22 research outputs found

    On the ubiquity of molecular anions in the dense interstellar medium

    Get PDF
    Results are presented from a survey for molecular anions in seven nearby Galactic star-forming cores and molecular clouds. The hydrocarbon anion C6H- is detected in all seven target sources, including four sources where no anions have been previously detected: L1172, L1389, L1495B and TMC-1C. The C6H-/C6H column density ratio is greater than about 1.0% in every source, with a mean value of 3.0% (and standard deviation 0.92%). Combined with previous detections, our results show that anions are ubiquitous in dense clouds wherever C6H is present. The C6H-/C6H ratio is found to show a positive correlation with molecular hydrogen number density, and with the apparent age of the cloud. We also report the first detection of C4H- in TMC-1 (at 4.8-sigma confidence), and derive an anion-to-neutral ratio C4H-/C4H = (1.2 +- 0.4) x 10^-5 (= 0.0012 +- 0.0004%). Such a low value compared with C6H- highlights the need for a revised radiative electron attachment rate for C4H. Chemical model calculations show that the observed C4H- could be produced as a result of reactions of oxygen atoms with C5H- and C6H-

    Using Methanol Beacons to Find Water in the Dark

    Get PDF
    Interstellar methanol is only formed efficiently from hydrogenation of CO molecules accreted onto grains, and icy grain mantles are observed to consist of 1-30% methanol relative to water. In regions of both low and high mass star formation gas-phase methanol abundances are consistent with partial or complete removal of the ices, either by thermal evaporation or by shock-induced sputtering in outflows. However, the widespread presence of gas-phase methanol in molecular clouds attests to some non-thermal desorption process at work. In particular, distinct peaks of methanol emission at positions significantly offset from protostellar activity implies a transient desorption process, such as clump-clump collisions, rather than a continuous one like photodesorption. Such processes are likely to disrupt a major part of the ice mantles and lead to high gas-phase water abundances clearly distinguishable from what is expected from photodesorption or steady-state gas-phase chemistry. We will report on the first detection of gas-phase water in a cold dark cloud - well offset from protostellar activity - resulting from a small scale survey with Herschel HIFI towards methanol peaks. Physical properties of the sources as well as implications for mantle desorption mechanisms and chemistry in dark clouds will be discussed and compared to those of active star formation

    Deep Search for Glycine Conformers in Barnard 5

    Full text link
    One of the most fundamental hypotheses in astrochemistry and astrobiology states that crucial biotic molecules like glycine (NH2_2CH2_2COOH) found in meteorites and comets are inherited from early phases of star formation. Most observational searches for glycine in the interstellar medium have focused on warm, high-mass molecular cloud sources. However, recent studies suggest that it might be appropriate to shift the observational focus to cold, low-mass sources. We aim to detect glycine towards the so-called methanol hotspot in the Barnard 5 dark cloud. The hotspot is a cold source (Tgas7.5T_\mathrm{gas}\approx 7.5 K) with yet high abundances of complex organic molecules (COMs) and water in the gas phase. We carried out deep, pointed observations with the Onsala 20m telescope, targeting several transitions of glycine conformers I and II (Gly-I and Gly-II) in the frequency range 70.270.2-77.977.9 GHz. No glycine lines are detected towards the targeted position, but we use a line stacking procedure to derive sensitive abundance upper limits w.r.t. H2_2 for Gly-I and Gly-II, i.e. (2\leq(2-5)×10105)\times10^{-10} and (0.7\leq(0.7-3)×10113)\times10^{-11}, respectively. The obtained Gly-II upper limits are the most stringent for a cold source, while the Gly-I upper limits are mostly on the same order as previously measured limits. The measured abundances w.r.t. H2_2 of other COMs at the B5 methanol hotspot range from 2×10102\times10^{-10} (acetaldehyde) to 2×1082\times10^{-8} (methanol). Hence, based on a total glycine upper limit of (2(2-5)×10105)\times10^{-10}, we cannot rule out that glycine is present but undetected.Comment: 12 pages, 7 figure

    Observational tests of interstellar methanol formation

    Get PDF
    Context. It has been established that the classical gas-phase production of interstellar methanol (CH3OH) cannot explain observed abundances. Instead it is now generally thought that the main formation path has to be by successive hydrogenation of solid CO on interstellar grain surfaces. Aims: While theoretical models and laboratory experiments show that methanol is efficiently formed from CO on cold grains, our aim is to test this scenario by astronomical observations of gas associated with young stellar objects (YSOs). Methods: We have observed the rotational transition quartets J = 2K - 1K of 12CH3OH and 13CH3OH at 96.7 and 94.4 GHz, respectively, towards a sample of massive YSOs in different stages of evolution. In addition, the J = 1-0 transitions of 12C18O and 13C18O were observed towards some of these sources. We use the 12C/13C ratio to discriminate between gas-phase and grain surface origin: If methanol is formed from CO on grains, the ratios should be similar in CH3OH and CO. If not, the ratio should be higher in CH3OH due to 13C fractionation in cold CO gas. We also estimate the abundance ratios between the nuclear spin types of methanol (E and A). If methanol is formed on grains, this ratio is likely to have been thermalized at the low physical temperature of the grain, and therefore show a relative over-abundance of A-methanol. Results: We show that the 12C/13C isotopic ratio is very similar in gas-phase CH3OH and C18O, on the spatial scale of about 40", towards four YSOs. For two of our sources we find an overabundance of A-methanol as compared to E-methanol, corresponding to nuclear spin temperatures of 10 and 16 K. For the remaining five sources, the methanol E/A ratio is less than unity. Conclusions: While the 12C/13C ratio test is consistent with methanol formation from hydrogenation of CO on grain surfaces, the result of the E/A ratio test is inconclusive

    Ground-state ammonia and water in absorption towards Sgr B2

    Get PDF
    Context. Observations of transitions to the ground-state of a molecule are essential to obtain a complete picture of its excitation and chemistry in the interstellar medium, especially in diffuse and/or cold environments. For the important interstellar molecules H<sub>2</sub>O and NH<sub>3</sub>, these ground-state transitions are heavily absorbed by the terrestrial atmosphere, hence not observable from the ground. Aims: We attempt to understand the chemistry of nitrogen, oxygen, and their important molecular forms, NH<sub>3</sub> and H<sub>2</sub>O in the interstellar medium of the Galaxy. Methods: We have used the Odin* submillimetre-wave satellite telescope to observe the ground state transitions of ortho-ammonia and ortho-water, including their <sup>15</sup>N, <sup>18</sup>O, and <sup>17</sup>O isotopologues, towards Sgr B2. The extensive simultaneous velocity coverage of the observations, >500 km s<sup>-1</sup>, ensures that we can probe the conditions of both the warm, dense gas of the molecular cloud Sgr B2 near the Galactic centre, and the more diffuse gas in the Galactic disk clouds along the line-of-sight. Results: We present ground-state NH<sub>3</sub> absorption in seven distinct velocity features along the line-of-sight towards Sgr B2. We find a nearly linear correlation between the column densities of NH<sub>3</sub> and CS, and a square-root relation to N<sub>2</sub>H<sup>+</sup>. The ammonia abundance in these diffuse Galactic disk clouds is estimated to be about 0.5–1 × 10<sup>-8</sup>, similar to that observed for diffuse clouds in the outer Galaxy. On the basis of the detection of H_218O absorption in the 3 kpc arm, and the absence of such a feature in the H_217O spectrum, we conclude that the water abundance is around 10-7, compared to ~10-8 for NH3. The Sgr B2 molecular cloud itself is seen in absorption in NH<sub>3</sub>, 15NH<sub>3</sub>, H<sub>2</sub>O, H_218O, and H_217O, with emission superimposed on the absorption in the main isotopologues. The non-LTE excitation of NH3 in the environment of Sgr B2 can be explained without invoking an unusually hot (500 K) molecular layer. A hot layer is similarly not required to explain the line profiles of the 11,0≥ts10,1 transition from H2O and its isotopologues. The relatively weak 15NH3 absorption in the Sgr B2 molecular cloud indicates a high [ 14N/15N] isotopic ratio >600. The abundance ratio of H_218O and H_217O is found to be relatively low, 2.5–3. These results together indicate that the dominant nucleosynthesis process in the Galactic centre is CNO hydrogen burning. Odin is a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes), and the centre National d'Études Spatiales (CNES, France). The Swedish Space Corporation (SSC) was the industrial prime contractor and is also responsible for the satellite operation

    Ortho-to-para ratio of NH2. Herschel-HIFI observations of ortho- and para-NH2 rotational transitions towards W31C, W49N, W51 and G34.3+0.1

    Get PDF
    We have used the Herschel-HIFI instrument to observe both nuclear spin symmetries of amidogen (NH2) towards the high-mass star-forming regions W31C (G10.6-0.4), W49N (G43.2-0.1), W51 (G49.5-0.4) and G34.3+0.1. The aim is to investigate the ratio of nuclear spin types, the ortho-to-para ratio (OPR), of NH2. The excited NH2 transitions are used to construct radiative transfer models of the hot cores and surrounding envelopes in order to investigate the excitation and possible emission of the ground state rotational transitions of ortho-NH2 N_(K_a,K_c} J=1_(1,1) 3/2 - 0_(0,0) 1/2 and para-NH2 2_(1,2) 5/2 - 1_(0,1) 3/2$ used in the OPR calculations. Our best estimate of the average OPR in the envelopes lie above the high temperature limit of three for W49N, specifically 3.5 with formal errors of \pm0.1, but for W31C, W51, and G34.3+0.1 we find lower values of 2.5\pm0.1, 2.7\pm0.1, and 2.3\pm0.1, respectively. Such low values are strictly forbidden in thermodynamical equilibrium since the OPR is expected to increase above three at low temperatures. In the translucent interstellar gas towards W31C, where the excitation effects are low, we find similar values between 2.2\pm0.2 and 2.9\pm0.2. In contrast, we find an OPR of 3.4\pm0.1 in the dense and cold filament connected to W51, and also two lower limits of >4.2 and >5.0 in two other translucent gas components towards W31C and W49N. At low temperatures (T \lesssim 50 K) the OPR of H2 is <10^-1, far lower than the terrestrial laboratory normal value of three. In such a "para-enriched H2" gas, our astrochemical models can reproduce the variations of the observed OPR, both below and above the thermodynamical equilibrium value, by considering nuclear-spin gas-phase chemistry. The models suggest that values below three arise in regions with temperatures >20-25 K, depending on time, and values above three at lower temperatures

    Organic chemistry of low-mass star-forming cores I: 7 mm spectroscopy of Chamaeleon MMS1

    Get PDF
    Observations are presented of emission lines from organic molecules at frequencies 32 - 50 GHz in the vicinity of Chamaeleon MMS1. This chemically-rich dense cloud core habours an extremely young, very low-luminosity protostellar object and is a candidate first hydrostatic core. Column densities are derived and emission maps are presented for species including polyynes, cyanopolyynes, sulphuretted carbon-chains and methanol. The polyyne emission peak lies about 5000 AU from the protostar, whereas methanol peaks about 15,000 AU away. Averaged over the telescope beam, the molecular hydrogen number density is calculated to be 10^6 cm^-3 and the gas kinetic temperature is in the range 5 - 7 K. The abundances of long carbon chains are very large, and are indicative of a non-equilibrium carbon chemistry; C6H and HC7N column densities are 5.9 (+2.9 -1.3) \times 10^11 cm^-2 and 3.3 (+8.0 -1.5) \times 10^12 cm^-2, respectively, which are similar to the values found in the most carbon-chain-rich protostars and prestellar cores known, and are unusually large for star-forming gas. Column density upper limits were obtained for the carbon-chain anions C4H- and C6H-, with anion-to-neutral ratios [C4H-]/[C4H] < 0.02% and [C6H-]/[C6H] < 10%, consistent with previous observations in interstellar clouds and low-mass protostars. Deuterated HC3N and c-C3H2 were detected. The [DC3N]/[HC3N] ratio of approximately 4% is consistent with the value typically found in cold interstellar gas

    Observations of chemical differentiation in clumpy molecular clouds

    Full text link
    We have extensively mapped a sample of dense molecular clouds (L1512, TMC-1C, L1262, Per 7, L1389, L1251E) in lines of HC3N, CH3OH, SO and C^{18}O. We demonstrate that a high degree of chemical differentiation is present in all of the observed clouds. We analyse the molecular maps for each cloud, demonstrating a systematic chemical differentiation across the sample, which we relate to the evolutionary state of the cloud. We relate our observations to the cloud physical, kinematical and evolutionary properties, and also compare them to the predictions of simple chemical models. The implications of this work for understanding the origin of the clumpy structures and chemical differentiation observed in dense clouds are discussed.Comment: 20 pages, 7 figures. Higher quality figures appear in the published journal articl

    Astrochemistry at Millimetre and Submillimetre Wavelengths

    No full text
    The focus of this thesis is a series of observational tests, aiming to clarify the chemical and physical origin of interstellar molecules. Spectral lines at millimetre and submillimetre wavelengths, caused by rotational transitions in CO, H2O, NH3, CH3OH, CH3SH, C2H3CN, and several of their isotopologues, have been observed towards regions of star-formation in the Galaxy. Maps of extended H2O and CO emission from the Orion nebula demonstrate that the water probably is localised to the photon-dominated region at the surface of the molecular cloud, at higher abundances than previously thought. Water is also observed in absorption from its ground-state towards the massive star-forming region Sgr B2. Curiously enough, a water abundance similar to the one reported for Orion is found in the low-excitation gas in one of the Galactic spiral arms. Ammonia absorption was also observed from diffuse spiral arm clouds along the same line-of-sight, but at about an order of magnitude lower abundance. The observed water and ammonia absorptions caused by the Sgr B2 cloud itself are successfully modelled without invoking a morphological component of hot gas. Two independent methods of analysis are applied to observations of methanol (CH3OH) and its 13C isotopologue in the cold envelopes of young stellar objects. Both methods indicate that methanol is mainly formed by hydrogenation of CO on cold dust grains. A study comparing the interstellar abundances of CH3SH (methyl mercaptan) and CH3OH unveil a possible trend of lower relative CH3SH abundances in more evolved objects. However, the significance of this trend, in relation to the chemical origin of these molecules, needs to be further investigated. In addition, searches for two pre-biotic molecules, namely vinyl acetylene (C2H3CCH) and amino acetonitrile (H2NCH2CN), resulting in improved upper abundance limits are presented. A comprehensive conclusion of this thesis is that in order to exploit the full capacity of high-quality observations there is a serious need for additional theoretical and laboratory investigations of processes like proton-exchange reactions, collision rates, freeze-out and desorption, all taking into account different isotopologues and spin-types

    Studies in Molecular Astrophysics and Astrobiology

    No full text
    The molecules of the interstellar medium (ISM) can be used as probes of the physical conditions in a range of different types of interstellar environment, for example star forming regions. The first chapters of this thesis describe the theory and the observational techniques used to study the rotational transition emission from, and the present knowledge of, these molecules. In particular, models and observations of prebiotic molecules, like the simplest amino acid glycine, have become increasingly interesting in the light of a possible connection to the beginning of life on Earth. Searches for two prebiotic molecules, vinyl acetylene (C<sub>2</sub>H<sub>3</sub> CCH) and amino acetonitrile (H<sub>2</sub>N CH<sub>2</sub> CN), towards hot star-forming cores with the Onsala 20 metre radio telescope are presented. Neither of the molecules has been detected, but towards the richest molecular-line source observed, Orion KL, the upper column density limits are determined to N(C<sub>2</sub>H<sub>3</sub> CCH)<1x10<sup>14</sup> cm<sup>-2</sup> and N(H<sub>2</sub>N CH<sub>2</sub> CN)<2x10<sup>13</sup> cm<sup>-2</sup>. <p/> In a comparison of the performance of the Odin<sup>1</sup> sub-millimeter telescope and the Onsala 20 metre telescope, I show that the accuracy in intensities measured by Odin is considerably higher than for ground-based telescopes, in cases of extended sources. The <sup>12</sup>CO and <sup>13</sup>CO J=5-4 emissions have been mapped simultaneously in the Orion KL region using Odin. The CO J=5-4 narrow line emission from this region is shown to mainly arise in the warm, dense gas at the interface (the photon-dominated region) between the M42 HII region and the OMC1, where also previously mapped H<sub>2</sub>O emission has to originate. From the Odin CO data we determine the column density distribution of warm H<sub>2</sub> gas across the mapped region, and estimate the ortho-water abundance in the Orion PDR layer to be >5x10<sup>-8</sup>. <p/> Footnote 1: Odin is a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes), and the Centre National d'Etudes Spatiales (CNES, France). The Swedish Space Corporation (SSC) was the industrial prime contractor and is also responsible for the satellite operation
    corecore