6 research outputs found
Specific binding of a hexanucleotide to HIV-1 reverse transcriptase: a novel class of bioactive molecules
Short oligonucleotides below 8–10 nt in length adopt relatively simple structures. Accordingly, they represent interesting and so far unexplored lead compounds as molecular tools and, potentially, for drug development as a rational improvement of efficacy seem to be less complex than for other classes of longer oligomeric nucleic acid. As a ‘proof of concept’, we describe the highly specific binding of the hexanucleotide UCGUGU (Hex-S3) to human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) as a model target. Ultraviolet (UV) cross-linking studies and competition experiments with primer/template substrates and a RT-directed aptamer suggest site-specific binding of Hex-S3 to the large subunit (p66) of the viral enzyme. The affinity of 5.3 μM is related to hexanucleotide-specific suppression of HIV-1 replication in human cells by up to three orders of magnitude indicating that Hex-S3 exerts specific and biologically relevant activity. Experimental evidence described here further suggests a systematic hexamer array-based search for new tools for molecular biology and novel lead compounds in nucleic acid-based drug development
Functional binding of hexanucleotides to 3C protease of hepatitis A virus
Oligonucleotides as short as 6 nt in length have been shown to bind specifically and tightly to proteins and affect their biological function. Yet, sparse structural data are available for corresponding complexes. Employing a recently developed hexanucleotide array, we identified hexadeoxyribonucleotides that bind specifically to the 3C protease of hepatitis A virus (HAV 3Cpro). Inhibition assays in vitro identified the hexanucleotide 5′-GGGGGT-3′ (G5T) as a 3Cpro protease inhibitor. Using 1H NMR spectroscopy, G5T was found to form a G-quadruplex, which might be considered as a minimal aptamer. With the help of 1H, 15N-HSQC experiments the binding site for G5T was located to the C-terminal β-barrel of HAV 3Cpro. Importantly, the highly conserved KFRDI motif, which has previously been identified as putative viral RNA binding site, is not part of the G5T-binding site, nor does G5T interfere with the binding of viral RNA. Our findings demonstrate that sequence-specific nucleic acid–protein interactions occur with oligonucleotides as small as hexanucleotides and suggest that these compounds may be of pharmaceutical relevance
Cell stress is related to re-localization of Argonaute 2 and to decreased RNA interference in human cells
Various kinds of stress on human cells induce the formation of endogenous stress granules (SGs). Human Argonaute 2 (hAgo2), the catalytic core component of the RNA-induced silencing complex (RISC), can be recruited to SGs as well as P-bodies (PBs) indicating that the dynamic intracellular distribution of hAgo2 in SGs, in PBs or at other sub-cellular sites could be related to the efficiency of the RNA interference (RNAi) machinery. Here, we studied the influence of heat shock, sodium arsenite (NaAsO2), cycloheximide (CHX) and LipofectamineTM 2000-mediated transfection of phosphorothioate (PS)-modified oligonucleotides (ON) on the intracellular localization of hAgo2 and the efficiency of RNAi
Quantitative detection of siRNA and single-stranded oligonucleotides: relationship between uptake and biological activity of siRNA
The quantitative detection of oligomeric nucleic acids including short double-stranded RNA in cells and tissues becomes increasingly important. Here, we describe a method for the detection of siRNA in extracts prepared from mammalian cells, which is based on liquid hybridization with a (32)P-labelled probe followed by a nuclease protection step. The limit of detection of absolute amounts of siRNA is in the order of 10–100 amol. This methodology is suited to quantitatively follow the spontaneous uptake of siRNA by mammalian cells, i.e. without the use of carrier substances. This protocol may also be used to detect extremely low amounts of other kinds of short nucleic acids, including antisense oligonucleotides
Gotteslob Dienstebuch
Das Buch bietet denen, die Verantwortung für das gottesdienstliche Leben in den Gemeinden Verantwortung tragen, eine Hilfe, die Möglichkeiten des neuen Gebet- und Gesangbuches "Gotteslob" für die gottesdienstlichen Feiern (bes. Andachten, Tagzeitenliturgie, Wort-Gottes-Feier) vielfältig zu nutzen. Dem dient die Zusammenstellung von Feiermodellen, Gestaltungshinweisen, Texten, Gebeten und Gesangsvorlagen
Increased RNAi is related to intracellular release of siRNA via a covalently attached signal peptide
In the last decade short interfering RNA (siRNA) became an important means for functional genomics and the development of gene-specific drugs. However, major technical hurdles in the application of siRNA include its cellular delivery followed by its intracellular trafficking and its release in order to enter the RNA interference (RNAi) machinery. The novel phosphorothioate-stimulated cellular uptake of siRNA contrasts other known delivery systems because it involves a caveosomal pathway in which large amounts of siRNA are delivered to the perinuclear environment, leading to measurable though moderate target suppression. Limited efficacy seems to be related to intracellular trapping of siRNA. To study the role of intracellular trafficking of siRNA for biological effectiveness we studied whether a signal peptide for trans-membrane transport of bacterial protein toxins, which is covalently attached to siRNA, can promote its release from the perinuclear space into the cytoplasm and thereby enhance its biological effectiveness. We show that attachment of the peptide TQIENLKEKG to lamin A/C-directed siRNA improves target inhibition after its PS-stimulated delivery. This is related to increased efflux of the siRNA–peptide conjugate from the ER-specific perinuclear sites. In summary, this study strongly suggests that intracellular release of siRNA leads to increased biological effectiveness. Thus covalent peptide–siRNA conjugates are proposed as new tools to study the relationship between intracellular transport and efficacy of siRNA