944 research outputs found
A Compact Beam Stop for a Rare Kaon Decay Experiment
We describe the development and testing of a novel beam stop for use in a
rare kaon decay experiment at the Brookhaven AGS. The beam stop is located
inside a dipole spectrometer magnet in close proximity to straw drift chambers
and intercepts a high-intensity neutral hadron beam. The design process,
involving both Monte Carlo simulations and beam tests of alternative beam-stop
shielding arrangements, had the goal of minimizing the leakage of particles
from the beam stop and the resulting hit rates in detectors, while preserving
maximum acceptance for events of interest. The beam tests consisted of
measurements of rates in drift chambers, scintilation counter hodoscopes, a gas
threshold Cherenkov counter, and a lead glass array. Measurements were also
made with a set of specialized detectors which were sensitive to low-energy
neutrons, photons, and charged particles. Comparisons are made between these
measurements and a detailed Monte Carlo simulation.Comment: 39 pages, 14 figures, submitted to Nuclear Instruments and Method
Potential energy threshold for nano-hillock formation by impact of slow highly charged ions on a CaF(111) surface
We investigate the formation of nano-sized hillocks on the (111) surface of
CaF single crystals by impact of slow highly charged ions. Atomic force
microscopy reveals a surprisingly sharp and well-defined threshold of potential
energy carried into the collision of about 14 keV for hillock formation.
Estimates of the energy density deposited suggest that the threshold is linked
to a solid-liquid phase transition (``melting'') on the nanoscale. With
increasing potential energy, both the basal diameter and the height of the
hillocks increase. The present results reveal a remarkable similarity between
the present predominantly potential-energy driven process and track formation
by the thermal spike of swift ( GeV) heavy ions.Comment: 10 pages, 2 figure
Trees over Infinite Structures and Path Logics with Synchronization
We provide decidability and undecidability results on the model-checking
problem for infinite tree structures. These tree structures are built from
sequences of elements of infinite relational structures. More precisely, we
deal with the tree iteration of a relational structure M in the sense of
Shelah-Stupp. In contrast to classical results where model-checking is shown
decidable for MSO-logic, we show decidability of the tree model-checking
problem for logics that allow only path quantifiers and chain quantifiers
(where chains are subsets of paths), as they appear in branching time logics;
however, at the same time the tree is enriched by the equal-level relation
(which holds between vertices u, v if they are on the same tree level). We
separate cleanly the tree logic from the logic used for expressing properties
of the underlying structure M. We illustrate the scope of the decidability
results by showing that two slight extensions of the framework lead to
undecidability. In particular, this applies to the (stronger) tree iteration in
the sense of Muchnik-Walukiewicz.Comment: In Proceedings INFINITY 2011, arXiv:1111.267
Individual variability in stable isotope turnover rates of epidermal mucus according to body size in an omnivorous fish.
Epidermal mucus (‘mucus’) is increasingly applied to fish ecological studies based on stable isotope analysis (SIA) due to its non-invasive collection. However, knowledge on mucus SI turnover rates of individual fish remains limited, including uncertainty over how they are influenced by fish body sizes. Here, a diet switch experiment predicted mucus SI turnover rates (δ13C and δ15N) as a function of time using samples taken over 200 days from 10 individually tagged common carp Cyprinus carpio covering two size groups. Non-linear mixed effects models revealed rapid turnover of both δ13C and δ15N (T50: 2–5 days; T95: 9–22 days); δ15N turnover rates were slower for the larger cohort, while δ13C turnover rates were independent of body size. Within size groups, turnover rates were not expected to vary between individuals. These experimental results suggest that due to these fast turnover rates, epidermal mucus can provide insights into the diets of fish over very short timeframes, although for δ15N the body size of the fish needs consideration
Far-infrared vibrational properties of high-pressure-high-temperature C60 polymers and the C60 dimer
We report high-resolution far-infrared transmission measurements of the 2 + 2 cycloaddition C-60 dimer and two-dimensional rhombohedral and one-dimensional orthorhombic high-pressure high-temperature C60 polymers. In the spectral region investigated(20-650 cm(-1)), we see no low-energy interball modes, but symmetry breaking of the linked C-60 balls is evident in the complex spectrum of intramolecular modes. Experimental features suggest large splittings or frequency shifts of some IhC60-derived modes that are activated by symmetry reduction, implying that the balls are strongly distorted in these structures. We have calculated the vibrations of all three systems by first-principles quantum molecular dynamics and use them to assign the predominant IhC60 symmetries of observed modes. Pur calculations show unprecedentedly large downshifts of T-1u(2)-derived modes and extremely large splittings of other modes, both of which are consistent with the experimental spectra. For the rhombohedral and orthorhombic polymers, the T-1u(2)-derived mode that is polarized along the bonding direction is calculated to downshift below any T-1u(1)-derived modes. We also identify a previously unassigned feature near 610 cm(-1) in all three systems as a widely split or shifted mode derived from various silent IhC60 vibrations, confirming a strong perturbation model for these linked fullerene structures
Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions
Excess contributions to the free energy due to interfaces occur for many
problems encountered in the statistical physics of condensed matter when
coexistence between different phases is possible (e.g. wetting phenomena,
nucleation, crystal growth, etc.). This article reviews two methods to estimate
both interfacial free energies and line tensions by Monte Carlo simulations of
simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid
exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is
based on thermodynamic integration. This method is useful to study flat and
inclined interfaces for Ising lattices, allowing also the estimation of line
tensions of three-phase contact lines, when the interfaces meet walls (where
"surface fields" may act). A generalization to off-lattice systems is described
as well.
The second method is based on the sampling of the order parameter
distribution of the system throughout the two-phase coexistence region of the
model. Both the interface free energies of flat interfaces and of (spherical or
cylindrical) droplets (or bubbles) can be estimated, including also systems
with walls, where sphere-cap shaped wall-attached droplets occur. The
curvature-dependence of the interfacial free energy is discussed, and estimates
for the line tensions are compared to results from the thermodynamic
integration method. Basic limitations of all these methods are critically
discussed, and an outlook on other approaches is given
Electron-phonon interaction in C70
The matrix elements of the deformation potential of C are calculated
by means of a simple, yet accurate solution of the electron-phonon coupling
problem in fullerenes, based on a parametrization of the ground state
electronic density of the system in terms of hybridized orbitals.
The value of the calculated dimensionless total electron-phonon coupling
constant is , an order of magnitude smaller than in
C, consistent with the lack of a superconducting phase transition in
CA fullerite, and in overall agreement with measurements of the
broadening of Raman peaks in CK. We also calculate the photoemission
cross section of C, which is found to display less structure than that
associated with C, in overall agreement with the experimental
findings.Comment: To be published in Phys. Rev.
Tests of CPT Invariance at Neutrino Factories
We investigate possible tests of CPT invariance on the level of event rates
at neutrino factories. We do not assume any specific model but phenomenological
differences in the neutrino-antineutrino masses and mixing angles in a Lorentz
invariance preserving context, such as it could be induced by physics beyond
the Standard Model. We especially focus on the muon neutrino and antineutrino
disappearance channels in order to obtain constraints on the
neutrino-antineutrino mass and mixing angle differences; we found, for example,
that the sensitivity
could be achieved.Comment: 6 pages, 1 figure, RevTeX4. Final version to be published in Phys.
Rev.
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA
An investigation of the hadronic final state in diffractive and
non--diffractive deep--inelastic electron--proton scattering at HERA is
presented, where diffractive data are selected experimentally by demanding a
large gap in pseudo --rapidity around the proton remnant direction. The
transverse energy flow in the hadronic final state is evaluated using a set of
estimators which quantify topological properties. Using available Monte Carlo
QCD calculations, it is demonstrated that the final state in diffractive DIS
exhibits the features expected if the interaction is interpreted as the
scattering of an electron off a current quark with associated effects of
perturbative QCD. A model in which deep--inelastic diffraction is taken to be
the exchange of a pomeron with partonic structure is found to reproduce the
measurements well. Models for deep--inelastic scattering, in which a
sizeable diffractive contribution is present because of non--perturbative
effects in the production of the hadronic final state, reproduce the general
tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
- …
