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1 Introduction

1.1 Purpose

The purpose of this book is to interest student and scientist in the
simulation of transport processes in the soil: transport of heat, salts,
ions and water in the unsaturated phase. These processes are charac-
terized by a simultaneous change in the amount of energy or material
with time and place, In mathematics, such distributive systems are
described by partial differential equations, which are difficult to solve, _f
Most problems that can be solved by analytical methods are so simple,

that they are mainly of academical interest, but of little practical
value. Training in analytical methods is verv important, because this

gives a good insight into the fundamental aspects of problems.

However, the engineer or scientist faced with the task of finding

reasonable quantitative solutions for practical problems can hardly

use these methods and often much of his skill is lost in the mathematical

handling of problems.

With problems where the elegant and not so elegant analytical solu-

tions fail, solutions may be obtained by the brute force of the

computer. Training in numerical mathematical methods and training

in the use of the computer is then necessary. This training should be

available at two levels. -

For development purposes, advanced tralmng in numerical methods

and programming techniques is necessary, but apart from this, it is

extremely useful to train_students more_inclined to engineering in

such a way, that they are able to tackle their problems with a

minimum expenditure of time and effort. -

Therefore computing systems have been developed in recent years to

handle problems of numerical integration. These systems are very

much alike in their basic approach, but vary for different machines

and in their level of sophistication. By far the most sophisticated

. languages are ‘Continuous System Modeling Program (CSMP)’,

. developed by IBM for its 360 series of machmes and other languages

derived from it. ' : :




The student is introduced to this engineering approach, To read the
book fruitfully, he should have an ‘undergraduate’ training in soil
science and mathematics and a basic knowledge of FORTRAN.

Since CSMP is used throughout, it is advisable to have the ‘User’s
manual of the system /360 Continuous System Modeling Program’,
available through IBM offices under the number H20-0367-2. More-
over, he should have the patience to invent some alternatives for the
given solutions and possibly_carry these out on a nearby computer

_that can handle the system.
Even persons who do not have access to CSMP or similar languages
may gain enough insight in the problems to use a simulation systemn
available to him or embark on programming. in plain ALGOL or
FORTRAN, although this is not advised.

1.2 Some principles of transport processes

The most important transport processes in soils are the transport of
heat, water, solutes in the water (ions, organic substances) and gases
(COZ: O,, water vapour). They can be described by some general
equations. :

It is assumed that the frictional forces during movement of a substance
are pr9portional to the velocity of flow and compensate the driving
force_m full As a consequence, a uniform motion results with a
velocity in the same direction as and proportjonal to the driving force.
‘_The equation for the rate of flow of a substance is thus assumed to be:

FLOW=TRAN % DRIVING FORCE (.1

;_‘;r‘;‘;ehj(‘h TRAN, the transport coefficient, is independent of the driving
:[he transport process must also satisfy the continuity condition, which
18 a direct consequence of the principle of the conservation of matter.
Apart from the production or release of a substance or heat (i.e. the

- uptake of water or ions by roots, the heat of wetting and the release

. of CO, by micro-organisms) this continuity condition states simply

that the rate of increase of a substance in a volume equals the net rate
of flow over its boundarics, T

f;:; the diffusion of molecules the driving force is p‘roporti.onal to the
Centration gradient and may be expressed in g cm™3cm™", When
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flow is expressed in gcm™Zmin~! the transport coefficient has to be
expressed in cm?min~!. The driving force for ions does not only
depend on their concentration gradient, but also on the electromotive
force which results from the presence of other ions. This will be
considered later in detail.

Since conduction of heat is caused by the irregular thermal motion
of molecules, heat flow may be treated in a similar way. The driving
force is then proportional to the temperature gradient, which equals
the gradient in volumetric heat content divided by the volumetric heat
capacity of the soil. If the flow is expressed in cal cm™2min~!, the
transport coefficient has the unit of cal cm™'min~!°C~1. - N
The driving force for the flow of water in soil is the potential gradient,
which may be expressed in mbar cm™°4 When the flow of water is
in gcm™2min~%, the transport coefficient is in g cm~*min~! mbar™*
(One mbar is about the pressure of a column of water of one cm).
For horizontal flow and in the absence of other gradients, the potential
gradient equals the gradient in volumetric moisture content, divided
by the specific moisture content, which is the change in volumetric
moisture content per unit change in potential. The gradient in_
moisture content has the unit cm*cm~3cm™?, so that the unit of the
transport coefficient is cm? min !, when the flow is in em®*cm~2min~1. _
With the transport of water, the transport coefficient depends on the
friction between the water molecules and between the water molecules
and the surface of the soil matrix and this friction increases rapidly
with decreasing water content, that is with the increase of the contact
surface between the matrix and the water per unit water. Hence, the
transport coefficient for water depends largely on the moisture content
of the soil, 2 dependence which should be carefully distinguished from
the independence of the moisture gradient. The specific water content
of the soil also depends on the moisture content, since large pores lose
their water first.

Equation (1.1) has to be verified experimentally. It has been shown
that it holds well enough for the movement of solutes, heat and water
through the pores of a soil matrix. It should, however, be realised that
movement of heat and solutes occurs also with the movement of water
and that this movement has to be superimposed on the movement by
diffusion of these substances. .




2 Flow of heat

2.1 Basic approach

Fig. 1 shows a uniform soil column of finite length taken from an
infinite slab and placed on an insulating layer. It is supposed that the
temperature at the column’s upper surface changes arbitrarily with
time. To calculate the temperature as a function of depth and time,
the column is divided into_25 equal compartments with thickness
JCOM. Heat flow into and out of each compartment is calculated at -
any instant of time from the temperature difference between the
compartments and the transport coefficient, Based on-the continuity
condition, these flows are realised over a short time interval to obtain
the volumetric heat content of each compartment a finite instant of
time later. The calculation is then tepeated to advance another finite
interval in time.

The calculation for any compartment, except the first and the last one,
proceeds as follows. ' '
The volumetric heat content and the temperature of the Nth compart-
ment are given by VHTC (N) and TEMP (N), respectively (Fig. 1).
At any instant of time, the temperature in each compartment may be
calculated by dividing the yolumetric heat content by the yolumetric
heat capacity (VHCAP) times TCOM. L
The flow from compartment (N-1) to compartment (N) is repre-

sented by the symbol FLOW ¢(N) and may be approximated according
to Eqn (1.1) with . '

FLOW(N) = (TEMP(N-1) - TEMP(N)) x
COND/TCOM. S

- COND is the heat conductivity, and TCOM the distance between the-

centres of the two compartments. This equation is only correct for
infinite small compartments, but js applied here to compartments of
 finite size. The net flow into the Nih compartment is now

NFLOWN) = FLOW(N) - FLOM(N+1)



TMPS

I lFLOWH)
TCOM
N-1
TEMP (N-1)
[ h=1
COND. N
VHTCIN) ’
VHCAP \
TEMP{N) FLOW IN) . N
NFLOW({N)
N+1
FLOW(N+1)
JFL@W[ES?

Fig. 1| Geometry of the system and symbols, used in the program for the
flow of heat in a homogeneous soil column. .

As it is assumed that Eqn (1.1) holds for finite distances, it is also
assumed that this net flow rate holds over a finite time interval
DELT (delta time), so that the volumetric heat content of the Nth
compartment a time DELT later is given by o

VHTC (N, 4aen SVHTC(N) #NFLOW(N) % DELT

The. volumetric heat content at the beginning of the experiment must
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be given to start this numerical integration.
The flow rate from the surface into the first compartment is given by

FLOW(1) = (TMPS - TEMP(1)) % COND/
(0.5«TCOM)

in which the temperature of the surface (TMPS) is given by a forcing
function, i.e. a function which states how the temperature changes with
time, independent of the temperature of the underlying soil. The flow
from the last compartment into the insulating layer is

FLOW(26) = 0.

The course of the temperature with depth, 4.8 and 9.6 hours after a_
stepwise change of temperature at the surface from 20 to 10°C, is

_given in Fig. 2, the volumetric heat capacity being 0.25 cal em~3°C™!

and the thermal conductivity of the soil 0.06 cal em™2min=*°C~1.

The points in the graph were obtained from a tabulated solution, given
by Carslaw & Jaeger (1962), which is passed off as an analytical solu-
tion and the open circles were obtained by dividing the column of
S0cminto 25 layers of 2cm each, advancing time with intervals of about

<

ZOJ ' . 4.8 hours

‘temperature ’ e O =796 hours

18+ « analyticat

& simulgtion

164
T4+

124

1o

depth
4 B 2 15 2'0 "2 28 3z 35 40 em

F1g 2] Temperature distribution in a proﬁ]e, 48 and 9.6 hours after a
sudden drop from 20° to 10°C at the surface.
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10 minutes. The cyclic variation of the temperature at a depth of
3 and 9 cm generated by a cyclic variation at the surface with a period
of 24 hours and an amplitude of 10°C is given in Fig. 3. The crosses.
were obtained from an analytical solution, discussed by Van Wijk
(1963) and the open circles were obtained by the above mentioned
numerical method. ' o
In both cases there is a good agreement between the numerical and
analytical solution (in fact, both solutions differ. only at the fourth
digit) and this shows that the numerical method used here is fuily
acceptable. A numerical solution would not have any advantages,
if it only gave answers that could be obtained analytically, However,
it will be shown that it can also be used to calculate the course of
temperature in the soil in a much more complicated situation: a
problem where the conductivity and the volumetric heat capacity of
the soil vary with depth and where the temperature at the surface is
governed by the balance between incoming global radiation, outgoing

feled of

—  x=0Qecm(surface}
a—-  X=3em
-—w  X=Scm

h

temperature

= ahalytical *
- 25k O s=imulation

e,
[ N ®
“a.
15 ,
0\.
T
e ~.
L 8 Al
TIME
105 1 1 I i | 1
280 300 320 340 ise 3.80 qys,

Fig. 3| Temperature variation during one day, at 3 and 9cm depth,
generated by the given sinusoidal variation at the surface.



long wave radiation and exchange of heat with the air and the under-
lying soil.

Before this is done, it is at first necessary to show how the simple
numetical calculation, discussed in this section, is actually carried out.

2.2 A CSMP program for the heat flow in a uniform soil

The problem of heat flow will be programmed in the Continuous
System Modelling Program to show the suitability of this simulation
language for solving distributive svstems, The CSMP functions and
constructions that are used will be eXplained in the text in a way that
should be intelligible without a CSMP Manual, although it is an
advantage to have one at hand.

In CSMP programs, an initial and dynamic section are distinguishable.
The equations that are needed to advance in time or to update the
system at every time interval are in the dynamic section and the
equations in the initial section define the invariable geometry of the
system and provide the initial values.

The initial section begins with the lines:

INITIAL
NOSORT

The ‘nosort’ line means that the subsequent cards are given in order of
computation, i.e. as an algorithm. In situations where arrays are
handled, it is not possible to make use of the sorting capability of
C SMP. This capability is used in Section 6.2 and in the paper on the

simulation of the water flow in the soil-plant system by Lambert &
Penning de Vries (1971).
The line:

PARAMETER TCOM = 2., COND = 86.4,
VHCAP = 0.25, ITMP = 20.

indicates that the thickness of the compartment is 2 cm, the thermal
conductivity 86.4 cal cem™'day™*°C~, the volumetric heat capacity
0.25 cal em ™3 °C™* and the initial temperature of the soil column 20°C.

Such comments may be entered on lines which start with an asterisk (*
in the first column.



The line:
FIXED I

states-that there is a counter I which is used to perform the necessary
calculations for all the compartments. This counter is at first used to
obtain the initial volumetric heat contents for 25 compartments with
the three FORTRAN statements:

P61 1 = 1,25 :
IVHTC(I) = ITMP*TCOM*xVHCAP
17 CONTINUE .

In this way, IVHTC (1) is calculated for the first compartment,

then 1 is increased by one and IVHTC (2) for thé second compart-
ment is calculated and so on, until IVHTC (25} for the last
compartment. In this case 25 compartments are introduced which
means, that the column is 25x2 =50 cm. :

This is the end of the initial section. sty
The dynamic section, in which all statements are given, that are
necessary to calculate the flow rates at each time interval and to
perform the integration, begins with:

DYNAMIC
NOSORT

The temperature of the 25 compartments is calculated from the
volumetric heat content with:

DO 2 1 =1,25

TEMP(IY = VHTC(I)/{(TCOMxVHCAP)

2 CONTINUE

The sinusoidal temperature variation at the surface is given by

TMPS = TAV + TAMPL % SIN (6.2832xTIME)
PARAMETER TAV=20., TAMPL=10.

in which TAYV is the average temperature and TAMP L. the amplitude
of the temperature wave, both in degrees centigrade. The expression
SIN calculates the sine of the argument, TIME is expressed in the
same time units as are used for the transportcoefficient, i.e. days and



CINITIAL

NOSORT
PARAME TER TCOM = 2++¢COND = 86+4«VHCAP = Cu25+ITMP = 20e
FIXED 1

DG 1 1 = 14295
CUIVHTEUL) = 1TMPATCOMMVHCAR
1 CONTINUE .
DYNAMIC
NOSORT
DO 2 § = 1425 .
TEMR([} = VHTC(1)/{TCOM*VHCAP}

2 CONTINVE .
TMPS = TAV4TAMPLESINIS.2B32*TIME)
PARAME TER TAV = 200 TAMPL = 10,

FLOW(LY = (TMPS=TEMP({ 1)) #COND/{QsS#TCOMS
BO 3 [ = 2425
FLOWIT) = {TEMP(I~11-TEMP(1})*COND/TCOM
"3 CONTINUE
: FLOWI26) = Qs
DO a1 = 1425
NFLOWEDY & FLOW(I)=FLOW{I+1}

4 CONTINUE .
VHTCL = INTGRLIIVHTC! +NFLOWI1 251}

/- EQUEVALENCE (IVHTCL+IVHTCUE) ) v (VHTCTeVHTC U1 30 [NFLOWL sNFLOWIE L)}

Fd REAL, TEMP 25 s NFLOWIZ2S) o FLOWI28) ¢ IVHTC 25+ VHTC{ 25)

METHOD RECT

) : T1 = TEMP(1)

FRTPLT - TI(10e130Ce)

o 15 = TEME(S)

PRTALT THEI104¢304) h
T15 = TEMR{15) -

PRTPLT. TIS(1009304)

TIMER FENTIM = 444DELT = 0.005s OUTDEL = QeDA

END

PARAMETER - « TAV = 10.+TAMPL = 0Os

EnD :

sTOR

Fig.4a| CSMP program for the flow of heat in a homogeneous soil column,
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Fig. 4b| Part of the generated print-plot {PRTPLT) output of the
CSMP program from Fig. 4a. : . &
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is automatically tracked by C SMP. The flow into the first compartment
is now given by

FLOW(1) = (TMPS-TEMP(1))*COND/(0.5*TCOM)

and the flow into the following 24 compartments is calculated with

po 3 1 = 2,25

FLOWCI) = (TEMP(I-1)~TEMP(I))%COND/TCOM
3 CONTINUE

The heat flow out of the 25th compartment into the insulating layer is
FLOW(26) = 0.

The net flow of heat into each compartment is obtained with

DO 4 I = 1,25 :
NFLOW(I) = FLOWCI)-FLOW(I+1)
4 CONTINUE '

The 25 integrations to keep track of the volumetric heat contents of the
compartments are at last carried out by the formal CSMP function:

“VHTCT = INTGRLCIVHTC1, NFLOW1,25)

The third argument of the integial function indicates that there are
25 integrals, to keep track of the volumetric heat content of the
25 compartments. These volumetric heat contents are stored in an
arzay VHTC. It is stressed that this array is used at the beginning of
the dynamic section to calculate the temperature of each compartment
at the current time. The first argument of the integral function states
_that the initial value of the volumetric heat content is given by an
array IVHTC and the second argument states that the flow rate into
the integral is given by the array NF LOW. The integration is always
done by CSMP in semi-parallel fashion. This means that at the
current time alf flow rates are calculated from the state of the system,
and that after this o/l integrations are performed. - '

Now the arrays must be ‘declared’ and ‘located’.

This is done as follows:

-/ REAL TEMP(25), FLOW(26), NFLOW(25)
CVHTCC25), IVATC(25) ! e

~/ EQUIVALENCE (IVHTC1,IVHTC(1)), (VHTCI
. VRTCC1)), (NFLOWT, NFLOKC1)) ' '

12



The two statements beginning with a slash (/) in the first column
organise the memory of the computer and one should not attempt to
understand them at an early stage of the game without some reason-
able knowledge of FORTRAN. S
If the integration is to be carried out according to the simple rectlinear
method, as is suggested in the previous section, the line:

METHOD RECT

is entered. However, it will appear that it is better to use one of the

more sophisticated methods of integration that are availablein CSMP.
To obtain a graph of the temperature of the first, fifth and fifteenth
compariment the lines:

T1 = TEMP(1)
PRTPLT T1 (10.,30.)
T5 = TEMP(5)

PRTPLT T5 ¢10.,30.)
T15 = TEMP (15)
PRTPLT T15(10.,30.)

have to be entered. The numbers in brackets on the PRinTPLoT
cards provide the scale of the dependent variable. CSMP chooses its
own scale if these figures are not provided. The independent variable
is time, provided by CSMP.

The necessary line:

TIMER FINTIM=4., DELT=0.005, OUTDEL=0.04

means that the calculation has to be done for 4 days (FINTIM),
that the machine has to advance in time intervals of 0.005day (DELT)
and that the dependent variable of the plots is given in intervals of
0.04 day (OUTDEL). :
Now the program and the first run are ended by the lme

END _ _ T T
By introducing here the statement: -
PARAMETER TAV 10., TAMPL= 0

the calculation is repeated with these parameter values. These indicate
that at time zero the temperature of the surface is decreased from
20°C to 10°C and maintained there, as may be verified by inspection

13



of the expression for the temperature of the surface (TMPS) in the
program,

This run is also concluded with
END

. and if at this stage no more calculations are necessary, the whole
. program is to be completed by the word:

STOP

A reproduction of the prograrﬂ as punched for cards and a part of the
output is given in Figs 4a and 4b (p. 10 and 11). :

2.3 Time constant and methods of integration

The system of integration, used in the previous example, is the simplest
method of centralized, forward integration. At any instant of time, the
volumetric heat contents of ail boxes and the boundary conditions
at the top and bottom of the soil column are given. These are usefl
to calculate, independently of cach other, the net flow rates at this
instant of time, which are then used to update all volumetric heat
contents over a small time interval. In this way, the integration is
done in a semi-parallel fashion. Since all flow rates are calculated
independently of each other, this _system_of explicit integration may
be extended conveniently to much more complicated systems, as will
be shown later. Unfortunately the time intervals are shorter than with
_implicit methods, in which actual changes over a certain time interval
are calculated by matrix methods, However, this disadvantage is often
more than offset by the simplicity of programming and the fewer
actual arithmetical operations at each step,
In the example a time interval (DE LT) of 0.005 days was used. The
calculation may oscillate with larger time intervals and computer time
- iswasted with smaller time intervals, The simplest way to find the correct
time interval is to run the system with values for DELT a factor 2-10
apart and to make a graph of the temperature in one of the top com-

Partments against DELT as is dope in Fig. 5. A sharp transition zone
can usually be seen between the range where the system oscillates and
the correct range, = . - . L _
A first estimate of PE LT may be obtained by considering the heat -
content of the first compartment and the rate of change at the onset

14
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Fig. 5] The temperature of the first compartment at 0.02 day, calculated
with different time intervals (DELT).

. of the temperature drop. There is an oscillation when during the first
time interval so much heat is taken out of the first compartment that
its temperature drops below the new temperature of the surface. Ina
simulation, where the temperature at the surface suddenly drops with

- 'a value DTMP, the maximum heat content that could be removed
from the first compartment equals

MHTCT1 DTMP*VHCAP*TCOM caIcm -2
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" The flow rate at time zero out of the first compartment equals
FLOW1 = DTMP*COND/(0.5%TCOM) calem™?day™!

The time constant is now found by dividing the maximum heat content
to be removed by this flow rate, i.e.:

TMCNST = MHTCT1/FLOW1 = 0.5%TCOM?x
VHCAP/COND

In the previous example, the volumetric heat capacity was 0.25 cal
cm™>°C™*, the transport coefficient 86.4 cal cm™! day~!°C~* and the
thickness of the first compartment 2 crn. This means that the time cons-
" tant equals 0.5%2 x 0.25/86.4 or a little over five thousandth of a day.
" A value of about } of this time constant gives a time interval (DELT),
" which is usually on the safe side. - : i
The time constant increases 4-fold with a twofold increase in thickness
of the compartments. Hence, it is advantageous to divide the column
up into as large compartments as possible. Indeed, compartments that
are twice as large reduce the computation time 2 x 4-fold, because the
time interval is quadrupled and the number of integrals halved. The
importance of choosing proper compartment sizes is discussed in more
detail in Section 6.4. R
For simulation programs of more complicated systems it may be
difficult to judge which integral has the smallest time constant. Mort.t-
over the time constant may vary considerably with time. Hence, it is
often more convenient to use methods of integration that evaluate
their own time interval according to an error criterion. These methods
also have an advantage: the rates are not only determined by the
current values of the integrals, but their change with time is also taken
_into account, . N
The Milue fifth order predictor-corrector tethod, available in CSMP,
is often a good choice for distributive systems, This method is described
in detail by Milne (1960), but to give some idea of the mathematics
involved, the actual procedure of computation, as described in the
CSMP Manual, will be given here. o
At first the value of the integral (¥) for the current time (¢) plus a
finite time interval (At) is predicted by means of :

At ' R
?(s.x,‘—s_.x,_m+4.x._m— t-3a0)

._YP.H-A:"—" Y- +



in which X;, X,_,,, X,_,,, and X,_;,, are the rates of change of the
integral at the current time and at time Az, 2. Az and 3. Az in the past.
With the predicted values of this integral i.e. YP,,,, and all other
integrals of the problem involved, the rate of change at the time £+ Az
(e X,ppn)is predicted. This prediction is used to calculate a corrector
for the value of the integral at time £+ At with:

YCrra = H(Hi+7.Yop) +

. Then the actual value of Y, ,, is obtained by a wexghted average of
predictor and corrector, according to;

}’f'FAt ={(.96116 * YC'+A'+0.03884 * Y'Pt'l-At

The time interval is adjusted at such a small value that for an absolute
value of YC greater than 1:

0.04|YC—YP| _ |
R x |YC|

and for an absolute value of ¥C smaller or equal to 1:

0.04[YC~-YP| <t
R

The value of R is set by CSMP at 0.0001, but may be specified by the
user at some other value. If the predicted and corrected values of one
of the integrals are so far apart that the above criteria are not met,
CSMP decreases the time interval with a factor two and tries again.
For very rapid changes, it may be impossible to find a small enough
time interval to satisfy the error criterion because the numbers inadigital
machine are of finite length. Then the computation is terminated.
If on the other hand, the error criterion is met, C SMP increases the
next time interval twofold.

Another integration routine with variable tu:ne interval prov:ded by :
C SMP is based on the fourth order method of Runge-Kutta (RKS).
Here the new values of the integrals are not based on past values of the

17

-



rates but on the present rate and three rates between fand a maximup:n
At in the future, This method, also described by Milne (1960) and in
the Manual, may be the most reliable, but often_takes considerable
computation time.

By inserting the line:

METHOD MILNE
or

METHOD RKS
instead of the line:

METHOD RECT

in the simulation program, CSMP chooses the indicated integration
method.

Other methods of integration: the Adams second order, the Simpson,
the trapezoidal and the Runge Kutta fourth order method with fixed
time interval, are also provided by CSMP, described in the Manual,

and discussed more thoroughly by Milne. They are of little additional
use for solving distributive systems.

—

24 Influence of a sand cover on temperature regime of a peat soil

De Vries & de Wit (1954) analysed the influence of a layer of sand on

8 peat soil on the daily temperature amplitude at the soil surface and

thus on decreasing the risk of night-frosts. For an analytical solution,

it is necessary to assume that both the thermal properties of the sand

and the peat are a constant function of depth and that the exchange

of energy between the soil and its surroundings varied sinusoidal with

time and is independent of the temperature amplitude at the soil

surface. However, the sensible heat exchange between the surface of
the soil and the air and the long wave radiation loss depend to a

considerable extent on the temperature at the surface, so that the
nigh_tly drop in temperature in its turn may be affected. Since the risk
of night-frost depends on small differences in temperature, it may be
worthwhile

to anal_yse the problem by a simulation program in which
these effects are included, and which may account for changing
- Pproperties of the soil with depth, .. ' ' |

The main features of such a program are given here as an illustration
18 |



of how more complicated problems are handled by simulation, Since
the transport of water will be discussed in a later section, the influence
of evaporation and the resulting water movement in the soil on the
heat budget has not been in¢luded in the analyses at this stage.

The soil surface exchanges heat with its surroundings in various ways.
Depending on conditions, it gains or loses heat from the underlying
soil and gains heat generated by the absorption of the radiation from
sun and sky. It also loses heat by long wave radiation towards the sky
and by sensible heat exchange with the adjacent air.

The sensible heat exchange of the surface is proportional to the differ-
ence in temperature between the soil surface and the air:

SHL = HEC* (TMPS~TMPA) calcm™?hr~*!

The proportionality factor is the heat exchange coefficient. Penman
(1948) used the expression:

HEC = 0.42% (1+0.5%WS) calcm™2hr='°C"1!

to estimate the heat exchange coefficient. Windspeed in m sec™* and
temperature of the air are measured at screen height.

The long wave radiation loss may be estimated by the expression of
Brunt (1932): '

LWR = 4.91%10 % (273+TMPS)*% (0.56-0.092,/
VPAY%(0.10+0.9%xFBRGT) calcm™%hr™!

in which VPA is the vapour pressure of the air in mm Hg at screen
height and FBRGT is the fraction of the sky that is bright. The
numerical values in this semi-experimental formula are obtained from
an analysis of experimental data assuming that the temperature of the
air is measured close to the soil surface, Without a critical analysis, the
formula is used here with the temperature of the soil surface and
applied for shorter periods of time than intended. The short wave
radiation is absorbed in the top few millimeters of the soil. Since we
are interested in the temperature of the surface, the top compartment
cannot be larger than about 0.5cm. As the daily fluctuation of
temperature decreases with increasing depth, the size of the compart-
ments may be increased as depth increases. By taking a thickness of *
0.5,4x 1., 1.5 and 3 x 2.cm for the first nine compartments, the depth
is well below the layer of sand. From then on the size of the compart-
ments may be increased by 1 c¢m, so that with a total of 20 compart-
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ments a depth of 100 cm below the surface is reached. The daily
fluctuation of temperature is negligible at this depth.

To avoid introduction of evaporation and condensation at this stage,
it is assumed that the air and the top 6 cm of soil are dry, be it peat or
sand, and that from thereon the moisture content of the soil increases
gradually until at 100 cm saturation is reached. The data for the
thermal conductivity and volumetric heat capacity of the sand and peat
at different moisture contents are taken from de Vries & de Wit {1954).
The transfer of heat due to flow of water in the soil is not taken
into account in this stage.

The programming is again straightforward.

INITIAL
NOSORT

At first, the thicknesses of the successive compartments are given in
the form of a table:

STORAGE TCOM(20)
TCOM(1-20) = 0.5,4%1.,1.5,3%2.,3.,4.,5.,
6.,7.,8.,9.,10.,11.,12.,13.

The STORAGE statement is necessary to reserve memory space for
tabled variables. Then a counter is defined to use in the calculation
with

FIXED 1

and the depth of the centre of each compartment below the surface

and the distance between the centres of two consecutive compartments
are calculated with

DEPTH(1) = 0.5%xTCOM(T)
DIST(1) = 0.5%TCOM(1)
and

DO 11 = 2,20

DISTC(I) = 0.5%#(TCOMCI)+TCOMCI-1))
DEPTH(I) = DEPTH(I~1) + DIST (I)
1 CONTINUE _ L

The FORTRAN output capabili | ;
of this calculation: pability may be used to print the answers
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WRITE(6,100) DEPTH
1700 FORMAT (1Hb,5HDEPTH//(10F10.4))

The number 6 refers to the tape, which is used by the machine and
the number 100 specifies that the FORMAT statement with number
100 organizes the layout of the writing. In this format, 1H b(lank),
indicates that a new page is taken, then the title is written with
SHDEPTH. The two slashes (/ /) introduce two blank lines, before
the depths of the successive compartments are written according to
10 F10. 4, i.e. with a maximum of 10 in a row, reserving ten spaces
for the number of which four are after the decimal point.
' The generated output is given in Fig. 6, (p. 23) as an example.

The value of the conductivity dependent on depth is introduced as a
tabulated function in which the first of each pair of numbers is the
independent variable (depth in cm) and the second of each pair the
dependent variable {conductivity in cal cm~*hr~*°C~!), as follows:

FUNCTION CONTBL = (0.,0.288),(6.,0.288),
(8.,2.484),010.,2.498),(12.,2.506),
(14.,2.513),¢18.,2.527),(22.,2.538),
(28.,2.545),(34.,2.592),(42.,2.657),
(50.,2.7),(60.,2.765),(70.,3.132),
(80.,3.218),(90.,4.104),€100.,4.284)

Similary the value of the volumetric heat capacity in cal em~™3°C~*,
dependent on depth in cm, is given by

FUNCTION VHCPTB = (0.,.06),(6.,.06),
(8.,.57),¢10.,.573),012.,.575),
(14.,.577),(18.,.58),(22.,.583),
(28.,.585),(364.,.6),42.,.615),
(50.,.625),(60.,.64),(70.,.72),
(80.,.74),(90.,.90),€(100.,.97)

These two tabulated functions specify possible therma! properties of
- a peat soil without sand cover and with a moisture content that from
6cm on increases with depth. The values of the conductivity and
volumetric heat capacity at the centre of each compartmcnt are now

calculated as follows:
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o 21 =1,20

COND(I) = AFGEN(CONTBL,DEPTH(I))
VHCAP(I) = AFGEN(VHCPTB,DEPTH(I))
2 CONTINUE

The AFGEN function is a CSMP function, which interpolates linearly
in the tabulated function defined by the first name in the argument,
using the second name in the argument as the independent variable.
The average conductivity from the centre of one compartment to the
centre of the following one is calculated with ‘

DO 3 I = 2,20
AVCND(I) = (TCOM(I-1)+TCOMCI))/

(TCOM(I¥1)/COND(I-1)+TCOM(I)/COND(I)),"‘
3 CONTINUE

Large equations, written in FORTRAN, need some deciphering: the
averaging of the conductivities is done here, in the same way as for
electrical conductivities. Instead of averaging the conductivities
between the compartments, it would have been possible to use a table
with conductivities at the boundary of each compartment. It is a good
exercise to write the program according to this suggestion.

The initial temperature of the 20 compartments is again given in a
table:

STORAGE ITMP(20)
TABLE ITMP(1-20) = 20 % 4.5

This means that all 20 compartments have the same initial temperature
fO_I' Wwhich the average air temperature is choosen as a first guess. The
lnitial volumetric heat content of the compartments is now obtained
with

DO 4 I = 1,20 '

IVHTC(I) = ITMPCI)*VHCAPCI)%TCOM(I)
4 CONTINUE |

Here the initialization is complete, so that the program may be

continued with the dynamic section: .
DYNAMIC ' - -
NOSORT | o |

The temperatures of the 20 compartments are agaih calculated with
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po 51 =1,20
TMP(I) = VHTC(I)/(TCOM(I)*VHCAP(I))
5 CONTINUE

and the flow of heat from one compartment to the next one with

DO 61 = 2,20

FLOWCI) = (TMPC(I-1)-TMP(I))*AVCND(I}/
DIST(I) d
6 CONTINUE

The flow out of the 20th compartment is again given by
FLOW(21) = 0.

because temperature variations at this depth are negligible.

In the next part of the program, the exchange of heat between the first
compartment and the atmosphere is considered. For this purpose the
short wave radiation, the long wave radiation and the sensible heat
exchange have to be calculated. _

The short wave radiation is given as a tabulated function, a bright
day being choosen at the end of April in the Netherlands:

FUNCTION SWRTB = (0.,0.),(5.,0.),
(6.,3.32),(7.,10.78),(8.,14.93),
(9.,25.71),10.,39.81),(11.,52.25),
(12.,48.93),013.,51.42),(14.,31.51),
(15.,27.37),016.,18.24),€17.,8.29),
(18.,.83),(19.,0.),(24.,0.)

with the independent variable in hours and the dependent variable
in calem™?hr™*,

In order to allow time for the development of a stationary situation,
it may be necessary to operate the simulation program for more than
one day. To avoid introducing experimental data for a longer period,

~ it is assumed that the chosen day repeats itself. For this purpose the

tabulated function is not read with time itself, but with DTIME,
defined as: :

DTIME = AMOD(TIME,?24.)

This function makes at the first day DTIME equal to TIM E, at the
second day equal to TIME-24, at the third day equal to TIME-48,
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and so on, hence introduces the required repetition. Now the short
wave radiation at any time of the day is obtained with.

SWR = AFGEN(SHWRTB,DTIME)

Some radiation is reflected, so that the absorbed short wave radiation
equals

ASWR = ABSCxSWR

in which ABSC, the absorption coefficient for short wave radiation,
is given by

PARAMETER ABSC = 0.9

for dark peat soils,

For the calculation of the long wave radiation, the fraction of the sky
that is bright and the vapour pressure of the air at screen height
(in mm Hg) are needed. Under conditions where night-frosts occur,
the daily variation of both weather parameters may be small, so that
. these are introduced as constants with .

PARAMETER VPA = 5., FBRGT = 0.95

Hence, it is supposed that the air is dry and the sky is clear: conditions
that favour large temperature fluctuations at the soil surface. The long
wave radiation is now calculated with :

LWR = 4_9TE-9% (TMPS+273) % 4%
(.56~.092%SQRT(VPA)) % (.10+0.9%FBRGT)

expressed in cal cm~?hr~*, E-9 standing for 10~°, and SQRT being
a FORTRAN function, that provides the square root of the argument.
To calculate the sensible heat loss, the heat exchange coeflicient is
needed, which depends on the wind speed. The assumption that the
wind speed during the day hours is 3m s~ and during the night
0.5m s™1! is again introduced with a tabulated function;

FUNCTION WSTBL = (0.,0.5),(5.,0.5),
(5.1,3.0),¢19.,3.0),€19.1,0.5), (24.,0.5)

in hours and msec™!, respectively. This table is read again with
. DTIME, defined before: : :

WS = AFGEN(WSTBL,DTIME)
' 25



The heat exchange coefficient is now given with
HEC = 0.42%(1+0.5%WS) incalem™2hr~1°C™!

Now, the temperature of the air is tabulated, for a bright day at the
end of April:

FUNCTION TMPATB = (0.,1.3),(1.,1.9),
(2.,0.7),¢3.,-0.3),¢4.,-0.1),(5.,0.5),
6.,0.7),¢(7.,2.0),¢8.,2.8),(9.,3.5),
(10.,6.2),C11.,5.5,¢12.,7.2),(13.,8.2),
(14.,8.8),015.,9.0),016.,9.13,¢17.,9.0),
(18.,8.0),¢19.,6.5),(20.,4.8),(21.,3.92,
(22.,3.8),(23.,3.0),(24.,1.3).

in hours and °C, respectively. This table is read with
TMPA = AFGEN(TMPATB,DTIME)

At last the sensible heat loss can be calculated with
SHL = (TMP(1)-TMPA) xHEC

in which the temperature of the first thin compartment is substituted
for the temperature at the surface,

The flow of heat from the atmosphere towards the soil is then given by
FLOW(1) = ASWR-SHL-LUWR

We may proceed with calculating the net flow of heat into each com-
partment with

DO 71 =1,20

NFLWCI) = FLOW(ID-FLOWCI+1)
7 CONTINUE

The 20 integrations are finally carried out with the formal {SMP
function:

VHTC1 = INTGRLCIVHTC1,NFLW1,20)
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Now the arrays used have to be “declared’ and ‘located” with

/ REAL DEPTH(20), COND(20),VHCAP(20),
AVCND(20), IVHTC(20), TMP(20),

/ REAL FLOW(21), NFLW(20), VHTC(20),

DIST(20). ‘

/ EQUIVALENCE(VHTC1,VHTC(1)),(IVHTC1,
IVHTCC1)), (NFLWT ,NFLW(1)),

This is also the time to check whether all units of the variables are
consistent,

The mtegratmn is done by the methed of Milne and the s:mulatlon
run is at first, extended over a period of four days, answers being
needed every hour,; This is achieved with

METHOD. MILNE
TIMER FINTIM=96., OUTDEL=1.

It should be noted that it is unnecessary to define the size of the time
interval, when Milne’s method is used for the integrations.

Since the temperature at the surface is of main interest, this tempera-
ture is plotted with

T1 = TMP(1)
PRTPLT T1

The scale is not specified, because the range is not known,
The temperature of the other 20 compartments may be printed by
using the FORTRAN capability for printing arrays. If the PRINT
routine of CSMP is used, which has the advantage of an organised
layout, it is necessary to ‘undimensionalize’ the temperature with the
statements: : -

T2 = TMP(2)
T3 = THP(3)

720 = TMP(20) -

and then to sﬁecify: S L S .
PRINT T1, T2, T3, «uu-. teenanaen ., T20.



Printing is then carried out at hourly intervals as specified by OUTDEL.
An example of the layout is given in Fig. 7 {p. 23), where it may be
noted that the time, provided by CSMP, is also printed.

Since some other runs have to be made, it is convenient to add title cards,
the text of which is repeated on all pages with printed output:

TITLE HEAT FLOW IN LAYERED SOILS

TITLE WHOLE PROFILE CONSISTS OF
PEAT, ABSC = 0.9

This is then the
END
of the program and of the first run.

Other runs may be made: when the whole profile or the first 6, or the
first 12 cm of the profile consists of sand and for various absorption
coefficients at the surface. For this purpose, functions of the thermal

properties of the profile have then to be redefined, and new title cards
are added:

TITLE WHOLE PROFILE CONSISTS OF SAND,
ABSC = 0.9

FUNCTION CONTBL = (0.,2.160),
(5.9,2.160),(6.1,12.6) ,(100.,12.6)
FUNCTION VHCPTB = (0.,.27),(5.9,.27),

(6.1,.38),(100.,.38)
END

TITLE FIRST 6 CM OF PROFILE SAND,
FURTHER ON PEAT, ABSC = 0.9

FUNCTION CONTBL = (0.,2.160),
(5.9,2.160),(6.1,2.484),(8.,2.484), ...
FUNCTION VHCPTB = (0.,.27),(5.9,.27),
(6.1,.57) ,(8.,.57),

and so on, as in the tables for peat.
END

It may.be prudent tb. simulate also the influence of a smaller absorption.
coegicxent of the soil surface, which consists now of lighter coloured
sand: . . :
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Fig. 8] Part of the output, generated with the print-plot {(PRTP LT)

routine.

PARAMETER ABSC

END

0.

6

TITLE FIRST 12 CM OF PROFILE SAND,

FURTHER ON
0.6
FUNCTION VHCPTB

ABSC

(12.1,.575),
FUNCTION CONTBL

PEAT,

- =

FIRST 6 CM DRY,

(0.,.27),4€6.,.27),
(6.1.,.3.35),(10.,.380),0(11.9.,.380),

(0.,2.160),(5.9,2.160),

(6.1,12.6),(8.,12.6>,(10.,12.6),
(11.9,12.6),(12.1,2.506), .

and so on, as in the tables for peat.
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END

TITLE FIRST 12 CM OF PROFILE SAND,
FURTHER ON PEAT, ABSC = 0.9
PARAMETER ABSC = 0.9

END

5TOP

A print-plotted output is reproduced in Fig. 8. In Fig. 9 the temperature
of the first compartment of 0.5 cm is given for the fourth day and for
all profiles. It appears that the layer of sand, considerably reduces the
temperature drop at night, mainly because of a_higher conductivity
and volumetric heat capacity than peat. The effect is still greater when
black sand is used, as is illustrated by the result of a run with 12¢m
sand and an absorption coefficient of 0.9. The heat flow into the soil
during the day and out of the soil during the night for the profiles is
given in Fig. 10, In accordance with Fig. 9 for the temperature, it
appears that the heat exchange with the underlying soil is much higher
on the sand than on the peat soil.

It is impossible to find an analytical solution for the problem which has
been solved here in a very elementary way. It is, therefore, also impos-
sible to check the solution, except by experiments. This has been done
in another situation by Wierenga & de Wit (1970), who also considered
the influence of temperature on the thermal conductivity of the soil,
to account for heat transfer in the vapour phase.

In general, common sense and the knowledge that in more simple
situations correct answers are_obtained must give confidence in the
results. :

L
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3 Transport of a salt

3.1 Basic equations

Saline soils are often reclaimed by keeping a layer of fresh water on
top of the soil. In situations where water does not drain to deeper Iayer§,
the salt is removed from the soil by diffusion to this fresh water. This
diffusion process is similar to the diffusion of heat into the soil and may
be simulated in principle with the heat flow program of Section 2.2, th.e
proper values for the diffusion characteristics of the main salt in the soil
and the proper initial conditions being substituted.

The diffusion coefficient (DIF) is expressed in cm? day~! and the
concentration (CONC) in mmol cm ™3, 50 that, if the gradient is in
mmol cm™* em ™, the rate of diffusion is in mmol cm~2 day™ . The
diffusion coefficient in soil is less than in pure water for two reasons.
Firstly, art of the soil volume is occupied by water and diffusion.
is restricted to this part, Secondly, the water-filled pores in the soil are -
not straight capillaries in the vertical direction, but form a Iabyrintl},
so that the diffusion length between two surfaces is longer than their
distance apart. To obtain the diffusion coefficient in the soil, the
coefficient in water must be multiplied by the water content (WC) and
the labyrinth factor (LAB). The water content is expressed in em?®
water per cm? soil, and the labyrinth factor is dimensionless\ This
labyrinth factor depends on the water content. So little is known about
- this factor, that it is enerally assumed to be a constant less than one.
The rise in temperature of a so]1 compariment is found by dividing the
net flow of heat by the thickness of the compartment and the specific
heat, Likewise the rise in concentration of the salt in a compartment is
found by dividing the net flow of salt by the thickness and the water
content of the compartment.
The flow by diffusion into co
in Fig. 11 is

mpartment I, the geometry being given
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prELOW(D) = SONCLIZDI-CONCCD) o,

] TCOM
LAB % DIF (3.1

if the soil is uniform and divided into equal compartments with thick-
ness TCOM. The concentration rise due to this flow into the compart-

VOLFLW
SALTUP
]

CIRFLW=e1 FLOW{N) ‘

]
1]

+
DEPTHII)

-

APDIF (1}

RFLOW(I) THCKNS
14
FLOW{T)

FLOW{Z+1}

F'I.!OWIN 1)
SALTLW

Fig. 11| Geometry of the system and symbols used in the program for the
vertical transport of salt.

33°



ment over the finite time interval DELT is

DFFLOW
= — % 4 pELT ={coNC(I-1)-
ACON = Tcomewc * (
. DELT |
LAB e, 3.2
CONC(I))* LAB % DIF o ¢.2)

The water content does not enter the final expression. S
The time interval and the thickness of the compartments occur only in
the combination DELT/ T COM?, which was also encountered during
the derivation of the time constant of these distributive systems in
Section 2.3, Therefore a drop in concentration at depth x and time ¢,
will also occur at depth #.x at time #%.¢ and a simulation program,
which gives correct answers after a short time at shallow depths, will
also give correct answers after a long time at a great depth.

This conclusion is not valid when the salt is also transported by mass -
-flow of water in the profile. A mass flow term has then to be added to
the expression for the diffusion flow. .

The mass flowin the (I-1) th compartmentis CONC (I=1) *FLRW
and in the Ith compartment CONC (I) *FLRW, in which the flow
rate of the water (FLRW) is positive or negative, depending on its
direction. The mass flow (MFLOW (I)) from the middle of the
(I-1) th compartment to the middle of the I th compartment may be
obtained by averaging the flow in both compartments, i.e.:

- MFLOW(I) = FLRWx (CONCC(I-1)+CONCC(I))/2 (3.3)

This expression does not contain the thickness of the compartments
a5 a parameter, so that the time and length variable do not occur in the
combination DELT/TCOM? and the system is no longer invariant to
linear changes in time, combined with quadratic changes in depth.

The el_fect of the water flowis not completely accounted for by the above
€quations, because the pores in the soil forma labyrinth with channels of
Various size and direction. The water moves fast in the wide channels
and with it the salt in these channels and slowly in the narrow channels
and more o less dead spaces. This disperses the salt in the direction of
. € movement of tl'.ie water. The dispersion flow is proportional to the
oncentration gradient and the absolute flow rate of water:
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DPFLOW(I) = DISP x |FLRW| *
CONC(I=1)-CONC(I) G.4)

TCOM

When the concentration gradient is expressed in mmdl cm™3cm ™, the
d:spermon flow in mmol cm~2day™! and the absolute flow rate of
water in cm day~!, then the dispersion factor (DISP) has the
unit cm, Aocordmg to Frissel et al. (1970), its value ranges from
about 0.7 for coarse sand to 7 cm for 16ss. With a very small water
flow of 1 cm day™! and a dispersion factor of 3 cm, the product of 3 cm?
day~!is already 10 times larger than the product of diffusion coefficient,
water content and labyrinth factor (1 x 0.5 x 0.6}. Thus, under far the
most conditions the influence of diffusion on the transport of ions is small
compared with dispersion. The influence of both of them may be
again small compared with the influence of mass flow of water.

The above approach seems straightforward, but the introduction of
compartments of finite size to simulate the transport by mass flow may
lead to serious-errors. To show this error a saturated soil is considered
with a sharp boundary between salt and fresh water. It is assumed that
the diffusion coefficient of the salt and the dispersion coefficient of the
soil are negligibly small and that the soil is infiltrated at a constant rate
perpendicular to the sharp front. In this situation the boundary moves
with a velocity equal to the infiltration rate divided by the water
content and does not disperse during the movement, However, if this
situation is simulated by means of compartments of finite size, consi-
derable distortion of the concentration profile occurs, as is illustrated
in Fig. 12. Glueckauf (1955) showed that this distortion is negligible

~whei thig thickness of the compartments is taken smaller then two times
the dispersion factor plus the guotient of the apparent diffusion
coeflicient and the flow rate, i.e. when;

TCOM < 2% (DISP + WC*LAB*DIF/FLRW)

That this is indeed the case is shown in Figs 13 and 14 where analytical
and simulated concentration profiles are compared in two limiting
suuatlons : _ . -
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Fig. 13] Analytlcal and simulated concentration profile in the absence of
dispersion. * .
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Fig. 14| Analytical and simulated odncentration profile in the presence of
dispersion,

3.2 Simulation program for linear system

The simulation program for the diffusion of salt out of a profile is in
principle the same as for the diffusion of heat. However, the possibility
of a stationary flow of water has to be introduced and since this may
be accompanied by a moisture gradient within the profile, it is also
necessary to introduce a variable water content. Moreover, it is
convenient to introduce a regular increase of compariment sizes and to
define in the initial section the number of compartments and the total
depth of the profile, rather than the thickness of the first compartment.
The symbols used in the subsequent program are given in Fig. ll

The program starts again with the initial section: ,

INITIAL
NOSORT

The lines:

FIXED I, N, K
PARAMETER N 13

state that there are counters I and K, to be used in the ‘DO-loops
and that the number of the compartments is 13.
With the line: .
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PARAMETER THCKNS=100., RITCOM=1.2

it is stated that the thickness of the proﬁle to be considered is 100 cm
and the relative geometric increase in compartment size equals 1.2,
According to the formula for the geometric progression, the thickness
of the first compartment may be calculated with

TCOM(1) = (THCKNS» (1.-RITCOM))>/
(1.-RITCOMx%%N) :

and the thickness of the other compartments with

DO 11 = 2,N
TCOM(I) = RITCOM *x TCOM(I-1)
1 CONTINUE

The diffusion distance from the surface to the middle of the first
compartment is now

DIFDC(1) = 0.5xTCOM{1)
and the depth of the first compartment
DEPTH(1) =.DIFD(1)

The diffusion distances from the Ith to the (I-+1)th compartment and
the depth of the I-th compartment are now given by

D021=2N

DIFD(I) = 5*(TCOM(I 1)+TCOMCI))
DEPTH(I) = DEPTH (I-1)+DIFD(I)
2 CONTINUE

The depth should be printed for further inspection with

WRITE(6,100) DEPTH
100 FORMAT (1Hb,5HDEPTH//C10F10.4))

- The diffusion coefficient of NaCl in water is given with
PARAMETER DIF=1.

the units cm*day~!, define both, the leugth and time scale of the
program,

The yvater content of the _successwe compartments is obtained with
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FUNCTION WCTTB=(0.,0.5),(1000.,0.5)
PbO 3 1 = 1,N

WC(I) = AFGENC(WCTTB, DEPTH(I))

3 CONTINUE '

The program is written in such a way that it can be used with only
slight changes for the diffusion in a cylindrical or spherical system.
Under these conditions, the surface area between the compartments
should also be defined. In the present case of linear geometry, this is
done with

K = N+1 .
DO 4 I = 1,K
AREA(I) = 1.
4 CONTINUE

there being one more boundary than compartments. The volume of
water in each compartment is now calculated with

pos51I1=1,N - -

VOLW(I> = 0 5*(AREA(I)+AREA(I+1))*
TCOMCID)«WCC(ID

5 CONTINUE

In cylindrical and spherical systems, the flow rate of water depends
on the distance from the centre. It is therefore convenient not to define
the rate of flow but the volume of flow in ¢cm? per day (for cylinder
and sphere), or cm® per day (per cm?) for the linear case, with

PARAMETER VOLFLW = 3., DIRFLH = 1.

The flow is taken as posmve in the downward dlrectlon Now the
flow rates over the boundaries are obtamed with o :

po 55 1 = 1,K
RFLOWCI) = VOLFLH/AREA(I)
55 CONTINUE

which means for tﬁe linear case that the raté of flow equals the volume '
of flow as the area is 1 cm?®. For the cylindrical and the spherical -
system, the flow rate will decrease with increasing dlstance from the

centre,
The apparent dxﬂ‘usnon coefficient, dmded by the diﬁ'usxon dlstanoe is
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calculated for the boundary between two consecutive compartments
with _
‘PO 61 = 1,N
The depth of each boundary is
DPBR = DEPTH(I)-0.5%*TCOM(I)

and the product of water content and labyrinth factor at each boundary:

WCTLB = AFGEN(WCTTB,DPBR)*AFGEN(LABTB,
DPBR)

FUNCTION LABTB = (0.,0.67),(1000.,0.67)

and the product of dispersion factor and flow rate of the water at
each boundary:

FUNCTION DISPTB = (0.,3.),¢1000.,3.)
DSFW = AFGEN(DISPTB,DPBR)*RFLOW(I)

so that the apparent diffusion coefficient, divided by the diffusion
distance equals :

APDIF(I) = AREACI)* (WCTLB*DIF+DSFW)/
DIFD(I) ' '

6 CONTINUE &*J”“*#-P“”T

The more sophisticated way of averaging as used in the heat flow
program (Section 2.2) could be used here to account for the difference
in thickness of the compartments. However, this is not worth the
trouble because the parameters do not change rapidly with depth and
are anyhow not exactly known. For the flow of the first compartment
to the surface, it is also of little importance whether the parameters
are read at 0.5%DEPTH (1) or at the surface.
~ The amount of salt in each compartment is now initialised with

FUNCTION INTCNT = (0.,0.5),(1000.,0.5)

this being the concentration of sea water in mmol cm™3, dependent
on depth and with : - :

DO71I=1,N |

IAMS(I) = VOLW(I)*AFGENCINTCNT,
PEPTH(I)) :
7 CONTINUE - -
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. The program may be written more concisely, but this does not
improve readability and it is not worth saving the computer time,
Now we may proceed with the dynamic section:

DYNAMIC
NOSORT"

The concentration of salt is calculated f’rom the amount of salt in
each compartment with

DO 81 = 1,N
CONC(I) = AMS(I)/VOLH(I)
8 CONTINUE

and the concentration at the surface is
PARAMETER CONCS = 0.

The flow of salt from the surface into the ﬁrst compartment is
calculated with :

FLOW(1) = APDIF(1)*(CONCS-C@NC(1))+
VOLFLW*DIRFLW » (CONC(1) * CONCS)/2.

The ﬂow over the other boundancs 1s

bo 91 =2, N

FLOW(I) APDIF(I)*(CONC(I 1)- CONC(I))+
VOLFLH*DIRFLH*(CONC(I)+CONC(I 13¥/2.
9 CONTINUE

whereas the flow out of or into the N-th compartment is
FLOWC(N+1) = VOLFLW*DIRFLWxCONC(N)

It is supposed that concentration changes in this compartment are
still negligible. The net flow into the compartments is

po 101 =1,N -
NFLW(I) = FLOH(I) FLOH(I+1)

10 CONTINUE _ .
The mtegratxon is again carried out with
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AMS1 = INTGRLCIAMS1, NFLW1,30)

/ EQUIVALENCE(AMS1,AMS(1}), (IAMS1,
IAMS (1)), (NFLWT,NFLW(1))

/ REAL AMS(30),IAMS{(30) ,NFLW(30)

It is impossible to substitute N for the number of integrals in this
structural CSMP statement and to define N on a parameter card.
Therefore, a sufficiently large number, 30, of integrals is generated to
allow for a variable number of compartments,

The amounts of salt that pass the upper and lower boundary of the
profile are

SALTUP=INTGRL(O.,FLOW(1))
SALTLW=INTGRL(O.,FLOW(N+1))

As before, all arrays which are not used in the integral function, have
to be declared on STORAGE cards, the method of integration has
to be defined, the timer specified and the output organised.

Table 1 gives the results of some runs with zero water flow.

Table I The diffusion rate of salt in mmol cm™2 day™* out of a profile
with an initial salt concentration of 0.5 mmol cm™? as calculated from the
analytical solution and as sirulated for soil profiles with different thick-
nesses, without water flow.

simulated - analytical

THCKNS cm) 22 44 - 88 100
N 3 13 13 13
RITCOM 12 12 12 12
TCOM(1) @m) 05 10 20 875
DELT@ay) = 02 04 0769 3.57
TIME (days) diffusion rates ) _

10 00365 00367 00379 0.0366
aw 00182 00182 00184 0.0183
100 00115 00115 00116 00116 - 00115
200 0.0086 000815 0.00816 0.00816  0.00816

1000 0.00364 0.00364
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A comparison with the analytical solution shows that the simulation
with thin layers and consequently a small time interval gives correct
results after 10 days. Deviations occur after 200 days because by
then the concentration in the last compartment is altered. On the
other hand, the simulation with thick layers gives wrong results in
the early stage, but correct results after 100 days. This was to be
expected from the occurence of the time and depth parameter in the
combination DELT/ T COM?, only.

The simulated concentration profiles after 40 days with a downward
water flow of 0. and 0.5 cm day™! are given in Fig. 15 and the total
amounts of salt removed from the profile after 10, 20 and 40 days
in Table 2. To avoid distortion. the thickness of the compartments
was set equal to two times the dispersion length. As is to be expected,
the salt is only removed from the profile by diffusion if the infiltration
of water in the soil is negligible. If some infiltration ‘occurs, no salt is
removed by diffusion and all measures to improve infilteation have to
be taken to remove any salt at all.

LWOL 0 em.doy?!
i === (VOLFLOW = 05 em.dﬂy"‘ i

menok.&m? : . © 7 TcoMs 3 em .
Q,_‘ . ———— . DF z15 cm

lon i g TiM a B

coneentrat " . PRl 4 crn!?dny" . C,
o . R WC 2 ascmlemcd | F -~
oxd y B LAR :0.67 e
: . -
- . -
0.3 : S : Pt
- . ’0’ :
Iy 4
-
Q.2 ."f
-
.-F"
01 4 e _
o . .
e =3 depth - .
pmtmmm ke e . - . v T ; v
H Iy - 18 zb 24 o] a2 E) £0 44 48 %2 om

Fig. 15| Simulated concentratmn profiles after 40 days with a downward
waterflow of 0. and 0.5 cm day™ L. .
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Table 2 Total amounts of salt in mmol cm ™2 removed from a profile of

100 ern with an initial concentration of 0.5 mmol cm ™3, with a downward
flow of 0 and 0.5 cm day ™. SALTUP through upper boundary, SALTLW
through lower boundary.

SALTUP SALTLW

: (ramol em™?%) {mmol cm™?)
VELOCITY (cm day™ %) 0. 0.5 . 0. 05
TIME (days): 10 0.6567 0.0468 0. 250
20 0.9855 0.0505 0. 499
40 14286 00518 0. 937

3.3 Simulation program for cylindrical system

To simulate the transport of salt towards a root, it is only necessary
to change the geometry of the system by replacing a part of the
initial section of the simulation program, The thickness of the cylinder
to be considered now, is the distance of the centre of the root to the
midpoint between this root and the next one, which may be 2 cm.
To calculate the thickness of the compartments the radius of the root,
0.03 cm, has to be substracted from this 2 cm. Accordingly the first
part of the initial section is

INITIAL

NOSORT .

FIXED I,N,K,

PARAMETER N=13 '
PARAMETER THCKNS=2., RADIUS=0.03,
RITCOM=1.2 : '

and the thickness of the first compartment is obtained with

TCOM(1)= (THCKNS~RADIUS)%¢1.-RITCOM)/
_(1.-RITCOM**N)) : :

The thickness of the compartments and their depths from the root
surface an(_l the diffusion distances between the compartments are
calculated in the same way as in the linear case, as are the water
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content and the labyrinth factor. The diffusion area between the
compartments is then calculated with

K = N+1 -

bo 4 I = 2,K

AREA(I) = (DEPTH(I-1)+0.5*%xTCOM(I-1)+
RADIUS)*6.2832

4 CONTINUE

assuming that the compartments have a height of 1 cm.

Since the diffusion ar¢a within the first compartment changes rapidly
with the radius, better results are obtained by supposing that the
apparent diffusion coefficient from this compartment to the root
depends on the area at half of the depth of this compartment, rather
than on the area of the root, i.e.

AREA(T) = (0.25%xTCOM(1)+RADIUS)*6.2832

These are all the changes that are necessary.,

The profile of concentration that results after three hours of dlﬂ'usmn
towards a root is shown in Fig. 16. The full line is the analytical
solution and the points are simulated solutions, the cylinder of 2 cm
being divided in 7, 13 or 24 compartments. It should be noted that
the most coarse grid of only 7 compartments gives very acceptable
solutions, even after only three hours- of diffusion. By using coarse

mmel. cm?

amd concentration e

o-""""

x
/ ——— onolytical
Q4 . ‘ Te Nz24

simulated: + N=
) o Nz 13
: = Nz 7
Q34

024

Q.1

depth

“ oz ds GOs G810 12 14 em.

Fig. 16[ Analytlcal and simulated concentration proﬁles after 3 homs of
diffusion towards a root.
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Fig. 17} Analytical and simulated concentration profiles after 0.5 and
4 hours of diffusion from a sphere with a radius of 0.1 cm.

grids, much computer time is saved, which becomes important
when many calculations per compartment have to be made, to
account for the diffusion of a mixture of ions and exchange phenomena
between soil and solution.

- The writing of the initial section for spherical geometry should mot
present any difficultics. In Fig. 17 the simulated concentration in
the compartment adjacent to a sphere with a radius of 0.1 cm that
acts as a source, is still too high, after 0.5 hours, but after four hours
correct solutions are obtained.
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4 Diffusion of ions

4.1 Basic processes

In the previous sections the salt NaCl was treated as a molecule which
diffuses as a unit, although it' consists of Na¥ and Cl~ and the
diffusion coefficient of CI™ is 1.5 times larger than that of Na*. This
would favour the transport of Cl™. However, if C1~™ moves only a
little bit ahead of Na*, then a small separation of charges would
occur so that the diffusion of Cl™ is reduced and the diffusion of Na® is
increased by electromotive forces, until both diffuse at the same rate.
A small separation of charges builds uvp such large electromotive
forces that the separation between Cl~ and Na' is undetectable,
Thus for all practical purposes, electroneutrality is fully maintained
throughout the solution.

" The situation is much more complicated when more than two ions are
involved. For instance, the diffusion coefficient of K* is about the same
as that for Cl1-, so that in a mixture of Na*, K* and C1~, the diffusion
coefficient of the Cl~ is still reduced and that of the Na*t increased
and electroneutrality is maintained. However, the ions involved are
now not necessarily diffusing at the same rate, so that the composition
of the solution may change along the axis of diffusion. Under these
conditions, the diffusion of each ion is governed by the gradient in
concentration and the gradient in electromotive potential. As before,
the flow under the influence of the gradient in concentration over a
finite small distance DX is approximately:

FLOW = - DIF#DC/DX . . . (4D

in which D C stands for the difference in concentration of the ion over
the finite length DX and the negative sign indicates that the direction
of flow is opposite to the direction in which the concentration increases.
Likewise, the flow under influence of an electromotive potential
difference DE in volts over a finite distance D X is approximately:

FLOW = * CONSTANT*DE/DX - = V)
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in which the minus sign holds for the negative tons which move against
the potential gradient and the positive sign for the positive ions, which
move with the potential gradient.

The flow under the influence of both the concentration and potential
difference, is therefore:

FLOW = - DIF*DC/DXECONSTANT*DE/DX (4.3)

The next problem is to express the unknown constant in this formula
in known parameters. Firstly, the diffusion coefficient accounts for the
frictional forces and since these forces are the same, whatever the
driving forces are, this unknown constant is proportional to the
diffusion coefficient. Secondly, the force on an ion due to a potential
difference is proportional to the valency of the ion, i.e. two times larger
for a divalent than for a mono-valent ion and of course the flow of
ions in an electrical field is proportional to the concentration, To
eliminate the troublesome + sign before the constant, it is assumed
that the valency (VAL) of positive ions is positive and of negative

ions negative. Hence, the above Eqn (4.3) may be rewritten as
follows:

 FLOW = _DIF*(-DC/DX+C*VAL*CNF*DE/DX) @4

in which the conversiqn factor CNF has the unit volt™? (the electrical
potential being expressed in volts) and is independent of the kind of
ion and its concentration.

Hence for the flow of every ion (1) inasolution holdsaccording to
Eqn (4.4): .
FLOWCI) = DIFCI)%(-DC(I)/
DX+VALCI)*CCI)*CNF*DE/DX) (4.5)

The product of the conversion factor and the potential gradient,
CNF*DE/DX is the same for every ion and may be calculated
according to Vervelde (1955). For this it is taken into account that
electroneutrality is maintained or that the net flow of charges is zero:
-z VAL(I)*FLOH(I). = 0. . (4.6)
1 e

By substltutmg Eqn . 5) for all fons1,2,. .', N in Eqn (4.6) and sol-
vmg, the followmg expresszon is obtained: ' '
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N
| T VALCI)*DIF(1)*DCCI) /DX
CNF*DE/DX = :‘ 4.7)
T VAL*CID%xDIFCI)%C ()
1

Using this expression in Eqn (4.5), the flow of any ion may be
calculated from the diffusion coefficients, the valencies and the con-
centrations of all ions concerned. The equations are thus sufficient
to calculate the flow rates of all the ions between the compartments
in a simulation program.

By working out Eqns (4.5) and (4 7) for a neutral salt, it can be shown
that the average diffusion coefficient of a salt is .

DIFC(1)*DIF(2) [VALC1)|[+|VAL(2)]

D =
I = SIFth+pIF(® IVAL (1) [%[VAL(2)]

.8

Although the numerical value for the conversion factor is not needed
to calculate the ionic transport, it can also be used to calculate the
potential gradient or to simulate the influence of other potentials,
This numerical value is 40 volts~! and may be obtained by considering
the equilibrium situation, where the flow of an iom, as given by
Eqn (4.4) is zero.

In this situation, the amount of work to move an ion against the potential
difference is the same as the amount of work to move an ion against its
concentration difference and this equahty will provide us with a value for the

conversion factor.
The amount of work to move a mole of ion against a potential difference DE

is given by: : _ : .
WORK = VAL¥F%DE coulombvolt - =~ = (49

in which F is the Faraday constant of 96500 coulomb, i.e. the amount of -

electricity in one mole of a mono-valent jon and in which the potennal

difference is expressed in volts.
To calculate the amount of work to move a mole of ion agamst a concen-
tration difference, it should be recalled that in dilute solutions, ions behave _

according to the gas law:
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PxV = R*T

in which P is the osmotic pressure due to the presence of the ion, V the
volume of the solution, T the absolute temperature and R a universal
constant. As one mole of gas at a temperature of 20°C occupies 22.41 at
atmospheric pressure or a pressure of 1000 grams e~ %, it is evident that
for one mole:

R%* T = 22400 gxcm = 2.24 % 10° coulomb xvolts

- or equivalent to the amount of work to move 224 grams over 100 cm against
the forces of gravity. This amount of work may also be expressed in
electrical units, conversion factors for energy being known in physics.’

If, at constant temperature, a mole of gas in a cylinder with piston surface,
S, is compressed over a small distance DL, the amount of work which is
done, equals P% S* D L=Px DV in which P is its pressure and DV the small
volume change.

According to the gas law;

(VEDV) % (P+DP) =RxT
or

V¥P+DP%V+DV%P+DP*DV=R*T

in which DP is the pressure change that accompanies the volume change
DV of one mole of gas. Since V% P=R%T and DPx DV is negligibly

- small, it follows that V*DP=P% DV or that the product of the volume
and the change in pressure, is the amount of work to move a small amount
of gas at constant temperature into a constant volume. The concentration
difference of an ion over a finite distance DX in solution is accompanied
by a difference in osmotic pressure due to the ion. Therefore, the amount of
work to move one mole of ion from one place to the other against this
osmotic pressure difference equals:

WORK = _V*DP = RxTxDP/P

- and because the relative pressure difference DP /P equals the relative
concentration difference DC/C '

WORK = RxTxDC/C ' | - @410

The electrical a.nd osmotlc work bemg the same in the equ:hbnum snuatlon,
it follows from Eqns (4 9) and (4.10) that
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VAL*FxDE=R*T*DC/C
or that
DC=VAL*Cx (F/(R%T))%DE
or that the conversion factor in Eqn (4.4) equals
CNF=F/(R*T) = 96500/224x10° = dovolt™! @41

at 20°C, which number is needed to calculate the actual value of the potential
difference.

42 Simulation program for linear system

Sufficient spade-work has been done now, to construct a simulation
program for the diffusion of an arbitrary number of ions in a mixture.
This will be done for a solution with 4 ions and a system with linear
geometry in which 13 compartments are distinguished. However, the
program will be written so, that with only slight changes 1t can be
used for another number of ions and compartments.

1t is supposed that the water content is constant and -that any flow of
water is absent. This assumption is made, not because the introduction
of flow of water gives any difficulties, but because it is useless to intro-
duce different diffusion coefficients for the individual ions when the
diffusion coefficients are completely overruled by the dispersion coeffi-
cient under influence of water flow. It may even be, that the degree
of refinement introduced in this section is wasted on a soil system,
The problem is, however, treated because it is a good example of what
may be done with simulation in physical chemistry and because it
may be of use for the simulation in cases where root potentials are
involved.

In the initial section, the parameters of the compartments are deﬁned

as before;
TCOM(J) thickness
DIFD(J) diffusion dlstance

DEPTH(J) depth

AREA (J) area
N number of compartments

The water content and the iabynnth factor are supposed tobe constant
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PARAMETER WC=0.4, LAB=0.67
With
PARAMETER K=4 the number of jons is defined.

The diffusion coefficient, the valency and the initial concentration of
the 4 ions are defined on table cards:

TABLE DIF(1-4) = 0.6, 0.6, 1.2, 1.2
in cm®day ™! '

TABLE VAL(1-4) = +1, +2, -2, -1
TABLE INTCON(1-4) = 0.01, 0.005, 0.005,
0.01

in mmol em
At this stage it should be checked carefully whether the sum of the
product of the valency and the initial concentration is indeed zero,
so that at least a possible situation is initialised,

The apparent diffusion coefficient for the K ions between the compart-
ments and the volume of each compartment are defined by

po 24 = 1,N
D021 = 1,K
APDIF(I,J)=AREACJ)*LABxWC*DIF(I)/DIFD(J)

VOLL(J)=(AREACJ)+AREACJ+1))I*TCOM(JI%0.5
2 CONTINUE

-3

in which the first index of APDIF indicates the ionic species and the
second index the boundary, according to the convention of Fig. 18.
~ This nested DO-loop sets first the number J for the compartments
at 1, then gives then the diffusion coefficients for the K ions in this

- compartment, and then repeats the process for compartment 2 to
compartment N.

The volume of water in each compartment is calculated w1th
DO 3 4 = 1,N '

VOLU () = 0 5*(AREA(J)+AREA(J+1))*
TCOM(J)=MC

35 CONTINUE

and the initial amount of ions in each compartment with
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DO 4 J 1
DO 4 I 1,
IATONCI, )
4 CONTINUE

The
TABLE CONS(1-4) = 4x0.

states that the concentration of the 4 ions at the surface is zero.
The dynamic section of the program will be given in full.

DYNAMIC
NOSORT

~
n=x=

VOLWCJ) % INTCONCI)

CONS(I)
wetke ] 2 3 4 '

[ N I O

INTCON(I}

APDIFIT,J~1) =]

CoNCITJ-1) s EFTHLY

L]

DE(J) + T y
I FLOW{L, J} pIFnil)

TCOMI) l 1 J
CONCI(LJ) .
AMION{LJ) £
VOLW(J)

W (9} |

4__..._._,,_._'0_,____

THCKNS

! Nel
FLOWILN+1)

Fig. 18] Geometry of the system and symbols used in the program for the
transport of ions. - .
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The concentration of the 4 ions in the 13 compartments is calculated
from the amount of ions in the compartments with

po 54J = 1,N
poO 51 =1,K
CONC(I,J) = AMIONC(I,J)/VOLW(J)D
5 CONTINUE

The potential difference (DE) between the compartments is obtained
according to Eqn (4.7) by the following D 0-loop:

DO 6 J = 2,N

The value of the denominator and nominator of the expression is first
calculated:

DENOM = 0.

NOM = 0.

DO 71 =1,K

DENOM= DENOM+VAL(I)*DIF(I)*(CONC(I J- 1)-
CONC(I,J))
NOM=NOM+VAL(I)**2*DIF(I)*(CONC(I,J-1)+
CONC(I,J))/2

7 CONTINUE

DE(J) = - (DENOM/NOM)/CNF
6 CONTINUE

with
PARAMETER CNF = 40. involts™!

The potential difference between the first compartment and the
surface is

DENOM =
NOM = 0.
DO B8 I = 1,K

0.

DENOM= DENOM+VAL(I)*DIF(I)*(CONS(I)-
CONCC(I,1))

NOM = NOM+VAL(I)**2*DIF(I)*(CONS(I)+
CONC(I,1)) /2

8 CONTINUE -
. DE(1) = —-(DENOM/NOM)/CNF
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As in the previous program, a flow downward is represented by a
positive sign. This means that here a negative sign has to be added to
the calculation of DE. Errors with signs are easily made, but also
easily detected in the first run of the program.

The flow of ions from the surface to the first compartment is

DO 9 I = 1,K
DCONC =.CONS(I) - CONCC(I,1)
ACONC = 0.5%(CONS(IX>+CONC(I, 1))

FLOWCI,T) = APDIF(I, 1)*(DCONC+VAL(I)*
ACONC*CNF*DE(1))

whereas the flow out of the 13th compartment is

FLOW(I,14) = 0.
9 CONTINUE

The flow from one compartment to the next is calculated with.. .

Do 10 2,N

Do 10 1.K

DCONC CONC(I J=1)~- CONC(I J) _

ACONC 0. 5*(CONC(I J- 1)+CONC(I J)) o
FLOWC(I,J) = APDIF(I, J)*(DCONC+VAL(I)*
ACONC*CNF*DE(J))

10 CONTINUE

nnmee
n

The net flow of the 4 ions into the 13 compartments is

00 11 J 1,N

DO 11 1 1.,k

NFLWCI,J) = FLOW(I,d)-FLOW(I, J+1)
11 CONTINUE

and the amount of each fon in each compartment is given by

“AMION1 = INTGRLC(IAION1, NFLW1,52)

/ EQUIVALENCE {(AMIONT, AMION(1,1)),
(IAION1, IAIONC1,1)), C(NFLWT, NFLu<1 1)
/ REAL IAION(4,13), NFLUW(4, 13) o
AMION(4 13)

Because electro-neutrality is maintained, the amount of one. ionic
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species can be calculated from the other three. Hence it is only
necessary to calculate the integrals of 3 species instead of 4. This saves
about 25% computing time. The program is not written in this way to
improve readability. It is a good exercise to rewrite the program for
3% 13 integrals.

All arrays, which are used in tables may be ‘declared’ witha STORAGE
statement:

STORAGE DIF(4), VAL(4), INTCONC(4),
CONS (4)

and the other arrays with

/ REAL FLOW(4,14), TCOM(13), DIFD(13),
APDIF(4,13), DEPTH(13), AREA(14),
VOLL(13)

/ REAL VOLW(13), CONC(4,13), DE(13)

The dynamic section of the simulation is finished with
METHOD MILNE '
and _
TIMER FINTIM=100., OUTDEL=10., PRDEL=1.

in which OUTDEL is used to control the output of the arrays, as will
be shown, and PRDEL to control the output of the CSMP print
routine.

The output can be specified again, using the print and plot routmes
of CSMP. However, so many arrays have to be ‘undimensionalized’
for this, that it is more convenient to use FORTRAN output capabx-
lities, For this purpose the program continues with

“WRT = IMPULS(0.,OUTDEL)
IF(WRT*KEEP.LT.0.5)G0 TO 12
WRITE €6,100) TIME

WRITE (6,101) CONC(1,J)
WRITE (6,102) cONC(2,4)
WRITE €6,103) CONC(3,J)
"WRITE (6,104) CONC(4,J)
WRITE (6,105) DECJ) -

12 CONTINUE

WRT is zero except when the IMPULS function sets it to 1 at times

-
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0,0+0UTDEL,0+2x0UTDEL and so on. The internal CSMP
variable ‘KEEP” is 1 when the actual rates of change of the integrals
are calculated and is zero when intermediate rates, necessary for more
sophisticated integration techniques are calculated (see Section 1.3).
Hence the statement ‘IF WRT*KEEP’ IS LESS THAN 0.5, then
GO TO 12, transfers the calculation to the continue card with this
statement number, except when output is needed. Only when and
WRT and KEEP are equal to I, are the WRITE statements carried
~out. The six WRITE statements request to print: the time, the
concentration of the first ion in all 13 compartments, then of the
second, third and fourth ion and then of the difference in electro-
chemical potential between the surface and the first compartment and
between the successive compartments. The layout and the text above
the rows with numbers are given on the FORMAT statements,
numbered 100-105;

100 FORMAT (1Hb,4HTIME//F16.8)

101 FORMAT (1Hb,37HCONC MONOV CATION AT
DIFFERENT DEPTHS//13F10.4)

102 FORMAT (1Hb,35HCONC DIV CATION AT
DIFFERENT DEPTHSII13F10 4)

103 FORMAT (1Hb,39HCONC DIV ANION AT
DIFFERENT DEPTHS/I13F10.4)

104 FORMAT (1Hb,36HCONC MONOV ANION AT
DIFFERENT DEPTHS//13F10.4)

105 FORMAT (1Hb,36HPOT GRADIENT BETWEEN
SUCCESSIVE COMP//13F10.4)

Just as in FORTRAN, the output has to be organised carefully.
One may also be interested in the total potential drop over the
compartments (TE) and the total amount of ions taken up by the
water (UPTKE1, and so on). These are calculated with

TE = 0.

Do 13 4 = 1,N
TE = TE+DE(J)
13 CONTINUE

UPTKE1 = INTGRL(O.,-FLGN(‘! 1))
UPTKE2 = INTGRL(O.,-FLOW(Z,1))
UPTKE3 = INTGRL(O.,-FLOW(3,7))
UPTKE4 = INTGRL(O.,—F_LOWUr,'I))
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and printed with:
PRINT UPTKE1, UPTKE2, UPTKE3, UPTKE4, TE

As it is only necessary to calculate TE at output times, one may
want to place the statement that calculates this sum between the
I F-statement and the CONTINUE-statement with number 12 of the
block that contains the orders to WRI TE. An example of the output
obtained with the WRI T E-statements and the PRINT-statement is
given in Fig. 19,

A program like this, cannot be checked any more, because there is no
analytical solution for the problem. However, it is worthwhile to

Table 3 A comparison between the results of the program with an average
diffusion coefficient for a salt and with different diffusion coefficients for
the 2 ion species, after 100 days of diffusion, with initial concentration
of 0.5 mmol cm ™3,

-3

concentration in mmo! cm ™~ at:

1.1 66 145 259 530cm
salt, D = 0.8 cm?® day ™! 0.0439 0.2408 0.4218 0.4931 0.5000
four jons: Dy, =1.2cm” day™'  0.0219 0.1204 0.2109 0.2466 0.2499

pos = 0.6cm? day™  0.0219 0.1204 0.2109 02466 0.2499

Table 4 Influence of the valency of the anion on salt concentration at
1.135 cm from the surface and on total desalting, in a 2 ionic system, after
200 days.

Pos. ion Neg. ion Saltconcentration Total

at 1.135cm desalting
Diff. - Val. Diff. Val
coeff. coeff, Initial 200 days mmot cm ™2
cm? "~ em?. mmolem™® mmolem™  mmol cm™?
day=! @ day™! ‘ '
06 +1 12 . -1 o001 59454%107* 3.6179%107°

06 ~ +1 12 -2 001 . = 68706x107* 3.1288x107?
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Table 5 Influence of the valency of the ions on ionic concentration, total
desalting and potential drop in a 4 ionic system, after 200 days.

pos.ionl1 pos.ion2 neg. ionl - neg ion2

valency +1 +1 -1 -1
initial conc. .
(mmolecm™% 0.0 0.01 0.01 0.01 .
diff, coeff. o
(cm? day™?%) 0.6 0.6 12 1.2
Tonic concentration
at 1.135¢cm
(mmolem™3)  5945x107% 5945x10™* 5.945x107* 5.945%x 1074
desalting
(mmol cm ™ 2); 0.1447
potential drop
(volt): —3.9169x10™2
valency +1 +2 -1 -2
initial conc,
(mmolem™3 001 . 0.005 0.01 0.005
diff. coeff.
(em* day~ 1) 0.6 0.6 1.2 1.2
ionic concentration
at 1.135¢cm
(mmolcm™3)  6483%x10™% 2.971x107% 5.740x 1074 3,342x 1074
desalting .
(mmol em™2): 0.1742
potential drop

(volt): —2.5502x 1072

compare the outputs in two situations, One output from this program
with the valency and the diffusion coefficient of 2 ions at —1 and
1.2cm?day™! and of the other 2 ions at +1 and 0.6 cm*day™'.
The other output from the previous program (Section 3) for the
diffusion of salt with an average dlﬁ'umon coeﬁicxent of 0.8 cm*day™!
calculated aocordmg to Eqn (4.8).

As shown in Table 3, the outcome is the same, §0 that at least the
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present program does not contain conceptunal or programming errors.
To show the influence of ionic composition on desalting and concen-
tration, some results are summarized in tables 4 and 5 and Fig. 20.
Table 4 shows that the concentration close to the surface after 200 days
is higher and the total desalting lower, when the negative ion is
divalent instead of monovalent and has a diffusion coefficient twice
as high. Table 5 shows the concentration, total desalting and totat
potential drop for 2 4 ion mixture in which the 2 positive ions
have a diffusion coefficient of 0.6 cm?day™! and the 2 negative
ions of 1.2cm?day”!, assuming that either all ions are mono-
valent or that one of the negative and one of the positive ions is
divalent. For the latter situation the concentration of all the ions in
both cases and the potential drop after 200 days are given in Fig. 20 -
as a function of the depth.

All the above situations refer to systems with linear geometry. In the
same way as in the salt diffusion program, the program may be
adapted to other geometrical systems by changing the statements that
define the geometry. These statements are all found in the initial
section,
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5 Transport of ions in soil -

5.1 Basic processes

In the previous chapter, the transport of ions was considered, under
conditions where only a negligible fraction of the anions is immobile.
This situation occurs in soils which consist of pure sand and may
occur in other soils under saline conditions. However in many soils,
the fraction of negative ions that is mobile in the solution is small
compared with the immeobile fraction. For instance, if the high amount
of fertilizer of 400kgha™! of potassium nitrate is mixed in the
first 10 centimeters of a soil with a moisture content of 0.5 cm*cm™3,
then the concentration of NOj equals 8 meq NOj liter™!. However,
if the soil has 30% clay, it may contain 200 meq immobile negative
ions per liter soil, which amounts to 400 meq per liter water, a value
which is still 50 times larger than the already high NO; content of
the fertilized soil.

Because electroneutrality is maintained throughout positive ions are
associated with these negative ions in the matrix, but these may
exchange with other positive ions in the soil solution. This exchange
is a very rapid process, so that it is in general assumed that there is at
any time an equilibrium between the concentrations of the positive
ions in solution and on the soil matrix.

Although exchange processes in the soil are of great complexity, it
may be supposed in a first approximation that the equilibrium between
adsorbed ions and ions in solution is governed by the ‘Law of Mass
Action’, For a mixture of two ions I1 and I2 of the same valency,
this means that the ratio of the ionic species in solution is propor-
tional to the ratio of the species on the adsorption sites:

I1A/12A = Kx(I1S/125) . | 6D

in which K is a dimensionless equilibrium constant and A and S indi-
cate the ions associated with the adsorption complex and the solution,
respectively. During the exchange, the total amount of positive ions
in solution and on the adsorption complex and the total amounts of
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each ionic species do not change i.c.

I1A+I12A=TIA (total ions adsorbed)
I1S+12S=TIS (total ions in solution)
I1A+118=TI1 (total ions of species 1)
I2A+125=TI2 (total ions of species 2)

These equations are used to eliminate I2A, I1$ and I128S from the
Mass Action Equation, which gives

(1-K) TTAZ+ (KxTIA+(K=-1)TI1+TIS)I1A-
K*TIAXTI1 = 0 (5.2)

and expresses the amount of adsorbed ionic species 1 in the total
amounts of immobile and mobile ions involved. When all amounts
of ions are expressed in equivalents per unit volume water in the soil,
the equilibrium constant K is dimensionless and varies for most
combinations of ions of the same valency between 0.5 and 2. The
exchange capacity (EXCAP) of a soil is usually given in milli-
equivalents per gram of soil. If the specific weight of the soil is SW
and the water content WC, then the total amount of ions adsorbed
equals:

TIA = EXCAP*SHIHC in meq em™? of water.

The same equations hold for systems that contain two divalent positive
tons.

Since exchange occurs at a faster rate, compared with the rates of
diffusion, dispersion and water flow, Eqn (5.2) may be used to
calculate for any compartment at any time how much of each ionic
species is in solution and adsorbed.

The Law of Mass Action in a mixture of one divalent and one mono-
valent ion is more complicated than in mixtures of ions of the same
valency. If the amount of ions adsorbed and in solution are both
expressed per volume of water, i.e. meq liter™?, the equilibrium
constant K in - . o

DIS/DIA=K* (MIS/MIA)?2 : ' (5.3)

is dimensionless, but its value is proportional to the exchange capacity
of the soil. The proportionality factor between K and exchange
capacity for the ions K* and Ca?* in equilibrium with clay is about
40 cm® soil meq™* if the exchange capacity is expressed in meq cm™3
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soil, The conservation equations are

DIA+MIA=TIA (total ions adsorbed)

DIS+MIS=TIS (total ions in solution) ‘ {54
MIA+MIS=TMI (total monovalent ions)

DIA+DIS=TDI (total divalent ions)

These equations again enable the concentration of one ionic species
in solution to be expressed in the total concentrations and the equi-
librium constant. However, as it is impossible to combine the relations
to obtain an explicit expression a method of successive better approxi-
mations has to be adopted.,

For this purpose an ‘implicit function’ is available in CSMP. This
function directs the system to iterate according to a standard proce-
dure, for which the user can specify the error criterion. For the
present purpose, the function may be used as follows:

\ -DIS=IMPL(GDIS,ERRCOR,FDIS)
MIS=TIS-DIS
MIA=TMI-MIS
DIA=TIA-MIA
FDIS=K% (MIS/MIA)?xDIA

The first line states that the series of statements ending with
FDIS===-= is part of an implicit loop, which has to be solved. The
first guess for the answer is GDIS and the iteration proceeds until
the relative difference of two successive estimates satisfies the relative
error, given in the argument of the first line, This relative error may
be set at 0.01 and the first guess in a simulation program is usually
the answer obtained in the previous time interval.

When the relative error criterion is not met after 100 iterations,
CSMP halts the simulation. Experiecnce has shown that this may
occur with exchange problems, so that a special iterative procedure
has been developed. This procedure is called upon by the sentence:

DIS = ADFUNC(TDI,TMI,TIA,K,GUESS) - .

in which D18 is the amount of divalent ions in solution that has to
be calculated, TDI , TMI are the total amount of divalent and mono-
valent ions, K is the equilibrium constant and GUESS is a guessed
value for DI S. The actual iteration procedure is given in Section 5.3.
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52 Simulaﬁon program

A simulation program will now be given for the situation when the
exchange capacity of the soil is not negligible and the soil solution
contains one monovalent and one divalent positive ion and one
negative ion. The linear case, with fresh water on the surface, is again
considered and it is assumed that water flow may take place. Under
these conditions the diffusion is small compared with dispersion, so
that it is unrealistic to bother about small differences in diffusion
coefficients between the ions and moreover the exchange equations
are also approximations. The diffusion coefficients of the ions in the
adsorbed phase are considered negligible, although there are indi-
cations, that this is not actually the case, especially for monovalent
ions (Frére & de Wit, 1971). To avoid unnecessary repetition of more
complicated constructions here, it is assumed that the labyrinth factor
and the water content of the soil are constant throughout.

The parameters of the compartments: .

TCOM(J) thickness compartments
DIFD(J) diffusion distance
DEPTH(J) depth :
AREACJ)  area

VOLW(J) volume of water

are calculéted as in Section 4..2.

The water content, the labyrinth factor, the dispersion factor in cm,
the exchange capacity in meqcem™? of soil, the flow of water in
cm®day~! (per cm?), the direction of flow (+ downwards), the
diffusion coefficient in cm® day~! and the number of compartments are

PARAMETER WC=0.4, LAB=0.67, DISP=3.,
EXCAP=0.2, FLWYOL=3., DIRFLW=+1.,
DIF=1., N=13 Y\ \og -

As the differences in diffusion coefficients are neglected, it is unneces-
sary to keep a separate track of the diffusion of the negative ion. Its
concentration can be found at any time by adding together the
concentrations of the positive ions in solution. It is assumed that
ion 1 is monovalent and ion 2 divalent. Their initial concentrations are

TABLE INTCON(1-2)=2.,8. meqecm™2 water
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Thc flow rate of water over the boundancs 1s

T 1‘:N e L Ot me TS
FLRW(J) = FLWVOL/AREA(J)
1 CONTINUE

Since it is assumed that the soil properties are constant throughout,
the apparent diffusion coefficient may be simply calculated with

DO 2 4 = 1,N ,
APDIF(J)= AREA(J)*(LAB*WC*DIF+FLRH(J)*
DISP) '
2 CONTINUE

The concentration of the adsorbed ions in every compartment is
TIA=EXCAP/WC
and the dimensionless value of K is

K=CNKxEXCAP
PARAMETER CNK = 40.

in which the value of 40 cm? of soil per meq holds for the ions K*
and Ca?*, in equilibrium with clay.

The concentration of the divalent ion on the adsorption complcx is
calculated now. Although this can be done with an explicit formula,
readability is improved by using the implicit function. The first guess is

GDIA = 0.5*TIA

The error criterion is
PARAMETER ERROR = 0.01
and the answer is obtained with (Eqns 5.3 and 5.4)

 DIA=IMPL(GDIA,ERROR,FDIA)
MIA=TIA-DIA
MIS=INTCON(1)
DIS=INTCON(2)
FDIA= DIS*(MIA/MIS)**Z/K |
MIA=TIA-DIA -

The initial total amount of both ions in each compartment in meq is
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po 3 J = 1,N

TAMINCT,J)=VOLW(J)» (CINTCONC(1) +MIA)
IAMINC2,J)=VOLW(J) = (CINTCON(2)+DIA)
3 CONTINUE

In the dynamic section an iteration has to be made. The first guess at
time zero for the amount of divalent ions in solution for all compart-
ments is

O 4 4 = 1,N
GDIS(J)=INTCON(2)
4 CONTINUE

The dynamic section will be given again in full.
DYNAMIC
NOSORT

For each compartment, the concentration of each ion in solution has
to be calculated, This is done in a DO-loop that contains the iterative
procedure

O 5J = 1,N

First the total concentrations of the monovalent and divalent ion are
calculated with

TMI=AMIONCT,J)/VOLW(J)
TOI=AMION(Z,J) /VOLW (L)

Then the concentration of the divalent ion in solution is obtained with
the iterative procedure:

GUESS = GDIS(J)
DIS = ADFUNC(TDI,TMI,TIA,K,GUESS)

The concentrations of the ions in solution are stored in arrays:

CONC(1,d) = DIS
MIS=TMI-TIA+TDI-DIS
CONC(2,J)=MIS

The first guess for the next time step is

GDIS(J)=DIS
5 CONTINUE.
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The concentration of both ions at the surface is again set to zero:
TABLE CONS(1-2)=2x0.

The flow from the surface into the first compartment is now calculated
with
po 61 =1,2
FLOWCI,1)=APDIF(1)Y% (CONS(CI)-CONC(I, 1))/
DIFDC1)+FLWVOL*DIRFLW* (CONS(I)+
CONC(I,1))/2

and out of the thirteenth compartment with
FLOW(I,14)=FLWVOL*DIRFLW#CONC(I ,N)

it being supposed that concentration changes at that depth are still
negligible.

6 CONTINUE
The flow over the other boundaries is

PO 7 J = 2,N

PO 71 =1,2
FLOWCI,J)=APDIF(J)*(CONCCI,J=1)~
CONCCI,d))/DIFDCI) +FLUVOL*DIRFLW
(CONC(I,J=1) + CONC(CI,J))/2

7 CONTINUE

The net flow of each ion into each of the compartments is

DO 8 J = 1,N

PO 81 =1,2
NFLOWCT,J)=FLOWCI,J)=FLOWCI,J+1)
8 CONTINUE

The amount of ions in each compartment is given by the CSMHP
statement:

AMIONT=INTGRLCIAMINY NFLOW1,26)
/ EQUIVALENCE (AMIONT,AMIONC1,1)),
CIAMINT, IAMINCT, 1)), (NFLOW] ,NFLOW(1,1))

The program is finished like any of the other programs.

-
-
d—
-
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Fig. 22| Concentration profiles of ions at the adsorption complex after 10
days of diffusion out of the soil.

As an example, the relation between the ionic concentrations and
depth, 10 days after the initialisation of an experiment is shown in
Fig. 21 and 22, It should be stressed here that the calculations are done
for a uniform soil profile, but that the program can be easily changed to
simulate non-uniform profiles, as has been shown before. The program
can also be extended easily to more than two ions because the iterative
procedure can be done for the pooled amounts of monovalent and
divalent ions (Heald et al., 1964),
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5.3 Iterative procedure

The iterative procedure that has been adopted is most conveniently
explained graphically. The equations that have to be solved are

DIA = TDI-GDIS
MIA = TIA-DIA
MIS = TMI-MIA
DIS = Kx(MIS/MIA)%%x2xDIA

in which DI S is the concentration of divalent ions in solution, GDIS an
estimate of this value and the other symbols are the other concentrations
involved, as defined in Section 5.1, ' :
The correct solution is obtained if the calculated value of DI S minus GDI S
is smaller than a limit of error which may be set at 0.005. This difference
{FGS) is presented in Fig. 23 as a function of GD I 8. Inspection of the

I m e e o e e e e ey e e o
T oiymptote N N
|

GD1S =

Fig. 23| Graphic representation of the iterative proct_:dure to calculate the
amount of adsorbed ions.
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four equations shows that FGS is infinite for MIA=0 or for GDIS=
TP I-TIA. This asymptotic value is presented in the graph. The proper
value of D18 is found at the intersection of the curve and the horizontal
axis, For the first guess, GD I S 1, the amount of divalent ions in solution
at the previous time step is taken and a second guess, GD I 52, is obtained
by taking a fraction of the difference between GDIS 1 and the asymptote,
With these two guesses, FGS1 and FGS2 are calculated, respectively.
Subsequently, a third guess, GD I §3, is obtained by interpolation between
the points {GDIS?1,FGS1) and (GDIS2,FGS2). The last step
is repeated to find a new guess, GDIS TN, between GDIS2 and GDIS3,
and this continues until the function value F G S is smaller than the limit of
etror. The con'ﬁpondmg value of GD IS is then the value of DI S which
- is wanted.
This procedure gives the correct answer w:thm a few iterations under any
circumstance. '
In CSMP the procedure is most conveniently introduced asa "MACRQ ",
 the use of which is described in the manual. This is done as follows:

MACRO DIS = ADFUNC(TDI,TMI,TIA,K,GDIS)
PROCEDURAL

X165 = GDIS

F16S = X168-1./K* ((TMI~TIA+TDI-X1GS)/
(TIA-TDI+X1GS) % %2*% (TDPI~X16S))

X2GS = TDI-TIA+0.8#(X1GS-TDI+TIA)
F2GS = X26S5-1./K* ((TMI~TIA+TDI-X26G6S)/
(TIA-TDI+X2GS)%#2% (TDI-X2GS))

30 CONTINUE

X3GS = X16S-F1GS*(X165~X2GS)/
(F1GS-F2GS)

F3GS = X3GS-1./K*x((TMI-TIA+TDI~X3GS)/
(TIA-TDI+X3GS)*#2% (TDI-X3GS))

IF (ABS(F3GS).LT.0.05) GO TO 32

X1GSL = X2GS-F2G6S5% (X265-X3GS)/

. (F2G6S~F3GS)

“IF (X1GSL.LT.X1GS) GO TO 33

X16S = X1GSL -

F1GS = X1G6S-1./K*((TMI-TIA+TDI- x155)/
(TIA-TDI+X1GS) % %2 (TDI~X1GS))

IF (ABS(F1G6S).LT.0.05) GO TO 35
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33 CONTINUE ' :
X2GSL = X1G6S-F16S% (X16S5-X3GS)/
(F1G6S-F36GS)

IF (X2GSL.LT.X2GS) GO TO 30

X2GS = X2GSL
F2GS = X26S-=1./K% ({TMI-TIA+TDI-X2GS}/
(TIA-TDI+X2GS)*#2% (TDI-X2GS))

IF (ABS(F2G6S8).G6T.0.05) GO TO 30

DIS = X2GS

GO TO 36

32 CONTINUE
DIS = X3GS
GO TO 36

35 CONTINUE
DIS = X1GS

36 CONTINUE
ENDMAC



6 Infiltration of water in the soil

6.1 Basic problems

It is generally assumed that the driving forces of the water flow in the
soil are fully compensated by frictional forces, so that the flow of water
in a horizontal direction (i.e. in the absence of gravity forces) between
two adjacent compartments N and N-1 of the same size (TCOM)
may be described by

FLOW(N)=AVDIF(N)* (WC(N-1)-WC(N))/TCOM (6.1)

If the water content is expressed in cm® water cm 3, the thickness in
centimeters and the flow in cm® water c:m‘“i'd.':ly"1 the diffusivity is
in em?day~1. 4.

This expression for the flow of water seems to be the same as the
expressions which were used to describe the flow of molecules in
solution or the flow of heat, but there is an important and fundamental
difference. For diffusion of heat or solutes, the conductivity and the
diffusion coefficient hardly depend if at all on the concentration of
the diffusing agent. Thus their values could be calculated from the
physical status of the soil in the initial part of the programs. However,
the diffusivity for water decreases with decreasing moisture content
of the soil, because the frictional forces per unit volume of water
increase as the pores that are filled with water become smaller. In
Fig. 24, it is shown that according to Hanks & Bowers (1962), the
diffusivity of the soil ‘Geary silt loam® may decrease more than a
100-fold with a decrease in water content from saturation to 10%
volume of water,

Let us consider now a situation where water is absorbed by a soil
column. The driving force is hardly dissipated in the wet end of the
column because the diffusivity is high and it is not dissipated in the
. dry zone of the column because there is still no water that is able to
move, so that the well-known sharp wetting-front results, which is
given in Fig, 25 for Geary silt loam.

The form of this curve has to be simulated by distinguishing a limited
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amount of compartments, in each of which the moisture content is
assumed to be the same over its whole thickness.
To apply now Eqn (6.1), an average diffusivity has to be determined
between two such compartments, which may differ considerably in
water content.

For instance, if the water contents are 0.18 and 0.31 em®cm™? respec-
" tively, which amounts to diffusivities of 13.8 and 976.3 cm®day~?, the
arithmetic average is 445.1 cm? day~! and the flow rate 57.9 cmday™!
accordingly. However, one may also reason, that the average water
content between the centres of the two compartments is 0.245 cm®cim 3,
so that the diffusivity is 181.4 cm?day ! and the flow rate 23.6cmday !
It may also be assumed that the diffusivities of each compartment have
to be averaged as electrical conductivities in senes, ie. according to
1/AVDIF =;1/DIF (N) +1/DIF (N+1). Then the flow rate is
1.8 cmday ™! with an average DIF of 13.6 cm?day 1. It seems logical
“that because of the very steep wetting-front, most of the driving force
is dissipated in the wettest compartment. Accordingly, the diffusivity
of this compartment must be weighted more than that of the drier
compartment and this weighting may be done by taking the ‘wet
averape’ according to:

AVDIF=(WC(N)*DIF(N)+WC(N-1)%DIF(N-1)3/
" CWCIN) +WC (N=-1))

This leads to a fiow rate of 82.5 cmday

The four calculated flow rates show a fortyfold difference. Although
the latter reasoning favours averaging methods which lead to higher
flow rates, it is impossible to state a priori which averaging will give
the best results. Because of the curvilinear shape of the diffusivity
versus moisture content curves, it is not even certain that one method
of averaging should be used for any soil type.

Thus, the simple technique used so far seems to break down and it
. seems necessary to use a method of simulation which does not lead
to an impossible choice. -

6.2 Semi-continuous simulation program

Such a method of simulation of water. flow was. developed by
5 Wagger (1952) for use on an analog computer. It was assumed that
- the diffusivity decreases exponentially with the moisture content. This
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method will be presented here in CSMP, which has the
great advantage that no assumption about the shape of the diffusivity
versus moisture content curve has to be made.

Up to now, any reference to differential equations has been avoided.
But in this section, they will be used as otherwise the formulations
become cumbersome. In order not to lose the reader who has
proceeded this far without a working knowledge of differential
calculus, care is taken to explain all mathematical operations. .
The conventions used up to now are not very suitable for differential
calculus and are therefore changed here by rewriting Eqn (6.1) as

AW

F1ow, =(o27)
in which AX is the dlstance between the centres of two compartments,
AW the difference in water content, D the average diffusivity between
the compartments, (FLOW) » the flow of water from compartment
N-—1 to N. The equal sign is replaced by the about equal sign, to
_ stress that the equation is an approximation, because the gradient in
moisture content from one compartment to the other is not linear
over finite distances.

The net flow into the Nth compartment may be estlmated by sub-
stracting the flow out of Nth compartment:

e(o22) o2
) AX AX /n+1
It is now assumed that with infinitesimally small compartment sizes,
presented by the symbol dX, the equation is correct, i.e. that

dw dw : '
N

in which d represents the difference in moisture content over the
infinitesimally small distance dX. In the infinitesimally small time dT
this net fliow of water causes an increase in water content of the Nth
compartment with thickness dX

aw =g S (6.3)
ax | o
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Substituting Eqn (6.3) in Eqn (6.2} gives

) |
d!D'— j
dw _ _\ df | ' (6.4)

dT dx

in which d(D.dW/dX) is the differential of the product of diffusivity
and moisture gradient at the top and the bottom of the compartment
dX and-D-is-the—diffusivity-at—the-moisture-content-of - the-com-—

This differential equation for the flow of water in a porous medium
contains two independent variables: the distance X and the time T.
These occur only in the combination d7/dX?, and for this reason
they may be substituted by one variable, which transforms the differ-
ential equation into a more suitable form for integration., This
procedure is called the Boltzmann transformation.

The new variable equals

- L=XT % ) : S 6.5
Differentiating this variable with respect to X gives
=— or dX = /T+dL (6.6)
dx \/T v

and diﬂ'erentiating to T gives

%m—ix.r“ or dT--—ZEthL 6]

The Eqns (6.6) and {6.7) for dX and dT are now substituted in the
differential Eqn (6.4)

| dw 'd(D,;\/;ZL)

_iZdL JT.dL
L

This results after inultiplicafion by — % m .
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d
m__zM

dL L dL

This is a differential equation in the independent variable L only'.ﬂ |
Remembering that the differential quotient of the product of the
functions ¥ and ¥V with respect to an independent variable L is

y W,y
dL dL
the relation

dw 2(de_D de)

2
aL ~ r\dL di” ai? o
holds, in which d* W/dL? is short hand for the differential quotient
of the differential quotient of the water content with respect to the
variable L. Writing this second order differential explicit gives

Ly _ 1, Dy
dr? D\dL 2/ dL

This differential equation- contains the differential quotient of the
diffusivity with respect to L, which is eliminated with the chain rule;

dDJdL = (dW/dL) » (dD/dW)

So that at last
42w I(dW a_n+£)gjg

di? D dL

The absorption of water by a uniform horizontal, semi-infinite soil
column with a constant initial water content (/#’) throughout its
whole length, is now considered under the supposition that one end
of the column is kept at saturation water content (WS). The initial
value of the water content (at L = 0) is then WS, but the initial value
of dW/dL depends on /W in a way which is determined by the form
of the diffusivity function. Hence simulations should be carried out
with -various initial values of dW/dL and then the water contents
obtained. with sufficient large values of L should be graphically

(6.8)

(6.9)
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related to these initial slopes.

The simulation program proceeds as follows:
In order to avoid confusion of symbols it is convenient to rename the
internal variables TIME and FINTIM with

RENAME TIME = L, FINTIM = FINL

Since there are no initial calculations, the INITIAL and DYNAMIC
cards may be omitted and because no atrays are involved, the sort
option is used by omitting the NOSORT card. This has the advantage
that the program no longer has to be written in procedural fashion,
so that readability is improved. This advantage is only of importance
in large programs of which an example is given by Penning de Vries
(1971).

The second order differential quotlent of the water content with respect
to L, according to Eqn (6.9) is

D2WL = (=1/D)x (DIWL*DDW+L/2)*DIWL

L is the independent variable, tracked by CSMP. D is the diffusivity
which is read from the tabulated function by

D = AFGEN(DTBLE,W)

FUNCTION DTBLE = (0.18,13.8),
(0.19,31.1),(0.20,48.4),(0.21,65.7),
(0.22,82.1),(0,23,110.6),(0.24,165.9),
(0.25,197.8),(0.26,285.2),(0.27,407.8),
(0.28,507.2),(0.29,648.0),(0.30,749.9),
(0.31,976.3),(0.32,1123.2),
(0.33,1321.9),(0.34,1555.2),
(0.35,1840.3),€0.36,2160.0),
(0.37,2514.2),(0.38,2808.0),
(0.39,3110.4),(0.40,3386.8),
(0.41,3646.1),(0.42,3888.0},
(0.43,4121.3),(0.44,4164.5),

(0.45, 4199 1),00.46,4200.9).

w:th the  water content (w) in e¢m®em™3 and the dlﬂ“usxv;ty in
m2day~! :

D DY is the: slope of the dnﬂ‘usmty curve thh rcspect to w and agam
read from a tabulated function by SR
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DDW = AFGEN(DDWTB,W)

FUNCTION DDWTB = (0.18,1770),
(0.19,1770),€0.20,1770),€0.21,1730),
(0.22,2245),(0.23,4190),€0.24,4360),
(0.25,5920),€0.26,10500),€0.27,11100),
(0.28,11910),¢0.29,14380),¢0.30,16460),
(0.31,16480),(0.32,17280),€0.33,21600),
(0.34,25920),(0.35,30240),€0.36,33690),
(0.37,32400),(0.38,29810),€0.39,28940),
(0.40,26780),(0.41,25060),(0.42,23760),
(0.43,13820),(0.44,3890),(0.45,1730),
(0.46,1730) .

with the water content in cm®cm™2 and the slope in cm?day~1.
The value of the first order differential of W is now obtained by
integrating D2WL:

D1WL = INTGRLCIDIWL,D2WL)
and the water content by integrating D1WL:

W = INTGRL(WS,D1WL). _ _
The initial value of W equals the water content at saturation and is
given by

PARAMETER WS = 0.46 cm*cm™? _

The initial values of D1WL are in an unknown way related to the

initial water content IW of the column, so that the simulation has to
be carried out for a range of values, which are successively:

PARAMETER ID1WL = (-1.5E-4,-3.E-4,
-4 .56-4,-6.E-4,-7.5E-4 ,-9.E-4,
-10.5E-3,-1.2E~3)
Later it is convenient to use the ‘sorptivity’ of the soil to compare
infiltrated amounts. This sorptivity is calculated with
S = INTGRL(O.,W)
SORP = S—LxW
For this kind of problem it is wise to use the integration method of
Runge-Kutta with variable time-step, which is achieved with -
METHOD RKS -
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The values of L at which the simulation is finished, and at which
output is required are specified with

TIMER FINL=150.,0UTDEL=5.
and the output is obtained on a plot with
PRTPLT W(0.,0.50,SORP)

This statement gives a graph of W with a scale of 0. to 0.50 and
a table of the sorptivity. The program is finished with

END
STOP
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~ Fig. 26| Part of the pnnt-plotted output of the semi-continuous progl'am.
" The shaded area is the sorplivity.-
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An example of the output is given in Fig, 26, The sorptivity is the
‘shaded area, the shading being entered by the drafisman and not by
_the computer.

An alternate solution, based on Eqn (6.8) is

D2WL=(-1/D)% (DDL+L/2)*D1WL
DDL=DERIV{IDDL,D)
DIWL=INTGRLC(IDTWL,D2WL)
W=INTGRL(WS ,D1TWL) :

in which the function DERIV takes the derivative of the second
argument with respect to the independent variable L (or TIME).
The initial values of the derivative function (IDDL) and of the first
derivate of W (ID1WL) are then in the initial section related by the
chain rule. The advantage of this method is that it is unnecessary to
introduce manually the relation between W and the derivate of D with
respect to W. But its disadvantage is that the derivative function is less
sophisticated than some of the integration procedures.

The curves that show the relation between the water content and L -
for 5 initial values of the slope are given in Fig. 27. For a constant
value of f each curve shows the relation between water content and

cmiem?
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Fig. 27| Relation between water content (W) and x[\/ t(L) for different
values of the initial water content (IW)."
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Fig. 28 | Relation between initial slope (ID1 WL) and mmal water
content (IW) for Geary silt loam

distance from the wet end of a column with the corresponding initial
" water content. All curves approach an initial water content (IW)
of the column, which depends on the initial slope (ID1WL). Fig. 28
with the relation between ID1WL and IW, is now used to estimate
the initial slope that has to be entered in this simulation to achieve the *
sorption-curve for a chosen initial water content. The weiting front
is steeper, the lower the initial water content of the soil and the
integration routine has to adjust to smaller values of DELT, to
proceed. At water contents lower than 0.19 cm®cm™3 the values of
DELT are so small, that the finite word length of the computer limits
the accuracy of integration and the simulation stops.

The sorptwmes of this soil dependent on the initial water contents
are given in Table 6.
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Table 6 Sorptivities in cm day™* dependent on the initial water content
for Geary silt loam. .

initial water 0.1888 0.1952 0.2409 0.2561 0.2728 0.3565 0.3791 0.4207

content
sorptivity 14.55 1437 1281 1214 1143 711 570 264

- 6.3 Compartmentalized simulation progﬁm

The simulation program discussed in the previous section, can only
be used for a uniform soil with initially a constant water content
throughout and when gravity is not involved. This is not flexible
enough to simulate actual situations. Hence, it is still necessary to
develop a compartmentalized simulation program, so that the problem
of deciding on the proper method of averaging diffusivities and on an
acceptable size of the compartments has still to be solved. To find a
solution, the results of a compartmentalized simulation model for
various methods of averaging are compared with the results of the
‘semi-continuous model of the previous section, assuming that the
method of averaging which is best in this situation, is also the best in
more complicated cases.

Eqn (6.1) which governs the flow between two compartments does not
" contain the flow due to gravity forces. When the pressure due to
gravity is in cm water, the gradient in vertical direction is in cmem ™!
or a dimensionless value. Hence this additional flow may be simply
accounted for by adding the average conductivity in cmday™! to the
right side of Eqn (6.1), which gives

ELOWCN) SAVDIF (N) % CWCCN=1)=WCCN))/
TCOM+AVCOND (N) (6.10)

The value of the diffusivity and conductivity are related through the
capac1ty, or the slope of the suction curve (‘pF-curve’) of the soil
in cm® water cm™? soil cm™! water pressure, by

DIF=COND/CAP

The suction curve and the conductivity curve for Geary silt loam are
given in Figs 29 and 30.
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The following simulation program contains the essentials to proceed.
It is again started with : :

INITIAL
NOSORT

FIXED I,N.
PARAMETER N=25

The thickness of the compartmenté is.
PARAMETER TCOM= 4 :
and the initial water contents of the 25 compartments are

STORAGE IMC(25)
TABLE IWC(1-25)=25%0.1888

so that the initial amount of water in each compartment is calculated
with .

P01 1 =1,N" S
IAMW(I) = IHC(I)*TCOM
1 CONTINUE -

and the depth with:-

DEPTH(1)>=0.5%TCOM

DO 2 I = 2,N

DEPTH(I)> = DEPTH(I-1 )+TCOM

2 CONTINUE
The direction of gravity is given by:

PARAMETER GRAV=0.
The value zero, indicating a horizontal, the value +1, a vertical
column. It is supposed that at time zero the surface is set at a water
content WS, which is given also as a parameter, :

PARAMETER WS=0.46 .

The conductivity in cmday~* and the d;ﬁ'usmty in cm’day‘1 of the
soil, dependent on water content in cm?® water cm™? soil, are given as
tabulated functions with
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FUNCTION DIFTB = (0.18,13.8),
(0.19,31.1),00.20,48.4),(0.21,65.73,
(0.22,82.1),00.23,110.6),(0.24,165.9),
(0.25,197.8),¢0.26,285.2),(0.27,407.8),
(0.28,507.2),€0.29,648.0),(0.30,749.9),
(0.31,976.3),(0.32,1123.2),
(0.33.1321.9),(0.34,1555.2),
(0.35,1840.3),(0.36,2160.0),
(0.37,2514.2),(0.38,2808.0),
(0.39,3110.4),€0.40,3386.8),
(0.41,3646.1),(0.42,3888.0),
(0.43,4121.3),(0.44,4164.5),
(0.45,4199.1),(0.46,4200.9)

FUNCTION CONDTB = (0.18,0.00006),
(0.19,0.00009),¢0.20,0.0002),
(0.21,0.00048),¢0.22,0.00081),
(0.23,0.0011),¢0.24,0.0016),
(0.25,0.0024),(0.26,0.00)62),
(06.27,0.0151),(¢0.28,0.0188),
(0.29,0.0324),¢(0.30,0.0535),
(0.31,0.08),(0.32,0.1261),
(0.33,0.1814),(0.34,0.2618),
(0.35,0.3681),(0.36,0.5685),
(0.37,0.7344),(0.38,0.864),(0.39,1.27),
(0.40,1.96),(0.41,2.42),(0.42,2.88),
(0.43,3.75),00.44,4.16),(0.45,4.20),
(0.46,4.24).

The diffusivity and conductivity at the surface of the soil are now
obtained with :

DIFS=AFGEN(DIFTB,NS)
CONDS=AFGEN(CONDTB,WS)

This is the end of the initial section.
The dynamic section starts again with

_DYNAMIC
NOSORT
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At first, the water content of each layer is calculated from the amount
of water in each layer with

PG 3 I = 1,N :

WCCI)=AMWC(I)/TCOM

which is then used to calculate the conductivity and diﬁ'usivity of
each layer with

COND(I)=AFGENCCONDTB,WC(I))
DIFC(I)=AFGENC(DIFTB,WC(I))
3 CONTINUE

The program enables the diffusivity and conductivity between the
compartments to be avéraged according to various methods. For
this a parameter, which specifies the method of averaging is intro-
duced:

PARAMETER 'Inl’—-1 .

in which —1 . indicates that the ‘wet-weighted’ average is used, 1. that
the arithmetic average is taken, 2. that the values for the overlaying
compartment are given with double weight and so on.

The weighing factor between the compartments is then calculated
with

DO 4 I = 2 N

RATIO = NC(I =1)/WC(I)

WF = INSW(W,RATIO, W)

For W is negative, the value of RAT I 0 is given to WF and for W larger
than zero, the value of W itself. The average values are then obtained
with

@
AVCOND= (WF%COND (I1-1)+CONDCI))/ (WF+1.)
AVDIFY= (WF%DIF(I-1)+DIF(1))/(WE+1.)

and the flow rate from one compartment to the next with

FLOWCI)=AVDIF*{(WC(I-1)~ HC(I))/
TCOM+AVCOND*GRAY
4 CONTINUE

The flow rate from the surface to the ﬁrst compartment is calculated
with .
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WE = INSW(W, WS/UCC1) , W)
AVCOND=(WF*CONDS+COND (1)) /(WF+1.)
AVDIF=(WF*DIFS+DIF{(1))/(WF+1.)
FLOWCT)=AVDIF* (WS-WC(1))/(0.5xTCOM) +
AVCOND%GRAV

The flow from the 25th to the 26th compartment is again set to zero
with

FLOW(26)=0.
which means that the simulation may p;:ocecd as long as the change

in water content in the 25th compartment is small. Independent of the
specified finish time, the simulation may be stopped by’

CHANGE=ABS ((WC(25)~IWC(25))/IWC(25))

a function which calculates the absolute value of the relative change
in the 25th compartment and the finish condition

FINISH CHANGE = 0.10

This line states that the simulation is halted as soon as the change
_in the last compartment is larger than 10%.
The net flow into each compartment is now calculated with -

po 51 =1,N
NFLW(I)= FLON(I) FLON(I+1)
5 CONTINUE '

and the integration carried out with

AMUWT=INTGRLCIAMUW1, NFLH1 25)
/EQUIVALENCE (AMN1 AMH(1)) (IAMWT,
TAMWCT) ) , (NFLWY, NFLH(‘I))

It is useful to integrate at first with the method of Runge Kutta, and:
to try out later whether less sophisticated methods may be used The
total infiltration is calculated with . .

INFL= INTGRL(O.,FLOH(’I))

At every output time specified by OUTDEL (compare Section 4. 2),
the sorptmty may be calculated with - '
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A=IMPULS(0.,0UTDEL)
IF(AxKEEP.LT.0.5) GO TO 6
. SORP=INFL/SQRT(TIME+NOT(TIME))

in which the function SQRT takes the square root of TIME+
NOTCTIME). NOT(TIME) is 1 for time is 0 and 0 for time
greater than zero, and thus prevents the order to take the square root
of zero. The value of the variable L, out of the previous program is
for the successive compartments obtained with

pDO7I =1,N
L(I)= DEPTH(I)/(SQRT(TIME+NOT(TIME)))
7 CONTINUE
6 CONTINUE

The output has to be organised by using FORTRAN capabilities, as
in Section 3. i
The selection between various methods of averaging is made on the
basis of a graph of the sorptivity against time, presented in Fig. 31.

The horizontal line shows the sorptivity calculated with the semi-
continuous method and the curves with other methods, For a short
time period, the compartments are too large to obtain good resulis,
but after 0.5 days stationary values are obtained. The arithmetic
average (W=1) gives the best results but the wet average (W=-1)

cm duy-y!
SORP ?
1604

IWC 201948

15.0 4

1404

TIME

Ry 008 mo 0i4 o018 oéz 7026 030 034 Q38 042 046 days

Fig. 31| The value of the sorptivity (SORP) as a functlon of time for
dlﬂ"ercnt averaging procedures. .
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is a good second. The vertical scale is very much extended, so that the
agreement is somewhere within the fourth digit, which is more than
_Aaccurate enough for practical purposes,
Infiltration, dependent on time, is shown in Fig. 32. The semi-
continuous method is given as a line and two methods of averaging
ag points. In Fig. 33 the water content in relation to the variable
L (=DEPTH*TIME %) is given. It is seen in Fig. 33 that some
‘tailing’ of the graphs is obtained with the ‘compartmentalized’
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Fig. 34| Water content (WC) as a function of depth on different times,
for horizontal as well as for vertical flow.

simulation program, although the sorptivities are correct. Fig. 34
illustrates the influence of gravity on the infiltration curves, The
influence is relatively small so that no appreciable mistake is likely to
be made by averaging the conductivities between compartments in the
same way as the diffusivities.

The situation is now considered in which a layer of water is brought
on the soil at the start of the experiment and gradually diminishes
by infiltration. This additional pressure height H is accounted for by
calculating the flow rate into the first compartment by -
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FLOW(1)=AVDIF* (WS-WC(1))/(0.5%TCOM)+
(H+GRAV)*COND -

However, when all the water on the soil is gone the flow rate into the
first compartment is necessarily equal to zero. To avoid oscillation
of H around zero, the further calculations are bypassed with

FLOWCT)=INSW(H,0.,FLOW(1))
Of course the pressure height should be traced with
H=INTGRLC(IH,-FLOW(1))

in which the initial height may be set on a parameter card.
This is all very simple. There is however, one problem. Because of this
additional pressure the wet compartments may become saturated with
water. Their conductivity is then equal to the conductivity of a
saturated soil and their capacity to store additional water is practically
zero. Therefore, the diffusivity of these compartments is very high and
consequently the flow rates approach infinite values. In this way, a
situation develops which can only be simulated with infinitely small
time intervals, and this is clearly impossible. Hence C SMP terminates
the simulation. The problem may be circumvented by assuming that a
soil at atmospheric pressure always contains g few percent of trapped
air,. which is compressed at pressures higher than one atmosphere
according to Boyle’s law and thus creates the space for a small change
in water content under influence of changes in pressure. The conduc-
tivity of the soil is then given by

CONDA
WCA

COND=( I*WC

in which the symbols with an A indicate values at atmospheric pressure.
The diffusivity at pressures higher than one atmosphere may then be
calculated from the. conductivity, and the change in volume of air
with one centimeter increase of pressure. At an atmospheric pressure
of 1000 cm water this change in volume equals 10”3 times the air
content, so that at higher than, atmosphenc pressurcs the equation

_ CONDA -3
- DIF | _(: WCA )% wcl(10 *ACA)
holds for the dlﬁ'usmty
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By including these relations the simulation proceeds, but still the time
intervals are very small and lead to long computation times. However, it
has been shown, as it can be shown by theoretical reasoning, that the
influence of any additional pressure head resulting from a small layer
of water on the soil, is negligible for practical purposes. Hence, apart
from cases where the interest centres around this problem, it is most
sensible to forget about the additional pressure of this layer.

The driving force is not proportional to the difference in water content
of two adjacent layers, when their moisture characteristics (i.e.
PF-curves) are not the same. In that situation, the Eqns (6.10) and
(6.11) should be combined into:

P(N=1)=P(N)+TCOM
TCOM

in which the potentials (P) at each time-step and for each compart-
ment are calculated from the water contents with the suction curves
(pF-curves) of the appropriate soil in each compartment. Of course,
the suction and conductivity curves for each soil type in the profile
should then be entered as tabulated functions. In the simulation
program it is then assumed that the wet average may be used also for
the conductivities, although this cannot be proven by comparison with
a semi-continuous solution.

The above mentioned approach was applied by van Keulen & van
Beck (1971) to calculate the formation of pools during showers, on
non-plowed and plowed soil, with and without a hardpan due to
plowing.

The relation between the moisture content on one hand and the
diffusivity, the conductivity and the suction pressure shows hysteresis:
air is trapped during the wetting phase, so that at the same moisture
content the water is differently distributed over the pores than during
the drying phase. The effect of hysteresis may be included in programs,
which simulate alternate wetting and drying cycles. However, it should
be stressed that moisture characteristics vary so much from place to

place under field conditions, that this degree of sophistication is often
not worth the trouble,

FLOW(N)=AVCOND(N)
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6.4 Time constant dependent on water content and size of
compartments

In the simple case of heat and salt diffusion, it was found (Section 2.3)
that the time constant of the system is given by

TCOM?
D

in which the diffusivity D was independent of the temperature or the
concentration of salt itself, so that, irrespective of the state of the
system, the time constant was proportional to the thickness of the
{smallest} compartment squared,

For the flow of water, the diffusivity varies with the water content,
and moreover, the time constant is not only determined by the
diffusion flow of water, but also by the gravity flow. To estimate the
time constant, the situation of Fig. 35 will be considered, in which a
soil, wet at the topis in contact with a somewhat drier soil at the bottom.
The net flow into the bottom compartment is the sum of the net
diffusion and net gravitational flow

NF = NDF + NGF

The diffusion flow out of the bottom compartment is zero, so that
NDF = D» (AW/AX) in which D is an average diffusion coefficient
_ between both slabs. The net gravitational flow is

NGF = (C1-C2)%x1/1,

TC =

— water content

c1

e Y

-—h
Q

c2

|

X

-Fig. 35| Schemauc reprmentatmn of the water content in two adjacent
. compartments. : :
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ie. the difference in conductivity, as the gradient is 1 cmem™2.
Since C2 is approximately equal to

(C1-(dC/dW) » AW)

in which dC/dW is the slope of the conductivity curve at the average
water content, the net gravitational flow equals

NGF = Cl—(C1—(dC/dW) » AW) = (dC/AW) + AW

Now this system certainly starts oscillating, if the water content of
the compartment increases in one time interval with AW. Hence the
time interval should be smaller (for instance 1/5) of the time constant
AT, calculated from:

AW+ AX = NF » AT
The resulting expression is: '
AT = AX?*/(D+(dC/AW) » AX) 6.11)

From Eqn (6.11) can be seen, that for AX <€ D/(AC/dW)} the time
constant increases quadratic with increasing AX, but for AX >
D{(dC/dW) the time constant increases only linearly with AX,

For Geary silt loam, with a water content of .45 cm?cm™3, D and
dC/dW equal 4200 cm?day™! and 4 cmday™? so that D/(dC/dW) is
about 1000 cm. Hence with compartments of 4 cm, the time constant

1s about equal to
AX?/D = 16/4200 = 4+1073

For a dry soil, with a moisture content of .20 cm®cm~3, D and
dC/dW equal 48.4 cm*day~! and 2+1072 cmday~*, respectively, so
that AX, at which D and (dC/d¥) « AX are equal, assumes a value

of 2500 cm. .
The time constant for 4 cm compartments is then 16/48.4 ~ (.35 day.

At higher than atmospheric pressure the conductivity and the diffusi-
vity are, as explained in Section 6.3, equal to

D = CONDA/WCA*WC/(107°%ACA)

and
dC/dW = CONDA/WCA

so that the time constant equals
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AT = AX2(WC/(1073 * ACA)+AX)* WCA/CONDA =
= AX2/(0.46/(1072 * 0.05)+ AX) * 0.46/4.24,

which equals for compartments of 4 cm:

16/(0.46/(5*10™%)+4) * 0.46/4.24 =~ 2*10™* day.
for Geary silt loam with 5% included air at atmospheric pressure,
The penalty for extending the present program in this way, is therefore
very high in terms of computer costs. The difficulty may be overcome

by introducing soil sections in the simulation program, with stationary
flow of water, but this is beyond the scope of this book.
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