
0.03 cm, has to be substracted from this 2 cm. Accordingly the first 
part of the initial section is 

INITIAL 
N0S0RT 
FIXED I,N,K, 
PARAMETER N=13 
PARAMETER THCKNS=2., RADIUS=0.03, 
RITC0M=1.2 

and the thickness of the first compartment is obtained with 

TC0M(1)= <THCKNS-RADIUS)*(1.-RITC0M)/ 
( 1 . -R ITC0M**N) ) 

The thickness of the compartments and their depths from the root 
surface and the diffusion distances between the compartments are 
calculated in the same way as in the linear case, as are the water 
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content and the labyrinth factor. The diffusion area between the 
compartments is then calculated with 

K = N + 1 
DO 4 I = 2,K 
AREA(I) = (DEPTH( I -1 )+0 .5*TCOM( I -1 )+ 
RADIUS)*6.2832 
4 CONTINUE 

assuming that the compartments have a height of 1 cm. 
Since the diffusion area within the first compartment changes rapidly 
with the radius, better results are obtained by supposing that the 
apparent diffusion coefficient from this compartment to the root 
depends on the area at half of the depth of this compartment, rather 
than on the area of the root, i.e. 

AREACI) = (0 .25*TCOM(1)+RADIUS)*6.2832 

These are all the changes that are necessary. 
The profile of concentration that results after three hours of diffusion 
towards a root is shown in Fig. 16. The full line is the analytical 
solution and the points are simulated solutions, the cylinder of 2 cm 
being divided in 7, 13 or 24 compartments. It should be noted that 
the most coarse grid of only 7 compartments gives very acceptable 
solutions, even after only three hours of diffusion. By using coarse 

mmol. cm'1 

05-

0.4-

Q3-

0 2 -

0.1-

^ " 
&r _ _ dnalytlcal 

/ " simulated: . N=24 
/ o N= 13 

/ » N= 7 

/ 

/ 

/ 
/ depth 

0.Z tt4 o!6 o!a 10 1̂ 2 t.4 cm 

Fig. 161 Analytical and simulated concentration profiles after 3 hours of 
diffusion towards a root. 
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mmol cm" 3 

| concentration 

analytical 

x simulated 0.5 hours 
© simulated A. hours 

distance from centre 

02 0.4 0.6 

Fig. 171 Analytical and simulated concentration profiles after 0.5 and 
4 hours of diffusion from a sphere with a radius of 0.1 cm. 

grids, much computer time is saved, which becomes important 
when many calculations per compartment have to be made, to 
account for the diffusion of a mixture of ions and exchange phenomena 
between soil and solution. 
The writing of the initial section for spherical geometry should not 
present any difficulties. In Fig. 17 the simulated concentration in 
the compartment adjacent to a sphere with a radius of 0.1 cm that 
acts as a source, is still too high, after 0.5 hours, but after four hours 
correct solutions are obtained. 
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4 Diffusion of ions 

4.1 Basic processes 

In the previous sections the salt NaCl was treated as a molecule which 
diffuses as a unit, although it1 consists of Na+ and CI" and the 
diffusion coefficient of CI - is 1.5 times larger than that of Na+. This 
would favour the transport of CI". However, if CI" moves only a 
little bit ahead of Na+, then a small separation of charges would 
occur so that the diffusion of Cl~ is reduced and the diffusion of Na+ is 
increased by electromotive forces, until both diffuse at the same rate. 
A small separation of charges builds up such large electromotive 
forces that the separation between Cl~ and Na+ is undetectable. 
Thus for all practical purposes, electroneutrality is fully maintained 
throughout the solution. 
The situation is much more complicated when more than two ions are 
involved. For instance, the diffusion coefficient of K+ is about the same 
as that for CI", so that in a mixture of Na+, K+ and Cl~, the diffusion 
coefficient of the Cl~ is still reduced and that of the Na+ increased 
and electroneutrality is maintained. However, the ions involved are 
now not necessarily diffusing at the same rate, so that the composition 
of the solution may change along the axis of diffusion. Under these 
conditions, the diffusion of each ion is governed by the gradient in 
concentration and the gradient in electromotive potential. As before, 
the flow under the influence of the gradient in concentration over a 
finite small distance DX is approximately: 

FLOW = - D I F * D C / D X (4.1) 

in which D C stands for the difference in concentration of the ion over 
the finite length DX and the negative sign indicates that the direction 
of flow is opposite to the direction in which the concentration increases. 
Likewise, the flow under influence of an electromotive potential 
difference D E in volts over a finite distance DX is approximately: 

FLOW = ± CONSTANT*DE/DX (4.2) 
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in which the minus sign holds for the negative ions which move against 
the potential gradient and the positive sign for the positive ions, which 
move with the potential gradient. 
The flow under the influence of both the concentration and potential 
difference, is therefore: 

FLOW = - DIF*DC/DX±CONSTANT#DE/DX (4.3) 

The next problem is to express the unknown constant in this formula 
in known parameters. Firstly, the diffusion coefficient accounts for the 
frictional forces and since these forces are the same, whatever the 
driving forces are, this unknown constant is proportional to the 
diffusion coefficient. Secondly, the force on an ion due to a potential 
difference is proportional to the valency of the ion, i.e. two times larger 
for a divalent than for a mono-valent ion and of course the flow of 
ions in an electrical field is proportional to the concentration. To 
eliminate the troublesome + sign before the constant, it is assumed 
that the valency (VAL) of positive ions is positive and of negative 
ions negative. Hence, the above Eqn (4.3) may be rewritten as 
follows: 

FLOW = D I F * ( - D C / D X + C*VAL*CNF*DE/DX) (4.4) 

in which the conversion factor CNF has the unit volt -1 (the electrical 
potential being expressed in volts) and is independent of the kind of 
ion and its concentration. 
Hence for the flow of every ion ( I ) in a solution holds according to 
Eqn (4.4): 

FLOW(I) = D I F ( I ) # ( - D C ( I ) / 
D X + V A L ( I ) * C ( I ) * C N F * D E / D X > (4.5) 

The product of the conversion factor and the potential gradient, 
CNF*DE/DX is the same for every ion and may be calculated 
according to Vervelde (1955). For this it is taken into account that 
electroneutrality is maintained or that the net flow of charges is zero: 

N 
2 V A L ( I ) * F L O W ( I ) = 0 . (4.6) 
1 

By substituting Eqn (4.5) for all ions 1,2,.... N in Eqn (4.6) and sol­
ving, the following expression is obtained: 
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N 
2 V A L ( I ) * D I F ( I ) * D C ( I ) / D X 

CNF*DE/DX = (4.7) 

2 V A L 2 ( I ) # D I F ( I ) * C ( I ) 
1 

Using this expression in Eqn (4.5), the flow of any ion may be 
calculated from the diffusion coefficients, the valencies and the con­
centrations of all ions concerned. The equations are thus sufficient 
to calculate the flow rates of all the ions between the compartments 
in a simulation program. 
By working out Eqns (4.5) and (4.7) for a neutral salt, it can be shown 
that the average diffusion coefficient of a salt is 

_ P I F ( 1 ) » D I F ( 2 ) | V A L ( 1 ) H V A L ( 2 ) | „ 
D I F ( 1 ) + D I F ( 2 ) | V A L ( 1 ) | * | V A L ( 2 ) | K ' } 

Although the numerical value for the conversion factor is not needed 
to calculate the ionic transport, it can also be used to calculate the 
potential gradient or to simulate the influence of other potentials. 
This numerical value is 40 volts-1 and may be obtained by considering 
the equilibrium situation, where the flow of an ion, as given by 
Eqn (4.4) is zero. 

In this situation, the amount of work to move an ion against the potential 
difference is the same as the amount of work to move an ion against its 
concentration difference and this equality will provide us with a value for the 
conversion factor. 
The amount of work to move a mole of ion against a potential difference D E 
is given by: 

WORK = VAL*F*DE coulomb-volt (4.9) 

in which F is the Faraday constant of 96500 coulomb, i.e. the amount of 
electricity in one mole of a mono-valent ion and in which the potential 
difference is expressed in volts. 
To calculate the amount of work to move a mole of ion against a concen­
tration difference, it should be recalled that in dilute solutions, ions behave 
according to the gas law: 
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P*V = R*T 

in which P is the osmotic pressure due to the presence of the ion, V the 
volume of the solution, T the absolute temperature and R a universal 
constant. As one mole of gas at a temperature of 20 °C occupies 22.41 at 
atmospheric pressure or a pressure of 1000 grams cm - 2 , it is evident that 
for one mole: 

R# T = 22400 g#cm = 2.24 x 106 coulomb*volts 

or equivalent to the amount of work to move 224 grams over 100 cm against 
the forces of gravity. This amount of work may also be expressed in 
electrical units, conversion factors for energy being known in physics. 
If, at constant temperature, a mole of gas in a cylinder with piston surface, 
S, is compressed over a small distance D L, the amount of work which is 
done, equals P#S*DL = P#DVin which P is its pressure and D V the small 
volume change. 
According to the gas law: 

( V + D V ) * ( P + D P ) = R * T 

or 

V*P+DP*V+DV*P+DP*DV=R*T 

in which D P is the pressure change that accompanies the volume change 
DV of one mole of gas. Since V*P = R*T and DP*DV is negligibly 
small, it follows that V*DP = P*DV or that the product of the volume 
and the change in pressure, is the amount of work to move a small amount 
of gas at constant temperature into a constant volume. The concentration 
difference of an ion over a finite distance D X in solution is accompanied 
by a difference in osmotic pressure due to the ion. Therefore, the amount of 
work to move one mole of ion from one place to the other against this 
osmotic pressure difference equals: 

WORK = V*DP = R *T*DP/P 

and because the relative pressure difference D P / P equals the relative 
concentration difference D C / C 

WORK = R*T*DC/C (4.10) 

The electrical and osmotic work being the same in the equilibrium situation, 
it follows from Eqns (4.9) and (4.10) that 
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VAL*F*DE = R*T*DC/C 

or that 

DC=VAL*C*(F/(R*T))*DE 

or that the conversion factor in Eqn (4.4) equals 

CNF=F/(R*T) = 96500/2.24 x 103 = 40 volt"* (4.11) 

at 20 °C, which number is needed to calculate the actual value of the potential 
difference. 

4.2 Simulation program for linear system 

Sufficient spade-work has been done now, to construct a simulation 
program for the diffusion of an arbitrary number of ions in a mixture. 
This will be done for a solution with 4 ions and a system with linear 
geometry in which 13 compartments are distinguished. However, the 
program will be written so, that with only slight changes it can be 
used for another number of ions and compartments. 
It is supposed that the water content is constant and that any flow of 
water is absent. This assumption is made, not because the introduction 
of flow of water gives any difficulties, but because it is useless to intro­
duce different diffusion coefficients for the individual ions when the 
diffusion coefficients are completely overruled by the dispersion coeffi­
cient under influence of water flow. It may even be, that the degree 
of refinement introduced in this section is wasted on a soil system. 
The problem is, however, treated because it is a good example of what 
may be done with simulation in physical chemistry and because it 
may be of use for the simulation in cases where root potentials are 
involved. 
In the initial section, the parameters of the compartments are defined 
as before: 

TCOM(J) thickness 
DI F D (J ) diffusion distance 
DEPTH ( J ) depth 
AREA ( J ) area 
N number of compartments 

The water content and the labyrinth factor are supposed to be constant: 
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PARAMETER WC=0.4 , LAB=0.67 

With 

PARAMETER K=4the number of ions is denned. 

The diffusion coefficient, the valency and the initial concentration of 
the 4 ions are defined on table cards: 

TABLE D I F C I - 4 ) = 0 . 6 , 0 . 6 , 1 . 2 , 1 . 2 

in cm2 day -1, 

TABLE VALC1-4) = + 1 , + 2 , - 2 , - 1 
TABLE I N T C 0 N ( 1 - 4 ) = 0 . 0 1 , 0 . 0 0 5 , 0 . 0 0 5 , 
0 . 01 

in mmol cm -3 . 
At this stage it should be checked carefully whether the sum of the 
product of the valency and the initial concentration is indeed zero, 
so that at least a possible situation is initialised. 
The apparent diffusion coefficient for the K ions between the compart­
ments and the volume of each compartment are defined by 

DO 2 J = 1 ,N 
DO 2 I = 1,K 
A P D I F ( I , J ) = A R E A ( J ) * L A B * W C * D I F ( I ) / D I F D ( J ) 
V O L L ( J ) = ( A R E A ( J ) + A R E A ( J + 1 ) ) * T C O M ( J ) * 0 . 5 
2 CONTINUE 

in which the first index of APDI F indicates the ionic species and the 
second index the boundary, according to the convention of Fig. 18. 
This nested DO-loop sets first the number J for the compartments 
at 1, then gives then the diffusion coefficients for the K ions in this 
compartment, and then repeats the process for compartment 2 to 
compartment N. 
The volume of water in each compartment is calculated with 

DO 3 J = 1,N 
VOLW(J) = 0 . 5 * ( A R E A ( J ) + A R E A ( J + 1 ) ) * 
TC0M(J)*WC 
3 CONTINUE 

and the initial amount of ions in each compartment with 

52 



DO 4 J = 1,N 
DO 4 I = 1,K 
I A I O N ( I , J ) = VOLW(J)*INTCON(I> 
4 CONTINUE 

The 

TABLE CONSCI-4) = 4 * 0 . 

states that the concentration of the 4 ions at the surface is zero. 
The dynamic section of the program will be given in full. 

DYNAMIC 
N0S0RT 

t-T 

DE(J) . 

-APDIF(I.J-I)-

CONCd.J-1) 

FLOW(I.J) 

I I I I 
CONC(I.J) 
AMIONII.J)' 
VOLW(J) 
WC(J) 

: \ 

^v 
FLOWU.N.D 

Fig. 181 Geometry of the system and symbols, used in the program for the 
transport of ions. 
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The concentration of the 4 ions in the 13 compartments is calculated 
from the amount of ions in the compartments with 

DO 5 J = 1 ,N 
DO 5 I = 1,K 
C O N C ( I , J ) = A M I 0 N ( I , J ) / V 0 L W ( J > 
5 CONTINUE 

The potential difference (D E) between the compartments is obtained 
according to Eqn (4.7) by the following DO-loop: 

DO 6 J = 2 ,N 

The value of the denominator and nominator of the expression is first 
calculated: 

DENOM = 0. 
NOM = 0. 
DO 7 I = 1 ,K 
DEN0M=DEN0M+VAL(I)*DIF(I)*(C0NC(I,J-1>-
C0NC(IfJ)) 
N0M=N0M+VAL(I)**2*DIF(I)*(C0NCCI,J-1)+ 
CONC(I,J))/2 
7 CONTINUE 
DE(J) = - (DEN0M/N0M)/CNF 
6 CONTINUE 

with 

PARAMETER CNF = 40 . invol ts _ 1 

The potential difference between the first compartment and the 
surface is 

DENOM = 0. 
NOM = 0. 
DO 8 I = 1,K 

DENOM=DENOM+VAL(I)*DIF(I)*(CONS(I)-
C0NC(I,D) 
NOM = N0M+VAL(I)**2*DIF(I)*(C0NS(I)+ 
CONC(I,1))/2 
8 CONTINUE 
DE(1) = -(DEN0M/N0M)/CNF 
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As in the previous program, a flow downward is represented by a 
positive sign. This means that here a negative sign has to be added to 
the calculation of DE. Errors with signs are easily made, but also 
easily detected in the first run of the program. 
The flow of ions from the surface to the first compartment is 

DO 9 I = 1,K 
DCONC =-uCONS(I) - C0NC(I,1) 
ACONC = 0.5*(CONS(I)+CONC(I,1)) 
FL0W(I,1) = APDIF(I,1)#(DC0NC+VAL(I>* 
AC0NC*CNF*DE(1)) 

whereas the flow out of the 13th compartment is 

F L 0 W ( I # 1 4 ) = 0 . 

9 CONTINUE 

The flow from one compartment to the next is calculated with 

DO 10 J = 2,N 
DO 10 I = 1,K 
DCONC = CONC(I,J-1)-CONC(I,J) 
ACONC = 0.5*(CONC(I,J-1)+CONC(I,J)') 
FL0W(I,J) = APDIFCI,J)*(DCONC+VAL(I)* 
ACONC*CNF*DE(J)) 
10 CONTINUE 

The net flow of the 4 ions into the 13 compartments is 

DO 11 J = 1,N 
DO 11 I = 1#K 
NFLW( I ,J> = F L 0 W ( I , J ) - F L 0 W ( I , J + 1 ) 
11 CONTINUE 

and the amount of each ion in each compartment is given by 

AMI0N1 = 'INTGRLCIAI0N1, NFLW1,52) 
/EQUIVALENCE (AMION1, AMI0N<1,1>), 
(IAION1, IAI0N<1,1>>, (NFLW1, NFLW<1,1>) 
/ REAL IAI0N(4,13), NFLW(4,13>, 
AMI0N(4,13) 

Because electro-neutrality is maintained, the amount of one ionic 
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species can be calculated from the other three. Hence it is only 
necessary to calculate the integrals of 3 species instead of 4. This saves 
about 25% computing time. The program is not written in this way to 
improve readability. It is a good exercise to rewrite the program for 
3x13 integrals. 
All arrays, which are used in tables may be 'declared' with aSTORAGE 
statement: 

STORAGE D I F ( 4 ) , V A L ( 4 ) , I N T C 0 N C 4 ) , 
C0NS(4) 

and the other arrays with 

/ REAL FL0W(4,14), TC0M(13), DIFD(13), 
APDIF(4,13), DEPTH(13), AREACI4), 
V0LLC13) 
/ REAL V0LW(13)f C0NC(4,13), DE(13) 

The dynamic section of the simulation is finished with 

METHOD MILNE 

and 

TIMER F I N T I M = 1 0 0 . , OUTDEL=10. f PRDEL = 1 . 

in which OUTD E L is used to control the output of the arrays, as will 
be shown, and PRDEL to control the output of the CSMP print 
routine. 
The output can be specified again, using the print and plot routines 
of CSMP. However, so many arrays have to be 'undimensionalized' 
for this, that it is more convenient to use FORTRAN output capabi­
lities. For this purpose the program continues with 

WRT = IMPULS(0.,OUTDEL) 
IF(WRT*KEEP.LT.0.5)G0 TO 12 
WRITE (6,100) TIME 
WRITE (6,101) C0NC(1,J) 
WRITE (6,102) C0NC(2,J) 
WRITE (6,103) C0NC(3,J) 
WRITE (6,104) C0NC(4,J) 
WRITE (6,105) DE(J) 
12 CONTINUE 

WRT is zero except when the IMPULS function sets it to 1 at times 
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0 r 0 + 0UTDEL,0+2*OUTDEL and so on. The internal CSMP 
variable 'KEEP' is 1 when the actual rates of change of the integrals 
are calculated and is zero when intermediate rates, necessary for more 
sophisticated integration techniques are calculated (see Section 1.3). 
Hence the statement'IF WRT*KEEP' IS LESS THAN 0 . 5 , then 
GO TO 12, transfers the calculation to the continue card with this 
statement number, except when output is needed. Only when and 
WRT and KEEP are equal to 1, are the WRITE statements carried 
out. The six WRITE statements request to print: the time, the 
concentration of the first ion in all 13 compartments, then of the 
second, third and fourth ion and then of the difference in electro­
chemical potential between the surface and the first compartment and 
between the successive compartments. The layout and the text above 
the rows with numbers are given on the FORMAT statements, 
numbered 100-105: 

100 FORMAT <1Hb,4HTIME//Fl6.8) 
101 FORMAT (1Hb,37HC0NC M0N0V CATION AT 
DIFFERENT DEPTHS//13F10.4) 
102 FORMAT <1Hb,35HC0NC DIV CATION AT 
DIFFERENT DEPTHS//13F10.4) 
103 FORMAT (1Hb,39HC0NC DIV ANION AT 
DIFFERENT DEPTHS//13F10.4) 
104 FORMAT (1Hb,36HC0NC MONOV ANION AT 
DIFFERENT DEPTHS//13F10.4) 
105 FORMAT (1Hb,36HP0T GRADIENT BETWEEN 
SUCCESSIVE COMP//13F10.4) 

Just as in FORTRAN, the output has to be organised carefully. 
One may also be interested in the total potential drop over the 
compartments ( T E) and the total amount of ions taken up by the 
water (UPTKE1, and so on). These are calculated with 

TE = 0. 
DO 13 J = 1fN 
TE = TE+DECJ) 
13 CONTINUE 
UPTKE1 = INTGRL(0.,-FL0W<1,1>) 
UPTKE2 = INTGRL(0.f-FLOW(2,1)) 
UPTKE3 = INTGRL(0.,-FL0W(3,1)> 
UPTKE4 = INTGRL(0.,-FLOW(4,1>> 
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- — . - a l l Ions monovalent 

two ions d ivalent 
• monovalent cation 
x d ivalent cat ion 
o monovalent anion 
A d ivalent anion 

50 cm 60 

Fig. 20 a | Simulated concentration profiles for different valencies of the 
ions after 200 days of diffusion in a 4 ionic system. 
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Fig. 20b | Simulated potential profiles for different valencies of the ions 
after 200 days of diffusion in a 4 ionic system. 
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all Ions monovalent 

two ions divalent 
• monovalent cation 
x d ivalent cat ion 
o monovalent anion 
A d ivalent anion 

.002 

depth 

50 cm 60 

Fig. 20 a | Simulated concentration profiles for different valencies of the 
ions after 200 days of diffusion in a 4 ionic system. 
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depth 
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Fig. 20b | Simulated potential profiles for different valencies of the ions 
after 200 days of diffusion in a 4 ionic system. 
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and printed with: 

PRINT UPTKE1, UPTKE2, UPTKE3, UPTKE4, TE 

As it is only necessary to calculate T E at output times, one may 
want to place the statement that calculates this sum between the 
I F -statement and the C 0 N TIN U E-statement with number 12 of the 
block that contains the orders to WRITE. An example of the output 
obtained with the WRITE-statements and the PRI NT-statement is 
given in Fig. 19. 
A program like this, cannot be checked any more, because there is no 
analytical solution for the problem. However, it is worthwhile to 

Table 3 A comparison between the results of the program with an average 
diffusion coefficient for a salt and with different diffusion coefficients for 
the 2 ion species, after 100 days of diffusion, with initial concentration 
of 0.5mmolcm -3. 

concentration in mmol cm - 3 at: 

1.1 6.6 14.5 25.9 53.0 cm 
salt, D = 0.8 cm2 d ay - 1 0.0439 0.2408 0.4218 0.4931 0.5000 
four ions: Dneg= 1.2 cm2 d ay - 1 0.0219 0.1204 0.2109 0.2466 0.2499 

Dpos = 0.6cm2day_1 0.0219 0.1204 0.2109 0.2466 0.2499 

Table 4 Influence of the valency of the anion on salt concentration at 
1.135 cm from the surface and on total desalting, in a 2 ionic system, after 
200 days. 

Pos. ion 

Diff. Val. 
coeff. 
cm2 

day - 1 

0.6 +1 
0.6 +1 

Neg. ion 

Diff. Val. 
coeff. 
cm2 

day - 1 

1.2 - 1 
1.2 - 2 

Saltconcentration 
i l l I.IJJ U l l 

Initial 
mmol cm"3 

0.01 
0.01 

200 days 
mmol c m - 3 

5.9454 x 10" 4 

6.8706 x l O - 4 

Total 
desalting 

mmol cm - 2 

mmol cm - 2 

3.6179 x l O - 2 

3.1288 x l O - 2 
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Table 5 Influence of the valency of the ions on ionic concentration, total 
desalting and potential drop in a 4 ionic system, after 200 days. 

pos. ion 1 pos. ion 2 neg. ion 1 neg. ion 2 

valency +1 +1 —1 - 1 
initial cone. 

(mmolcm-3) 0.01 0.01 0.01 0.01 
diff. coeff. 

(cm2 day"1) 0.6 0.6 1.2 1.2 
Ionic concentration 

at 1.135 cm 
(mmol cm-3) 5.945 x 10 - 4 5.945 x 10"4 5.945 x 10 - 4 5.945 x 10 -4 

desalting 
(mmol cm-2): 0.1447 

potential drop 
(volt): -3.9169 x 10"2 

valency 
initial cone. 

(mmolcm -3) 
diff. coeff. 

(cm2 day - x) 
ionic concentration 

at 1.135 cm 
(mmolcm -3) 

desalting 

+ 1 

0.01 

0.6 

6.483 x 10_ 

(mmol cm - 2) : 0.1742 
potential drop 

(volt): - 2.5502 x :10~2 

+2 - 1 - 2 

0.005 0.01 0.005 

0.6 1.2 1.2 

"4 2.971 x l O - 4 5.740 x l O - 4 3.342 x l O - 4 

compare the outputs in two situations. One output from this program 
with the valency and the diffusion coefficient of 2 ions at — 1 and 
1.2 cm2day -1 and of the other 2 ions at +1 and 0.6 cm2day-1. 
The other output from the previous program (Section 3) for the 
diffusion of salt with an average diffusion coefficient of 0.8 cm2 day -1, 
calculated according to Eqn (4.8). 
As shown in Table 3, the outcome is the same, so that at least the 
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present program does not contain conceptunal or programming errors. 
To show the influence of ionic composition on desalting and concen­
tration, some results are summarized in tables 4 and 5 and Fig. 20. 
Table 4 shows that the concentration close to the surface after 200 days 
is higher and the total desalting lower, when the negative ion is 
divalent instead of monovalent and has a diffusion coefficient twice 
as high. Table 5 shows the concentration, total desalting and total 
potential drop for a 4 ion mixture in which the 2 positive ions 
have a diffusion coefficient of 0.6 cm2 day - 1 and the 2 negative 
ions of 1.2 cm2 day -1, assuming that either all ions are mono­
valent or that one of the negative and one of the positive ions is 
divalent. For the latter situation the concentration of all the ions in 
both cases and the potential drop after 200 days are given in Fig. 20 
as a function of the depth. 
All the above situations refer to systems with linear geometry. In the 
same way as in the salt diffusion program, the program may be 
adapted to other geometrical systems by changing the statements that 
define the geometry. These statements are all found in the initial 
section. 
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5 Transport of ions in soil 

5.1 Basic processes 

In the previous chapter, the transport of ions was considered, under 
conditions where only a negligible fraction of the anions is immobile. 
This situation occurs in soils which consist of pure sand and may 
occur in other soils under saline conditions. However in many soils, 
the fraction of negative ions that is mobile in the solution is small 
compared with the immobile fraction. For instance, if the high amount 
of fertilizer of 400 kg ha - 1 of potassium nitrate is mixed in the 
first 10 centimeters of a soil with a moisture content of 0.5 cm3cm-3, 
then the concentration of NO J equals 8 meq NO J liter-1. However, 
if the soil has 30% clay, it may contain 200 meq immobile negative 
ions per liter soil, which amounts to 400 meq per liter water, a value 
which is still 50 times larger than the already high NOJ content of 
the fertilized soil. 
Because electroneutrality is maintained throughout, positive ions are 
associated with these negative ions in the matrix, but these may 
exchange with other positive ions in the soil solution. This exchange 
is a very rapid process, so that it is in general assumed that there is at 
any time an equilibrium between the concentrations of the positive 
ions in solution and on the soil matrix. 
Although exchange processes in the soil are of great complexity, it 
may be supposed in a first approximation that the equilibrium between 
adsorbed ions and ions in solution is governed by the 'Law of Mass 
Action'. For a mixture of two ions 11 and 12 of the same valency, 
this means that the ratio of the ionic species in solution is propor­
tional to the ratio of the species on the adsorption sites: 

I1A/I2A = K * ( I 1 S / I 2 S ) (5.1) 

in which K is a dimensionless equilibrium constant and A and S indi­
cate the ions associated with the adsorption complex and the solution, 
respectively. During the exchange, the total amount of positive ions 
in solution and on the adsorption complex and the total amounts of 
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each ionic species do not change i.e. 

I1A + I2A = TIA (total ions adsorbed) 
I1S + I2S = TIS (total ions in solution) 
11 A + 11 S =TI1 (total ions of species 1) 
I2A+I2S = T I2 (total ions of species 2) 

These equations are used to eliminate 12 A, U S and 12S from the 
Mass Action Equation, which gives 

<1-K)I1A 2 +<K*TIA+(K-1)TI1+TIS)I1A-
K*TIA*TI1 = 0 (5.2) 

and expresses the amount of adsorbed ionic species 1 in the total 
amounts of immobile and mobile ions involved. When all amounts 
of ions are expressed in equivalents per unit volume water in the soil, 
the equilibrium constant K is dimensionless and varies for most 
combinations of ions of the same valency between 0.5 and 2. The 
exchange capacity (EXCAP) of a soil is usually given in milli-
equivalents per gram of soil. If the specific weight of the soil is S W 
and the water content WC, then the total amount of ions adsorbed 
equals: 

TIA = EXCAP*SW/WC in meq cm - 3 of water. 

The same equations hold for systems that contain two divalent positive 
ions. 
Since exchange occurs at a faster rate, compared with the rates of 
diffusion, dispersion and water flow, Eqn (5.2) may be used to 
calculate for any compartment at any time how much of each ionic 
species is in solution and adsorbed. 
The Law of Mass Action in a mixture of one divalent and one mono­
valent ion is more complicated than in mixtures of ions of the same 
valency. If the amount of ions adsorbed and in solution are both 
expressed per volume of water, i.e. meq liter-1, the equilibrium 
constant K in 

DIS/DIA = K*(MIS/MIA>2 (5.3) 

is dimensionless, but its value is proportional to the exchange capacity 
of the soil. The proportionality factor between K and exchange 
capacity for the ions K+ and Ca2+ in equilibrium with clay is about 
40 cm3 soil meq -1 if the exchange capacity is expressed in meq cm - 3 
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soil. The conservation equations are 

DIA + MIA = TIA (total ions adsorbed) 
DIS + MIS = TIS (total ions in solution) (5.4) 
MIA+MIS = TMI (total monovalent ions) 
DIA + DIS = TDI (total divalent ions) 

These equations again enable the concentration of one ionic species 
in solution to be expressed in the total concentrations and the equi­
librium constant. However, as it is impossible to combine the relations 
to obtain an explicit expression a method of successive better approxi­
mations has to be adopted. 
For this purpose an 'implicit function' is available in CSMP. This 
function directs the system to iterate according to a standard proce­
dure, for which the user can specify the error criterion. For the 
present purpose, the function may be used as follows: 

\ -DIS=IMPL(GDIS,ERROR,FDIS) 
MIS=TIS-DIS 
MIA=TMI-MIS 
DIA=TIA-MIA 
FDIS = K*(MIS/MIA) 2 *DIA 

The first line states that the series of statements ending with 
FDIS= is part of an implicit loop, which has to be solved. The 
first guess for the answer is GDIS and the iteration proceeds until 
the relative difference of two successive estimates satisfies the relative 
error, given in the argument of the first line. This relative error may 
be set at 0.01 and the first guess in a simulation program is usually 
the answer obtained in the previous time interval. 
When the relative error criterion is not met after 100 iterations, 
CSMP halts the simulation. Experience has shown that this may 
occur with exchange problems, so that a special iterative procedure 
has been developed. This procedure is called upon by the sentence: 

DIS = ADFUNC(TDI ,TMI ,T IA ,K ,GUESS) 

in which DIS is the amount of divalent ions in solution that has to 
be calculated, T DI , T MI are the total amount of divalent and mono­
valent ions, K is the equilibrium constant and GUESS is a guessed 
value for DIS. The actual iteration procedure is given in Section 5.3. 

65 



5.2 Simulation program 

A simulation program will now be given for the situation when the 
exchange capacity of the soil is not negligible and the soil solution 
contains one monovalent and one divalent positive ion and one 
negative ion. The linear case, with fresh water on the surface, is again 
considered and it is assumed that water flow may take place. Under 
these conditions the diffusion is small compared with dispersion, so 
that it is unrealistic to bother about small differences in diffusion 
coefficients between the ions and moreover the exchange equations 
are also approximations. The diffusion coefficients of the ions in the 
adsorbed phase are considered negligible, although there are indi­
cations, that this is not actually the case, especially for monovalent 
ions (Frere & de Wit, 1971). To avoid unnecessary repetition of more 
complicated constructions here, it is assumed that the labyrinth factor 
and the water content of the soil are constant throughout. 
The parameters of the compartments: 

T COM ( J ) thickness compartments 
DI F D (J ) diffusion distance 
DEPTH ( J ) depth 
AREA ( J ) area 
V 0 L W (J ) volume of water 

are calculated as in Section 4.2. 

The water content, the labyrinth factor, the dispersion factor in cm, 
the exchange capacity in meqcm - 3 of soil, the flow of water in 
cm3 day -1 (per cm2), the direction of flow (+ downwards), the 
diffusion coefficient in cm2 day - 1 and the number of compartments are 

PARAMETER WC=0.4, LAB=0.67, DISP=3., 
EXCAP=0.2, FLWV0L=3., DIRFLW=+1., 
DIF = 1., N = 13 W o , 

As the differences in diffusion coefficients are neglected, it is unneces­
sary to keep a separate track of the diffusion of the negative ion. Its 
concentration can be found at any time by adding together the 
concentrations of the positive ions in solution. It is assumed that 
ion 1 is monovalent and ion 2 divalent. Their initial concentrations are 

TABLE I N T C 0 N ( 1 - 2 ) = 2 . , 8 . meqcm"3 water 
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The flow rate of water over the boundaries is 
tKMma£tz£-*(-\ti^ j j ._ 

DO 1 J = 1 , N 
FLRW(J) = FLWVOL/AREACJ) 
1 CONTINUE 

Since it is assumed that the soil properties are constant throughout, 
the apparent diffusion coefficient may be simply calculated with 

DO 2 J = 1,N 
APDIF(J)=AREA(J)*(LAB*WC*DIF+FLRW(J)* 
DISP) 
2 CONTINUE 

The concentration of the adsorbed ions in every compartment is 

TIA=EXCAP/WC 

and the dimensionless value of K is 

K=CNK*EXCAP 
PARAMETER CNK = 40. 

in which the value of 40 cm3 of soil per meq holds for the ions K+ 

and Ca2+, in equilibrium with clay. 
The concentration of the divalent ion on the adsorption complex is 
calculated now. Although this can be done with an explicit formula, 
readability is improved by using the implicit function. The first guess is 

GDIA = 0 . 5*T IA 

The error criterion is 

PARAMETER ERROR = 0.01 

and the answer is obtained with (Eqns 5.3 and 5.4) 

DIA=IMPL(GDIA,ERROR,FDIA) 
MIA=TIA-DIA 
MIS=INTC0N<1) 
DIS=INTC0N(2) 
FDIA=DIS*(MIA/MIS)**2/K 
MIA=TIA-DIA 

The initial total amount of both ions in each compartment in meq is 
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DO 3 J = 1 ,N 
IAMIN(1,J)=VOLW(J)*(INTCON(1)+MIA) 
IAMIN<2,J)=VOLW(J)»<INTCON(2)+DIA) 
3 CONTINUE 

In the dynamic section an iteration has to be made. The first guess at 
time zero for the amount of divalent ions in solution for all compart­
ments is 

DO 4 J = 1,N 
GDIS(J)=INTC0N<2> 
4 CONTINUE 

The dynamic section will be given again in full. 

DYNAMIC 
NOSORT 

For each compartment, the concentration of each ion in solution has 
to be calculated. This is done in a DO-loop that contains the iterative 
procedure 

DO 5 J = 1 ,N 

First the total concentrations of the monovalent and divalent ion are 
calculated with 

THI=AHI0N(1,J) /V0LW(J) 
TDI=AMI0NC2,J)/V0LW(J> 

Then the concentration of the divalent ion in solution is obtained with 
the iterative procedure: 

GUESS = G D I S ( J ) 

DIS = ADFUNC(TDI,TMI,TIA,K>GUESS) 

The concentrations of the ions in solution are stored in arrays: 

C0NCC1,J> = DIS 
HIS=TMI-TIA+TDI-DIS 

C0NC(2,J)=MIS 

The first guess for the next time step is 

G D I S ( J ) = D I S 
5 CONTINUE 

68 



The concentration of both ions at the surface is again set to zero: 

TABLE CONS(1-2>=2*0. 

The flow from the surface into the first compartment is now calculated 
with 

DO 6 I = 1,2 
F L 0 W U , 1 ) = A P D I F ( 1 > * ( C 0 N S ( I ) - C 0 N C ( I , 1 > ) / 
DIFD(1)+FLWV0L#DIRFLW#CC0NS(I>+ 
C 0 N C U , 1 ) > / 2 

and out of the thirteenth compartment with 

FL0W(I,U)=FLWV0L#DIRFLW*C0NC<I,N> 

it being supposed that concentration changes at that depth are still 
negligible. 

6 CONTINUE 

The flow over the other boundaries is 

DO 7 J = 2,N 
DO 7 I = 1,2 
FL0W( I , J )=APDIF (J ) *<C0NC<I ,J -1 ) -
CONC(I,J))/DIFD(J)+FLWVOL»DIRFLW« 
( C 0 N C ( I , J - 1 ) + C 0 N C ( I , J ) ) / 2 
7 CONTINUE 

The net flow of each ion into each of the compartments is 

DO 8 J = 1,N 
DO 8 I = 1 ,2 
NFL0W( I ,J )=FL0W( I ,J ) -FL0W( I ,J+1 ) 
8 CONTINUE 

The amount of ions in each compartment is given by the CSHP 
statement: 

AHI0N1=INTGRL(IAHIN1,NFL0W1,26) 
/ EQUIVALENCE CAMI0N1,AMION(1,1>), 
<IAMIN1,IAHIN(1,1>>,<NFL0W1,NFL0W(1,1>> 

The program is finished like any of the other programs. 
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Fig. 211 Concentration profiles of ions in solution after 10 days of diffusion 
out of the soil. 
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Fig. 221 Concentration profiles of ions at the adsorption complex after 10 
days of diffusion out of the soil. 

As an example, the relation between the ionic concentrations and 
depth, 10 days after the initialisation of an experiment is shown in 
Fig. 21 and 22. It should be stressed here that the calculations are done 
for a uniform soil profile, but that the program can be easily changed to 
simulate non-uniform profiles, as has been shown before. The program 
can also be extended easily to more than two ions because the iterative 
procedure can be done for the pooled amounts of monovalent and 
divalent ions (Heald et al., 1964). 
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5.3 Iterative procedure 

The iterative procedure that has been adopted is most conveniently 
explained graphically. The equations that have to be solved are 

DIA = TDI-GDIS 
MIA = TIA-DIA 
MIS = TMI-MIA 
DIS = K*(MIS/MIA)**2*DIA 

in which D I S is the concentration of divalent ions in solution, G DIS an 
estimate of this value and the other symbols are the other concentrations 
involved, as denned in Section 5.1. 
The correct solution is obtained if the calculated value of DIS minus GDIS 
is smaller than a limit of error which may be set at 0.005. This difference 
( F G S ) is presented in Fig. 23 as a function of G D IS . Inspection of the 

Fig. 23 | Graphic representation of the iterative procedure to calculate the 
amount of adsorbed ions. 
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four equations shows that FGS is infinite for MIA=0 or for GDIS = 
TDI - T I A. This asymptotic value is presented in the graph. The proper 
value of DIS is found at the intersection of the curve and the horizontal 
axis. For the first guess, G D I S 1 , the amount of divalent ions in solution 
at the previous time step is taken and a second guess, G DI S 2, is obtained 
by taking a fraction of the difference between G DIS1 and the asymptote. 
With these two guesses, F G S1 and F G S 2 are calculated, respectively. 
Subsequently, a third guess, G DI S 3 , is obtained by interpolation between 
the points ( G D I S 1 , F G S 1 ) and (GD I S 2 , FGS2 ) . The last step 
is repeated to find a new guess, GDIS1 N, between GDIS2 and GDI S 3 , 
and this continues until the function value F G S is smaller than the limit of 
error. The corresponding value of G D I S is then the value of D I S which 
is wanted. 

This procedure gives the correct answer within a few iterations under any 
circumstance. 
In C S M P the procedure is most conveniently introduced as a 'MACRO' , 
the use of which is described in the manual. This is done as follows: 

MACRO DIS = ADFUNC(TDI,TMI,TIAfK,GDIS) 
PROCEDURAL 
X1GS = GDIS 
F1GS = X1GS-1./K*((TMI-TIA+TDI-X1GS)/ 
(TIA-TDI+X1GS)**2*(TDI~X1GS)> 
X2GS = TDI-TIA+0.8*(X1GS-TDI+TIA> 
F2GS = X2GS-1./K*((TMI-TIA+TDI-X2GS)/ 
(TIA-TDI+X2GS)**2*(TDI-X2GS>> 

30 CONTINUE 
X3GS = X1GS-F1GS*(X1GS-X2GS)/ 
(F1GS-F2GS) 
F3GS = X3GS-1./K*((TMI-TIA+TDI-X3GS)/ 
<TIA-TDI+X3GS)**2*(TDI-X3GS>) 
IF (ABS(F3GS).LT.0.05) GO TO 32 
X1GSL = X2GS-F2GS*(X2GS-X3GS)/ 
(F2GS-F3GS) 
IF (X1GSL.LT.X1GS) GO TO 33 
X1GS = X1GSL 
F1GS = X1GS-1./K*(CTMI-TIA+TDI-X1GS)/ 
<TIA-TDI+X1GS)**2*(TDI-X1GS)) 
IF (ABS(F1GS).LT.0.05) GO TO 35 
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33 CONTINUE 
X2GSL = X1GS-F1GS*(X1GS-X3GS)/ 
(F1GS-F3GS) 
IF (X2GSL.LT.X2GS) GO TO 30 
X2GS = X2GSL 
F2GS = X2GS-1./K*((TMI-TIA+TDI-X2GS)/ 
(TIA-TDI+X2GS)**2*(TDI-X2GS)) 
IF (ABS(F2GS)-GT.0.05) GO TO 30 
DIS = X2GS 
GO TO 36 

32 CONTINUE 
DIS = X3GS 
GO TO 36 

35 CONTINUE 
DIS = X1GS 

36 CONTINUE 
ENDMAC 
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6 Infiltration of water in the soil 

6.1 Basic problems 

It is generally assumed that the driving forces of the water flow in the 
soil are fully compensated by frictional forces, so that the flow of water 
in a horizontal direction (i.e. in the absence of gravity forces) between 
two adjacent compartments N and N-1 of the same size (TCOM) 
may be described by 

FL0W(N)=AVDIF(N)*(WC(N-1)-WC(N))/TC0M (6.1) 

If the water content is expressed in cm3 water cm - 3 , the thickness in 
centimeters and the flow in cm3 water cm~2day -1, the diflusivity is 
in cm2day-1./<. 
This expression for the flow of water seems to be the same as the 
expressions which were used to describe the flow of molecules in 
solution or the flow of heat, but there is an important and fundamental 
difference. For diffusion of heat or solutes, the conductivity and the 
diffusion coefficient hardly depend if at all on the concentration of 
the diffusing agent. Thus their values could be calculated from the 
physical status of the soil in the initial part of the programs. However, 
the diflusivity for water decreases with decreasing moisture content 
of the soil, because the frictional forces per unit volume of water 
increase as the pores that are filled with water become smaller. In 
Fig. 24, it is shown that according to Hanks & Bowers (1962), the 
diflusivity of the soil 'Geary silt loam' may decrease more than a 
100-fold with a decrease in water content from saturation to 10% 
volume of water. 
Let us consider now a situation where water is absorbed by a soil 
column. The driving force is hardly dissipated in the wet end of the 
column because the diflusivity is high and it is not dissipated in the 
dry zone of the column because there is still no water that is able to 
move, so that the well-known sharp wetting-front results, which is 
given in Fig. 25 for Geary silt loam. 
The form of this curve has to be simulated by distinguishing a limited 
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Fig. 241 Relation between diffusivity ( D ) and water content ( W ) for 
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Fig. 251 Wetting front at 0.6 day after the beginning of an infiltration in 
Geary silt loam with an initial water content of 0.188 cm3cm-3. 
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amount of compartments, in each of which the moisture content is 
assumed to be the same over its whole thickness. 
To apply now Eqn (6.1), an average diffusivityjiasjqLb^determined 
between two such compartments, which may differ considerably in 
water content. 
For instance, if the water contents are 0.18 and 0.31 cm3cm"3 respec­
tively, which amounts to diffusivities of 13.8 and 976.3 cm2day -1, the 
arithmetic average is 445.1 cm2 day - 1 and the flow rate 57.9 cm day -1 

accordingly. However, one may also reason, that the average water 
content between the centres of the two compartments is 0.245 cm3 cm " 3, 
sothatthediffusivityis 181.4cm2 day - 1 and theflowrate 23.6cm day -1. 
It may also be assumed that the diffusivities of each compartment have 
to be averaged as electrical conductivities in series, i.e. according to 
1/AVDIF =tl / DI F C N > + 1/DIF CN+1 X. Then the flow rate is 

J_.8 cm day - 1 with an average DI F of 13.6 cm2 day - 1 . It seems logical 
that because of the very steep wetting-front, most of the driving force 
is dissipated in the wettest compartment. Accordingly, the diffusivity 
of this compartment must be weighted more than that of the drier 
compartment and this weighting may be done by taking the 'wet 
average' according to: 

AVDIF=(WC(N)*DIF(N)+WC(N-1)*DIF(N-1)> / 
'(WC(N)+WC(N-1>) 

This leads to a flow rate of 82.5 cm day -1 . 
The four calculated flow rates show a fortyfold difference. Although 
the latter reasoning favours averaging methods which lead to higher 
flow rates, it is impossible to state a priori which averaging will give 
the best results. Because of the curvilinear shape of the diffusivity 
versus moisture content curves, it is not even certain that one method 
of averaging should be used for any soil type. 
Thus, the simple technique used so far seems to break down and it 
seems necessary to use a method of simulation which does not lead 
to an impossible choice. 

6.2 Semi-continuous simulation program 

Such a method of simulation of water flow was developed by 
Wagner (1952) for use on an analog computer. It was assumed that 
the diffusivity decreases exponentially with the moisture content. This 
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method will be presented here in CSMP, which has the 
great advantage that no assumption about the shape of the diffusivity 
versus moisture content curve has to be made. 
Up to now, any reference to differential equations has been avoided. 
But in this section, they will be used as otherwise the formulations 
become cumbersome. In order not to lose the reader who has 
proceeded this far without a working knowledge of differential 
calculus, care is taken to explain all mathematical operations. 
The conventions used up to now are not very suitable for differential 
calculus and are therefore changed here by rewriting Eqn (6.1) as 

(FLOW)* *(D^) 
\ AX/N 

in which AZ is the distance between the centres of two compartments, 
A W the difference in water content, D the average diffusivity between 
the compartments^, (FLOW)* the flow of water from compartment 
N—1 to N. The equal sign is replaced by the about equal sign, to 
stress that the equation is an approximation, because the gradient in 
moisture content from one compartment to the other is not linear 
over finite distances. 
The net flow into the Nth compartment may be estimated by sub-
stracting the flow out of Nth compartment: 

1 AX A \ AXJN+I 

It is now assumed that with infinitesimally small compartment sizes, 
presented by the symbol dX, the equation is correct, i.e. that 

FKJD**)JD&) (6.2) 
V dxh V dzA+i 

in which dW represents the difference in moisture content over the 
infinitesimally small distance dX. In the infinitesimally small time dT 
this net flow of water causes an increase in water content of the Nth 
compartment with thickness dX 

dW = ^-dT (6.3) 
dX 
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Substituting Eqn (6.3) in Eqn (6.2) gives 

dW = , „ , 

dT dX 

in which d(D.dWldX) is the differential of the product of diffusivity 
and moisture gradient at the top and the bottom of the compartment 
dX and D is th&-diffusivity-at-4he-moisture-content-of the com— 

^jgartment-d,¥r-
This differential equation for the flow of water in a porous medium 
contains two independent variables: the distance X and the time T. 
These occur only in the combination dT/dX2, and for this reason 
they may be substituted by one variable, which transforms the differ­
ential equation into a more suitable form for integration. This 
procedure is called the Boltzmann transformation. 
The new variable equals 

L = XT~* , (6.5) 

Differentiating this variable with respect to X gives 

— = 4 - or dX = JT*dL (6.6) 
dZ Vr V 

and differentiating to T gives 

— = - i Z . T " 1 , 5 or d T = - — *dL (6.7) 
dT , L 

The Eqns (6.6) and (6.7) for dX and dT are now substituted in the 
differential Eqn (6.4) 

dW 
( dW \ 

_ 2 T d L V r . dL 
L 

IT 
This results after multiplication by in 

L 
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dW 2 d 

' dW\ 

dL L dL 

This is a differential equation in the independent variable L only. 
Remembering that the differential quotient of the product of the 
functions U and V with respect to an independent variable L is 

dL dL 

the relation 

dL ~ L\dL dL ' dL2) 

holds, in which d2 W/dL2 is short hand for the differential quotient 
of the differential quotient of the water content with respect to the 
variable L. Writing this second order differential explicit gives 

d2W 1 (dD L\dW , v 

—=- = - - — + - — (6-8) 
dL2 D \dL 2) dL 

This differential equation contains the differential quotient of the 
diffusivity with respect to L, which is eliminated with the chain rule: 

dD/dL = (dW/dL) * (dDjdW) 

So that at last 

d2W = _]_ (dW_ d D + i W 
dL2 D \dL 'dW 2/ dL 

The absorption of water by a uniform horizontal, semi-infinite soil 
column with a constant initial water content (IW) throughout its 
whole length, is now considered under the supposition that one end 
of the column is kept at saturation water content (WS). The initial 
value of the water content (at L = 0) is then WS, but the initial value 
of dW/dL depends on IW in a way which is determined by the form 
of the diffusivity function. Hence simulations should be carried out 
with various initial values of dW/dL and then the water contents 
obtained with sufficient large values of L should be graphically 
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related to these initial slopes. 

The simulation program proceeds as follows: 
In order to avoid confusion of symbols it is convenient to rename the 
internal variables TIME and FIN TIM with 

RENAME TIME = L, FINTIM = FINL 

Since there are no initial calculations, the I NITIA L and DYNAMIC 
cards may be omitted and because no arrays are involved, the sort 
option is used by omitting the N 0 S 0 R T card. This has the advantage 
that the program no longer has to be written in procedural fashion, 
so that readability is improved. This advantage is only of importance 
in large programs of which an example is given by Penning de Vries 
(1971). 
The second order differential quotient of the water content with respect 
to L, according to Eqn (6.9) is 

D2WL = ( - 1 / D ) * ( D 1 W L * D D W + L / 2 ) * D 1 W L 

L is the independent variable, tracked by C SMP. D is the diffusivity 
which is read from the tabulated function by -

D = AFGEN(DTBLE,W) 
FUNCTION DTBLE = (0.18,13.8), 
(0.19,31.1),(0.20,48.4),(0.21,65.7), 
(0.22,82.1),(0,23,110.6),(0.24,165.9), 
(0.25,197.8),(0.26,285.2),(0.27,407.8), 
(0.28,507.2),(0.29,648.0),(0.30,749.9), 
(0.31,976.3),(0.32,1123.2), 
(0.33,1321.9),(0.34,1555.2), 
(0.35,1840.3),(0.36,2160.0), 
(0.37,2514.2),(0.38,2808.0), 
(0.39,3110.4),(0.40,3386.8), 
(0.41,3646.1),(0.42,3888.0), 
(0.43,4121.3),(0.44,41 64.5), 
(0.45,4199.1),(0.46,4200.9). 

with the water content (W) in cm3cm -3 and the diffusivity in 
cm2 day -1. 
DDW is the slope of the diffusivity curve with respect to W and again 
read from a tabulated function by 
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DDW = AFGEN(DDWTB,W) 
FUNCTION DDWTB = (0.18,1770), 
(0.19,1770),(0.20,1770),(0.21/1730), 
(0.22,2245),(0.23,4190),(0.24,4360), 
(0.25,5920),(0.26,10500), (0.27,11100), 
(0.28,11910),CO.29,14380),(0.30,16460), 
(0.31,16480),(0.32,17280), (0.33,21600) , 
(0.34,25920),(0.35,30240),(0.36,33690) , 
(0.37,32400),(0.38,29810),(0.39,28940), 
(0.40,26780),(0.41,25060),(0.42,23760), 
(0.43,13820),(0.44,3890),(0.45,1730), 
(0.46,1730). 

with the water content in cm3cm -3 and the slope in cm2day-1. 
The value of the first order differential of W is now obtained by 
integrating D2WL: 

D1WL = INTGRL(ID1WL,D2WL) 

and the water content by integrating D1 W L: 

W = INTGRL(WS,D1WL). 

The initial value of W equals the water content at saturation and is 
given by 

PARAMETER WS = 0 . 4 6 cm3cm-3 

The initial values of D1 WL are in an unknown way related to the 
initial water content IW of the column, so that the simulation has to 
be carried out for a range of values, which are successively: 

PARAMETER ID1WL = (-1.5E-4,-3.E-4, 
-4.5E-4,-6.E-4,-7.5E-4,-9.E-4, 
-10.5E-3,-1.2E-3) 

Later it is convenient to use the 'sorptivity' of the soil to compare 
infiltrated amounts. This sorptivity is calculated with 

S = I N T G R L ( 0 . , W ) 
SORP = S-L#W 

For this kind of problem it is wise to use the integration method of 
Runge-Kutta with variable time-step, which is achieved with 

METHOD RKS 
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The values of L at which the simulation is finished, and at which 
output is required are specified with 

TIMER F I N L = 1 5 0 . , O U T D E L = 5 . 

and the output is obtained on a plot with 

PRTPLT W ( 0 . , 0 . 5 0 , S O R P ) 

This statement gives a graph of W with a scale of 0 . to 0 . 50 and 
a table of the sorptivity. The program is finished with 

END 
STOP 
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Fig. 261 Part of the print-plotted output of the semi-continuous program. 
The shaded area is the sorptivity. 
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An example of the output is given in Fig. 26. The sorptivity is the 
shaded area, the shading being entered by the draftsman and not by 
the computer. 
An alternate solution, based on Eqn (6.8) is 

D 2 W L = ( - 1 / D ) * ( D D L + L / 2 ) * D 1 W L 
DDL=DERIV( IDDL,D) 
D1WL=INTGRL(ID1WL,D2WL) 
W=INTGRL(WS,D1WL) 

in which the function D E RIV takes the derivative of the second 
argument with respect to the independent variable L (or TIME). 
The initial values of the derivative function (ID D L ) and of the first 
derivate of W ( I D1 W L ) are then in the initial section related by the 
chain rule. The advantage of this method is that it is unnecessary to 
introduce manually the relation between W and the derivate of D with 
respect to W. But its disadvantage is that the derivative function is less 
sophisticated than some of the integration procedures. 
The curves that show the relation between the water content and L 
for 5 initial values of the slope are given in Fig. 27. For a constant 
value of t each curve shows the relation between water content and 

\ \ 1W 
IW! 

IW 

0.195 
0.188 

IW 

IW 

= 0728 

L 

.0.305 

• 0.272 

Fig. 271 Relation between water content ( W ) and x/y/t(L) for different 
values of the initial water content ( IW ) • 
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IW 
0.45cm3cm"J 

Fig. 28 | Relation between initial slope ( I D1 W L ) and initial water 
content ( IW ) for Geary silt loam. 

distance from the wet end of a column with the corresponding initial 
water content. All curves approach an initial water content (IW) 
of the column, which depends on the initial slope (ID1 W L). Fig. 28 
with the relation between I D1 W L and IW, is now used to estimate 
the initial slope that has to be entered in this simulation to achieve the 
sorption-curve for a chosen initial water content. The wetting front 
is steeper, the lower the initial water content of the soil and the 
integration routine has to adjust to smaller values of DELT, to 
proceed. At water contents lower than 0.19 cm3cm -3 the values of 
DELT are so small, that the finite word length of the computer limits 
the accuracy of integration and the simulation stops. 
The sorptivities of this soil dependent on the initial water contents 
are given in Table 6. 
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Table 6 Sorptivities in cm day"* dependent on the initial water content 
for Geary silt loam. 

initial water 0.1888 0.1952 0.2409 0.2561 0.2728 0.3565 0.3791 0.4207 
content 
sorptivity 14.55 14.37 12.81 12.14 11.43 7.11 5.70 2.64 

6.3 Compartmentalized simulation program 

The simulation program discussed in the previous section, can only 
be used for a uniform soil with initially a constant water content 
throughout and when gravity is not involved. This is not flexible 
enough to simulate actual situations. Hence, it is still necessary to 
develop a compartmentalized simulation program, so that the problem 
of deciding on the proper method of averaging diffusivities and on an 
acceptable size of the compartments has still to be solved. To find a 
solution, the results of a compartmentalized simulation model for 
various methods of averaging are compared with the results of the 
semi-continuous model of the previous section, assuming that the 
method of averaging which is best in this situation, is also the best in 
more complicated cases. 
Eqn (6.1) which governs the flow between two compartments does not 
contain the flow due to gravity forces. When the pressure due to 
gravity is in cm water, the gradient in vertical direction is in cm cm - 1 

or a dimensionless value. Hence this additional flow may be simply 
accounted for by adding the average conductivity in cm day -1 to the 
right side of Eqn (6.1), which gives 

FL0W(N)=AVDIF(N)*(WC(N-1)-WC(N))/ 
TC0M+AVC0ND(N) (6.10) 

The value of the diffusivity and conductivity are related through the 
capacity, or the slope of the suction curve ('pF-curve') of the soil 
in cm3 water cm - 3 soil cm - 1 water pressure, by 

DIF=C0ND/CAP 
The suction curve and the conductivity curve for Geary silt loam are 
given in Figs 29 and 30. 
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Fig. 291 Relation between matric suction and water content for Geary silt 
loam. 

cm day"1 

.16 .20 .24 .28 .32 .36 AO ,44 cm3 c m - 5 

Fig. 30 J Relation between capillary conductivity and water content for 
Geary silt loam. 
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The following simulation program contains the essentials to proceed. 
It is again started with 

INITIAL 
NOSORT 
FIXED I,N 
PARAMETER N=25 

The thickness of the compartments is 

PARAMETER TC0M=4 

and the initial water contents of the 25 compartments are 

STORAGE IWCC25) 
TABLE IWC(1-25)=25*0.1888 

so that the initial amount of water in each compartment is calculated 
with 

DO 1 I = 1 ,N 
I A M W ( I ) = I W C ( I ) * T C O M 

1 CONTINUE 

and the depth with: 

DEPTH(1)=0.5*TCOM 
DO 2 I = 2 ,N 
DEPTH( I ) = DEPTH( I -1 )+TC0M 
2 CONTINUE 

The direction of gravity is given by: 

PARAMETER GRAV=0. 

The value zero, indicating a horizontal, the value +1 , a vertical 
column. It is supposed that at time zero the surface is set at a water 
content WS, which is given also as a parameter. 

PARAMETER WS=0.46 ' 

The conductivity in cm day - 1 and the diffusivity in cm2 day -1 of the 
soil, dependent on water content in cm3 water cm - 3 soil, are given as 
tabulated functions with 
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FUNCTION DIFTB = (0.18,13.8), 
(0.19,31.1),(0.20,48.4),(0.21,65.7), 
(0.22,82.1),(0.23,110.6),(0.24,165.9), 
(0.25,197.8),(0.26,285.2),(0.27,407.8), 
(0.28, 507. 2), (0.29,648. 0,(0.30,749.9), 
(0.31,976.3),(0.32,1123.2), 
(0.33.1321.9),(0.34,1555.2), 
(0.35,1840.3),(0.36,2160.0), 
(0.37,2514.2),(0.38,2808.0), 
(0.39,3110.4),(0.40,3386.8), 
(0.41,3646.1),(0.42,3888.0), 
(0.43,4121.3),(0.44,4164. 5), 
(0.45,4199.1),(0.46,4200.9) 

FUNCTION CONDTB = (0.18,0.00006), 
(0.19,0.00009),(0.20,0.0002), 
(0.21,0.00048),(0.22,0.00081), 
(0.23,0.0011),(0.24,0.0016), 
(0.25, 0.0024), (0.26,0.001^62), 
(0.27,0.0151),(0.28,0.0188), 
(0.29,0.0324),(0.30,0.0535), 
(0.31,0.08),(0.32,0.1261), 
(0.33,0.1814),(0.34,0.2618), 
(0.35,0.3681),(0.36,0.5685), 
(0.37,0.7344),(0.38,0.864),(0.39,1.27), 
(0.40,1.96),(0.41,2.42),(0.42,2.88), 
(0.43,3.75),(0.44,4.16),(0.45,4.20), 
(0.46,4.24). 

The diffusivity and conductivity at the surface of the soil are now 
obtained with 

DIFS=AFGEN(DIFTB,WS) 
C0NDS=AFGEN(CONDTB,WS) 

This is the end of the initial section. 
The dynamic section starts again with 

DYNAMIC 
NOSORT 
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At first, the water content of each layer is calculated from the amount 
of water in each layer with 

DO 3 I = 1,N 
WC( I )=AMW(I ) /TCOM 

which is then used to calculate the conductivity and diflusivity of 
each layer with 

COND(I)=AFGEN(CONDTB,WC(I) ) 
D I F ( I ) = A F G E N ( D I F T B , W C ( I ) > 
3 CONTINUE 

The program enables the diffusivity and conductivity between the 
compartments to be averaged according to various methods. For 
this a parameter, which specifies the method of averaging is intro­
duced: 

PARAMETER W = - 1 . 

in which - 1 . indicates that the 'wet-weighted' average is used, 1 . that 
the arithmetic average is taken, 2 . that the values for the overlaying 
compartment are given with double weight and so on. 

The weighing factor between the compartments is then calculated 
with 

DO 4 I = 2 ,N 
RATIO = W C ( I - 1 ) / W C ( I > 
WF = INSWCW,RATIO,W> 

For W is negative, the value of R A T10 is given to W F and for W larger 
than zero, the value of W itself. The average values are then obtained 
with (t) 

A V C 0 N D = ( W F * C 0 N D ( I - 1 ) + C 0 N D ( I ) ) / ( W F + 1 . ) 
AVDIF^= ( W F * D I F ( I - 1 ) + D I F ( I ) ) / ( W F + 1 . ) 

and the flow rate from one compartment to the next with 

FL0W(I)=AVDIF*(WC(I-1>-WC(I)>/ 
TCOM+AVCOND*GRAV 
4 CONTINUE 

The flow rate from the surface to the first compartment is calculated 
with 
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WF = INSW(WfWS/WC(1),W> 
AVC0ND=(WF*C0NDS + C0ND,(1))/(WF + 1 .) 
AVDIF=(WF*DIFS+DIF(1))/(WF+1.) 
FLOW(1)=AVDIF*(WS-WC(1))/(0.5*TCOM)+ 
AVC0ND*GRAV 

The flow from the 25th to the 26th compartment is again set to zero 
with 

FLOW(26)=0 . 

which means that the simulation may proceed as long as the change 
in water content in the 25th compartment is small. Independent of the 
specified finish time, the simulation may be stopped by 

C H A N G E = A B S ( ( W C ( 2 5 ) - I W C ( 2 5 ) ) / I W C ( 2 5 ) ) 

a function which calculates the absolute value of the relative change 
in the 25th compartment and the finish condition 

FINISH CHANGE = 0.10 

This line states that the simulation is halted as soon as the change 
in the last compartment is larger than 10%. 
The net flow into each compartment is now calculated with 

DO 5 I = 1 ,N 
N F L W ( I ) = F L 0 W ( I ) - F L 0 W ( I + 1 ) 
5 CONTINUE 

and the integration carried out with 

AMW1=INTGRL(IAMW1,NFLW1,25) 
/EQUIVALENCE (AMW1 , A M W ( D ) , (IAMW1, 
IAMW(D) ,(NFLW1 ,NFLW(1)) 

It is useful to integrate at first with the method of Runge Kutta, and 
to try out later whether less sophisticated methods may be used. The 
total infiltration is calculated with 

I N F L = I N T G R L ( 0 . , F L 0 W ( 1 > ) 

At every output time specified by OUTDEL (compare Section 4.2), 
the sorptivity may be calculated with 
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A=IMPULS(0. ,OUTDEL) 
I F ( A * K E E P . L T . 0 . 5 ) GO TO 6 
SORP=TNFL/SQRT(TIME+NOT(TIME)) 

in which the function SQRT takes the square root of TIME + 
NOT (TIME). NOT (TIME) is 1 for time is 0 and 0 for time 
greater than zero, and thus prevents the order to take the square root 
of zero. The value of the variable L, out of the previous program is 
for the successive compartments obtained with 

DO 7 I = 1 ,N 
L(I)=DEPTH(I)/(SQRT(TIME+NOT(TIME))) 
7 CONTINUE 
6 CONTINUE 

The output has to be organised by using FORTRAN capabilities, as 
in Section 3. 
The selection between various methods of averaging is made on the 
basis of a graph of the sorptivity against time, presented in Fig. 31. 
The horizontal line shows the sorptivity calculated with the semi-
continuous method and the curves with other methods. For a short 
time period, the compartments are too large to obtain good results, 
but after 0.5 days stationary values are obtained. The arithmetic 
average (W=1) gives the best results but the wet average (W=-1) 

I 
SORP 

\ , W s 2 

W=1 

/ w s O S 

1 
y 

IWC =0.1883 

T I M E 

— 

0O6 0.10 O.W 0.18 0.22 • 0.26 0 3 0 03* 0 3 8 0 * 2 0 * 6 doy i 

Fig. 311 The value of the sorptivity (SORP) asa function of time for 
different averaging procedures. 
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Fig. 321 Cumulative infiltration curves for different averaging procedures, 
in comparison with the semi-continuous solution. 

is a good second. The vertical scale is very much extended, so that the 
agreement is somewhere within the fourth digit, which is more than 

^accurate enough for practical purposes. 
Infiltration, dependent on time, is shown in Fig. 32. The semi-
continuous method is given as a line and two methods of averaging 
as points. In Fig. 33 the water content in relation to the variable 
L ( = DEPTH*TIME~*)is given. It is seen in Fig. 33 that some 
'tailing' of the graphs is obtained with the 'compartmentalized' 

semt-continuous 
compartmentalized: * W;O.S 

• Ws 1 
• » : 0 

110 cm day" 

Fig. 331 Relation between xf^/t QL) and water content ( W C ) for different 
averaging procedures, in comparison with that relation from the semi-
continuous program. 
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Fig. 341 Water content ( W C ) as a function of depth on different times, 
for horizontal as well as for vertical flow. 

simulation program, although the sorptivities are correct. Fig. 34 
illustrates the influence of gravity on the infiltration curves. The 
influence is relatively small so that no appreciable mistake is likely to 
be made by averaging the conductivities between compartments in the 
same way as the diffusivities. 
The situation is now considered in which a layer of water is brought 
on the soil at the start of the experiment and gradually diminishes 
by infiltration. This additional pressure height H is accounted for by 
calculating the flow rate into the first compartment by 
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F L O W ( 1 ) = A V D I F * ( W S - W C ( 1 ) ) / ( 0 . 5 * T C O M ) + 
(H+GRAV)*COND 

However, when all the water on the soil is gone the flow rate into the 
first compartment is necessarily equal to zero. To avoid oscillation 
of H around zero, the further calculations are bypassed with 

F L O W ( 1 ) = I N S W ( H , 0 . , F L O W ( 1 ) ) 

Of course the pressure height should be traced with 

H = I N T G R L ( I H , - F L 0 W ( 1 ) > 

in which the initial height may be set on a parameter card. 
This is all very simple. There is however, one problem. Because of this 
additional pressure the wet compartments may become saturated with 
water. Their conductivity is then equal to the conductivity of a 
saturated soil and their capacity to store additional water is practically 
zero. Therefore, the diffusivitv of these compartments is very high and 
consequently the flow rates approach infinite values. In this way, a 
situation develops which can only be simulated with infinitely small 
time intervals, and this is clearly impossible. Hence C S M P terminates 
the simulation. The problem may be circumvented by assuming that a 
soil at atmospheric pressure always contains a few percent of trapped 

~ak»_which is compressed at pressures higher than one atmosphere 
according to Boyle's law and thus creates the space for a small change 
in water content under influence of changes in pressure. The conduc­
tivity of the soil is then given by 

CONDA 
C0ND=( „ , . )»WC 

WCA 

in which the symbols with an A indicate values at atmospheric pressure. 
The difiusivity at pressures higher than one atmosphere may then be 
calculated from the conductivity, and the change in volume of air 
with one centimeter increase of pressure. At an atmospheric pressure 
of 1000 cm water this change in volume equals 10"3 times the air 
content, so that at higher than.atmospheric pressures the equation 

DIF= (^!^S*WC/(10- 3*ACA) 
WCA 

holds for the difiusivity. 
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By including these relations the simulation proceeds, but still the time 
intervals are very small and lead to long computation times. However, it 
has been shown, as it can be shown by theoretical reasoning, that the 
influence of any additional pressure head resulting from a small layer 
of water on the soil, is negligible for practical purposes. Hence, apart 
from cases where the interest centres around this problem, it is most 
sensible to forget about the additional pressure of this layer. 
The driving force is not proportional to the difference in water content 
of two adjacent layers, when their moisture characteristics (i.e. 
pF-curves) are not the same. In that situation, the Eqns (6.10) and 
(6.11) should be combined into: 

FL0W(N)=AVC0ND(N) =rr-rn 
TCOM 

in which the potentials ( P) at each time-step and for each compart­
ment are calculated from the water contents with the suction curves 
(pF-curves) of the appropriate soil in each compartment. Of course, 
the suction and conductivity curves for each soil type in the profile 
should then be entered as tabulated functions. In the simulation 
program it is then assumed that the wet average may be used also for 
the conductivities, although this cannot be proven by comparison with 
a semi-continuous solution. 
The above mentioned approach was applied by van Keulen & van 
Beek (1971) to calculate the formation of pools during showers, on 
non-plowed and plowed soil, with and without a hardpan due to 
plowing. 
The relation between the moisture content on one hand and the 
diffusivity, the conductivity and the suction pressure shows hysteresis: 
air is trapped during the wetting phase, so that at the same moisture 
content the water is differently distributed over the pores than during 
the drying phase. The effect of hysteresis may be included in programs, 
which simulate alternate wetting and drying cycles. However, it should 
be stressed that moisture characteristics vary so much from place to 
place under field conditions, that this degree of sophistication is often 
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6.4 Time constant dependent on water content and size of 
compartments 

In the simple case of heat and salt diffusion, it was found (Section 2.3) 
that the time constant of the system is given by 

in which the diffusivity D was independent of the temperature or the 
concentration of salt itself, so that, irrespective of the state of the 
system, the time constant was proportional to the thickness of the 
(smallest) compartment squared. 
For the flow of water, the diffusivity varies with the water content, 
and moreover, the time constant is not only determined by the 
diffusion flow of water, but also by the gravity flow. To estimate the 
time constant, the situation of Fig. 35 will be considered, in which a 
soil, wet at the top is in contact with a somewhat drier soil at the bottom. 
The net flow into the bottom compartment is the sum of the net 
diffusion and net gravitational flow 

NF = NDF + NGF 

The diffusion flow out of the bottom compartment is zero, so that 
NDF = D * (AW/AX) in which D is an average diffusion coefficient 
between both slabs. The net gravitational flow is 

NGF = ( C 1 - C 2 ) * 1 / 1 , 

-*• water content 

t 
* 

I 
< — A W — 

CI 

ca 

Fig. 351 Schematic representation of the water content in two adjacent 
compartments. 
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i.e. the difference in conductivity, as the gradient is 1 cm cm - 1 . 
Since C2 is approximately equal to 

(Cl-(dC/dW)*AW) 

in which dC/dW is the slope of the conductivity curve at the average 
water content, the net gravitational flow equals 

NGF = Cl-(Cl-(dC/dW) * AW) = (dC/dW) * AW 

Now this system certainly starts oscillating, if the water content of 
the compartment increases in one time interval with AW. Hence the 
time interval should be smaller (for instance 1/5) of the time constant 
AT, calculated from: 

AW*AX = NF *AT 

The resulting expression is: 

AT = AX2/(D+(dC/d W) * AX) (6.11) 

From Eqn (6.11) can be seen, that for AX < D/(dC/dW) the time 
constant increases quadratic with increasing AX, but for AX > 
D/(dC/dW) the time constant increases only linearly with AX. 
For Geary silt loam, with a water content of .45 cm3cm-3, D and 
dC/dW equal 4200 cm2day-1 and 4cmday - 1 so that Df(dC/dW) is 
about 1000 cm. Hence with compartments of 4 cm, the time constant 
is about equal to 

AX2/D = 16/4200 = 4*10"3 

For a dry soil, with a moisture content of .20 cm3cm-3, D and 
dC/dW equal 48.4 cm2day-1 and 2*10~2 cmday-1, respectively, so 
that AX, at which D and (dC/dW) * AX are equal, assumes a value 
of 2500 cm. 
The time constant for 4 cm compartments is then 16/48.4 « 0.35 day. 
At higher than atmospheric pressure the conductivity and the diffusi-
vity are, as explained in Section 6.3, equal to 

D = CONDA/WCA*WC/(10-3*ACA) 

and 

d C / d ^ = C0NDA/WCA 

so that the time constant equals 
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AT = AX2/(^C/(10-3*ACA)+AAO*WCA/CONDA = 
= AX2/(0.46/(10_ 3 * 0.05)+AX) * 0.46/4.24, 

which equals for compartments of 4 cm: 

16/(0.46/(5 * 10"5)+4) * 0.46/4.24 » 2* 10 - 4 day. 

for Geary silt loam with 5% included air at atmospheric pressure. 
The penalty for extending the present program in this way, is therefore 
very high in terms of computer costs. The difficulty may be overcome 
by introducing soil sections in the simulation program, with stationary 
flow of water, but this is beyond the scope of this book. 
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