133 research outputs found

    Hormone Treatment without Surgery for Patients Aged 75 Years or Older with Operable Breast Cancer

    Get PDF
    Purpose. To evaluate the trend in the use of primary endocrine treatment (PET) for elderly patients with operable breast cancer and to study mean time to response (TTR), local control, time to progression (TTP), and overall survival.Methods. Data of 184 patients aged >= 75 years, diagnosed with breast cancer in the south of the Netherlands between 2001 and 2008 and receiving PET, were analyzed.Results. The percentage of women >= 75 years with breast cancer receiving PET in the south of the Netherlands decreased from 23% in the period 1988-1992 to 12% in 1997-2000, and increased to 29% in 2005-2008. Mean age at diagnosis of 184 patients treated with PET in the period 2001-2008 was 84 years (range 75-89 years). Mean length of follow-up was 2.6 years. In 107 patients (58%), an initial response was achieved (mean TTR 7 months), 21 patients (12%) showed stable disease. A total of 64 patients (35%), with or without prior response, eventually displayed progression (mean TTP 20 months). No differences in TTR and TTP were observed between the patients starting with tamoxifen or an aromatase inhibitor. One hundred nineteen (65%) of 184 patients had died by January 1, 2010. In 17 patients (14%), breast cancer was the cause of death.Conclusions. Tumor progression was observed in a substantial proportion of the cohort, but only a small number of patients died of breast cancer. Further research is needed on the safety and effectiveness of PET for elderly women with breast cancer to justify the current widespread use.Biological, physical and clinical aspects of cancer treatment with ionising radiatio

    Endophyte Microbiome Diversity in Micropropagated Atriplex canescens and Atriplex torreyi var griffithsii

    Get PDF
    Microbial diversity associated with micropropagated Atriplex species was assessed using microscopy, isolate culturing, and sequencing. Light, electron, and confocal microscopy revealed microbial cells in aseptically regenerated leaves and roots. Clone libraries and tag-encoded FLX amplicon pyrosequencing (TEFAP) analysis amplified sequences from callus homologous to diverse fungal and bacterial taxa. Culturing isolated some seed borne endophyte taxa which could be readily propagated apart from the host. Microbial cells were observed within biofilm-like residues associated with plant cell surfaces and intercellular spaces. Various universal primers amplified both plant and microbial sequences, with different primers revealing different patterns of fungal diversity. Bacterial and fungal TEFAP followed by alignment with sequences from curated databases revealed 7 bacterial and 17 ascomycete taxa in A. canescens, and 5 bacterial taxa in A. torreyi. Additional diversity was observed among isolates and clone libraries. Micropropagated Atriplex retains a complex, intimately associated microbiome which includes diverse strains well poised to interact in manners that influence host physiology. Microbiome analysis was facilitated by high throughput sequencing methods, but primer biases continue to limit recovery of diverse sequences from even moderately complex communities

    Biochemical Trade-Offs: Evidence for Ecologically Linked Secondary Metabolism of the Sponge Oscarella balibaloi

    Get PDF
    Secondary metabolite production is assumed to be costly and therefore the resource allocation to their production should be optimized with respect to primary biological functions such as growth or reproduction. Sponges are known to produce a great diversity of secondary metabolites with powerful biological activities that may explain their domination in some hard substrate communities both in terms of diversity and biomass. Oscarella balibaloi (Homoscleromorpha) is a recently described, highly dynamic species, which often overgrows other sessile marine invertebrates. Bioactivity measurements (standardized Microtox assay) and metabolic fingerprints were used as indicators of the baseline variations of the O. balibaloi secondary metabolism, and related to the sponge reproductive effort over two years. The bioactivity showed a significant seasonal variation with the lowest values at the end of spring and in early summer followed by the highest bioactivity in the late summer and autumn. An effect of the seawater temperature was detected, with a significantly higher bioactivity in warm conditions. There was also a tendency of a higher bioactivity when O. balibaloi was found overgrowing other sponge species. Metabolic fingerprints revealed the existence of three principal metabolic phenotypes: phenotype 1 exhibited by a majority of low bioactive, female individuals, whereas phenotypes 2 and 3 correspond to a majority of highly bioactive, non-reproductive individuals. The bioactivity was negatively correlated to the reproductive effort, minimal bioactivities coinciding with the period of embryogenesis and larval development. Our results fit the Optimal Defense Theory with an investment in the reproduction mainly shaping the secondary metabolism variability, and a less pronounced influence of other biotic (species interaction) and abiotic (temperature) factors

    Toxic but Drank: Gustatory Aversive Compounds Induce Post-ingestional Malaise in Harnessed Honeybees

    Get PDF
    BACKGROUND: Deterrent substances produced by plants are relevant due to their potential toxicity. The fact that most of these substances have an unpalatable taste for humans and other mammals contrasts with the fact that honeybees do not reject them in the range of concentrations in which these compounds are present in flower nectars. Here we asked whether honeybees detect and ingest deterrent substances and whether these substances are really toxic to them. RESULTS: We show that pairing aversive substances with an odor retards learning of this odor when it is subsequently paired with sucrose. Harnessed honeybees in the laboratory ingest without reluctance a considerable volume (20 µl) of various aversive substances, even if some of them induce significant post-ingestional mortality. These substances do not seem, therefore, to be unpalatable to harnessed bees but induce a malaise-like state that in some cases results in death. Consistently with this finding, bees learning that one odor is associated with sugar, and experiencing in a subsequent phase that the sugar was paired with 20 µl of an aversive substance (devaluation phase), respond less than control bees to the odor and the sugar. Such stimulus devaluation can be accounted for by the malaise-like state induced by the aversive substances. CONCLUSION: Our results indicate that substances that taste bitter to humans as well as concentrated saline solutions base their aversive effect on the physiological consequences that their ingestion generates in harnessed bees rather than on an unpalatable taste. This conclusion is only valid for harnessed bees in the laboratory as freely-moving bees might react differently to aversive compounds could actively reject aversive substances. Our results open a new possibility to study conditioned taste aversion based on post-ingestional malaise and thus broaden the spectrum of aversive learning protocols available in honeybees

    An update on the strategies in multicomponent activity monitoring within the phytopharmaceutical field

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To-date modern drug research has focused on the discovery and synthesis of single active substances. However, multicomponent preparations are gaining increasing importance in the phytopharmaceutical field by demonstrating beneficial properties with respect to efficacy and toxicity.</p> <p>Discussion</p> <p>In contrast to single drug combinations, a botanical multicomponent therapeutic possesses a complex repertoire of chemicals that belong to a variety of substance classes. This may explain the frequently observed pleiotropic bioactivity spectra of these compounds, which may also suggest that they possess novel therapeutic opportunities. Interestingly, considerable bioactivity properties are exhibited not only by remedies that contain high doses of phytochemicals with prominent pharmaceutical efficacy, but also preparations that lack a sole active principle component. Despite that each individual substance within these multicomponents has a low molar fraction, the therapeutic activity of these substances is established via a potentialization of their effects through combined and simultaneous attacks on multiple molecular targets. Although beneficial properties may emerge from such a broad range of perturbations on cellular machinery, validation and/or prediction of their activity profiles is accompanied with a variety of difficulties in generic risk-benefit assessments. Thus, it is recommended that a comprehensive strategy is implemented to cover the entirety of multicomponent-multitarget effects, so as to address the limitations of conventional approaches.</p> <p>Summary</p> <p>An integration of standard toxicological methods with selected pathway-focused bioassays and unbiased data acquisition strategies (such as gene expression analysis) would be advantageous in building an interaction network model to consider all of the effects, whether they were intended or adverse reactions.</p

    Transitions at CpG Dinucleotides, Geographic Clustering of TP53 Mutations and Food Availability Patterns in Colorectal Cancer

    Get PDF
    Colorectal cancer is mainly attributed to diet, but the role exerted by foods remains unclear because involved factors are extremely complex. Geography substantially impacts on foods. Correlations between international variation in colorectal cancer-associated mutation patterns and food availabilities could highlight the influence of foods on colorectal mutagenesis. mutations from 12 countries/geographic areas. For food availabilities, we relied on data extracted from the Food Balance Sheets of the Food and Agriculture Organization of the United Nations. Dendrograms for mutation sites, mutation types and food patterns were constructed through Ward's hierarchical clustering algorithm and their stability was assessed evaluating silhouette values. Feature selection used entropy-based measures for similarity between clusterings, combined with principal component analysis by exhaustive and heuristic approaches. hotspots. Pearson's correlation scores, computed between the principal components of the datamatrices for mutation types, food availability and mutation sites, demonstrated statistically significant correlations between transitions at CpGs and both mutation sites and availabilities of meat, milk, sweeteners and animal fats, the energy-dense foods at the basis of “Western” diets. This is best explainable by differential exposure to nitrosative DNA damage due to foods that promote metabolic stress and chronic inflammation

    Can the intake of antiparasitic secondary metabolites explain the low prevalence of hemoparasites among wild Psittaciformes?

    Get PDF
    Background: Parasites can exert selection pressure on their hosts through effects on survival, on reproductive success, on sexually selected ornament, with important ecological and evolutionary consequences, such as changes in population viability. Consequently, hemoparasites have become the focus of recent avian studies. Infection varies significantly among taxa. Various factors might explain the differences in infection among taxa, including habitat, climate, host density, the presence of vectors, life history and immune defence. Feeding behaviour can also be relevant both through increased exposure to vectors and consumption of secondary metabolites with preventative or therapeutic effects that can reduce parasite load. However, the latter has been little investigated. Psittaciformes (parrots and cockatoos) are a good model to investigate these topics, as they are known to use biological control against ectoparasites and to feed on toxic food. We investigated the presence of avian malaria parasites (Plasmodium), intracellular haemosporidians (Haemoproteus, Leucocytozoon), unicellular flagellate protozoans (Trypanosoma) and microfilariae in 19 Psittaciformes species from a range of habitats in the Indo-Malayan, Australasian and Neotropical regions. We gathered additional data on hemoparasites in wild Psittaciformes from the literature. We considered factors that may control the presence of hemoparasites in the Psittaciformes, compiling information on diet, habitat, and climate. Furthermore, we investigated the role of diet in providing antiparasitic secondary metabolites that could be used as self-medication to reduce parasite load. Results: We found hemoparasites in only two of 19 species sampled. Among them, all species that consume at least one food item known for its secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, were free from hemoparasites. In contrast, the infected parrots do not consume food items with antimalarial or even general antiparasitic properties. We found that the two infected species in this study consumed omnivorous diets. When we combined our data with data from studies previously investigating blood parasites in wild parrots, the positive relationship between omnivorous diets and hemoparasite infestation was confirmed. Individuals from open habitats were less infected than those from forests. Conclusions: The consumption of food items known for their secondary metabolites with antimalarial, trypanocidal or general antiparasitic properties, as well as the higher proportion of infected species among omnivorous parrots, could explain the low prevalence of hemoparasites reported in many vertebrates

    Insights into pathogenic events of HIV-associated Kaposi sarcoma and immune reconstitution syndrome related Kaposi sarcoma

    Get PDF
    A decrease in the incidence of human immune deficiency virus-associated Kaposi sarcoma (HIV-KS) and regression of some established HIV-KS lesions is evident after the introduction of highly active anti-retroviral treatment (HAART), and is attributed to generalized immune restoration, to the reconstitution of human herpesvirus (HHV)-8 specific cellular immune responses, and to the decrease in HIV Tat protein and HHV-8 loads following HAART. However, a small subset of HIV-seropositive subjects with a low CD4+ T cell count at the time of introduction of HAART, may develop HIV-KS as immune reconstitution inflammatory syndrome (IRIS) within 8 weeks thereafter

    Non-irradiation-derived reactive oxygen species (ROS) and cancer: therapeutic implications

    Get PDF
    Owing to their chemical reactivity, radicals have cytocidal properties. Destruction of cells by irradiation-induced radical formation is one of the most frequent interventions in cancer therapy. An alternative to irradiation-induced radical formation is in principle drug-induced formation of radicals, and the formation of toxic metabolites by enzyme catalysed reactions. Although these developments are currently still in their infancy, they nevertheless deserve consideration. There are now numerous examples known of conventional anti-cancer drugs that may at least in part exert cytotoxicity by induction of radical formation. Some drugs, such as arsenic trioxide and 2-methoxy-estradiol, were shown to induce programmed cell death due to radical formation. Enzyme-catalysed radical formation has the advantage that cytotoxic products are produced continuously over an extended period of time in the vicinity of tumour cells. Up to now the enzymatic formation of toxic metabolites has nearly exclusively been investigated using bovine serum amine oxidase (BSAO), and spermine as substrate. The metabolites of this reaction, hydrogen peroxide and aldehydes are cytotoxic. The combination of BSAO and spermine is not only able to prevent tumour cell growth, but prevents also tumour growth, particularly well if the enzyme has been conjugated with a biocompatible gel. Since the tumour cells release substrates of BSAO, the administration of spermine is not required. Combination with cytotoxic drugs, and elevation of temperature improves the cytocidal effect of spermine metabolites. The fact that multidrug resistant cells are more sensitive to spermine metabolites than their wild type counterparts makes this new approach especially attractive, since the development of multidrug resistance is one of the major problems of conventional cancer therapy
    corecore