280 research outputs found

    Surface Brightness Profiles of Composite Images of Compact Galaxies at z~4-6 in the HUDF

    Full text link
    The Hubble Ultra Deep Field (HUDF) contains a significant number of B, V and i'-band dropout objects, many of which were recently confirmed to be young star-forming galaxies at z~4-6. These galaxies are too faint individually to accurately measure their radial surface brightness profiles. Their average light profiles are potentially of great interest, since they may contain clues to the time since the onset of significant galaxy assembly. We separately co-add V, i' and z'-band HUDF images of sets of z~4,5 and 6 objects, pre-selected to have nearly identical compact sizes and the roundest shapes. From these stacked images, we are able to study the averaged radial structure of these objects at much higher signal-to-noise ratio than possible for an individual faint object. Here we explore the reliability and usefulness of a stacking technique of compact objects at z~4-6 in the HUDF. Our results are: (1) image stacking provides reliable and reproducible average surface brightness profiles; (2) the shape of the average surface brightness profiles show that even the faintest z~4-6 objects are resolved; and (3) if late-type galaxies dominate the population of galaxies at z~4-6, as previous HST studies have shown, then limits to dynamical age estimates for these galaxies from their profile shapes are comparable with the SED ages obtained from the broadband colors. We also present accurate measurements of the sky-background in the HUDF and its associated 1-sigma uncertainties.Comment: 10 pages, 9 figures, 2 tables, emulateapj; Accepted for publication in The Astronomical Journa

    Ultra-deep Large Binocular Camera U-band Imaging of the GOODS-North Field: Depth vs. Resolution

    Get PDF
    We present a study of the trade-off between depth and resolution using a large number of U-band imaging observations in the GOODS-North field (Giavalisco et al. 2004) from the Large Binocular Camera (LBC) on the Large Binocular Telescope (LBT). Having acquired over 30 hours of data (315 images with 5-6 mins exposures), we generated multiple image mosaics, starting with the best atmospheric seeing images (FWHM ≲\lesssim0.8"), which constitute ∼\sim10% of the total data set. For subsequent mosaics, we added in data with larger seeing values until the final, deepest mosaic included all images with FWHM ≲\lesssim1.8" (∼\sim94% of the total data set). From the mosaics, we made object catalogs to compare the optimal-resolution, yet shallower image to the lower-resolution but deeper image. We show that the number counts for both images are ∼\sim90% complete to UABU_{AB} ≲26\lesssim26. Fainter than UABU_{AB}∼\sim 27, the object counts from the optimal-resolution image start to drop-off dramatically (90% between UABU_{AB} = 27 and 28 mag), while the deepest image with better surface-brightness sensitivity (μUAB\mu^{AB}_{U}≲\lesssim 32 mag arcsec−2^{-2}) show a more gradual drop (10% between UABU_{AB} ≃\simeq 27 and 28 mag). For the brightest galaxies within the GOODS-N field, structure and clumpy features within the galaxies are more prominent in the optimal-resolution image compared to the deeper mosaics. Finally, we find - for 220 brighter galaxies with UABU_{AB}≲\lesssim 24 mag - only marginal differences in total flux between the optimal-resolution and lower-resolution light-profiles to μUAB\mu^{AB}_{U}≲\lesssim 32 mag arcsec−2^{-2}. In only 10% of the cases are the total-flux differences larger than 0.5 mag. This helps constrain how much flux can be missed from galaxy outskirts, which is important for studies of the Extragalactic Background Light.Comment: 24 pages, 14 figures, submitted to PASP, comments welcom

    A distortion of very--high--redshift galaxy number counts by gravitational lensing

    Full text link
    The observed number counts of high-redshift galaxy candidates have been used to build up a statistical description of star-forming activity at redshift z >~ 7, when galaxies reionized the Universe. Standard models predict that a high incidence of gravitational lensing will probably distort measurements of flux and number of these earliest galaxies. The raw probability of this happening has been estimated to be ~ 0.5 percent, but can be larger owing to observational biases. Here we report that gravitational lensing is likely to dominate the observed properties of galaxies with redshifts of z >~ 12, when the instrumental limiting magnitude is expected to be brighter than the characteristic magnitude of the galaxy sample. The number counts could be modified by an order of magnitude, with most galaxies being part of multiply imaged systems, located less than 1 arcsec from brighter foreground galaxies at z ~ 2. This lens-induced association of high-redshift and foreground galaxies has perhaps already been observed among a sample of galaxy candidates identified at z ~ 10.6. Future surveys will need to be designed to account for a significant gravitational lensing bias in high-redshift galaxy samples.Comment: Nature, Jan. 13, 2011 issue (in press

    Constraining stellar assembly and AGN feedback at the peak epoch of star formation

    Get PDF
    We study stellar assembly and feedback from active galactic nuclei (AGN) around the epoch of peak star formation (1<z<2), by comparing hydrodynamic simulations to rest-frame UV-optical galaxy colours from the Wide Field Camera 3 (WFC3) Early-Release Science (ERS) Programme. Our Adaptive Mesh Refinement simulations include metal-dependent radiative cooling, star formation, kinetic outflows due to supernova explosions, and feedback from supermassive black holes. Our model assumes that when gas accretes onto black holes, a fraction of the energy is used to form either thermal winds or sub-relativistic momentum-imparting collimated jets, depending on the accretion rate. We find that the predicted rest-frame UV-optical colours of galaxies in the model that includes AGN feedback is in broad agreement with the observed colours of the WFC3 ERS sample at 1<z<2. The predicted number of massive galaxies also matches well with observations in this redshift range. However, the massive galaxies are predicted to show higher levels of residual star formation activity than the observational estimates, suggesting the need for further suppression of star formation without significantly altering the stellar mass function. We discuss possible improvements, involving faster stellar assembly through enhanced star formation during galaxy mergers while star formation at the peak epoch is still modulated by the AGN feedback.Comment: 6 pages, 4 figures, accepted for publication in MNRAS Letter

    UV-dropout Galaxies in the GOODS-South Field from WFC3 Early Release Science Observations

    Get PDF
    We combine new high sensitivity ultraviolet (UV) imaging from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) with existing deep HST/Advanced Camera for Surveys (ACS) optical images from the Great Observatories Origins Deep Survey (GOODS) program to identify UV-dropouts, which are Lyman break galaxy (LBG) candidates at z~1-3. These new HST/WFC3 observations were taken over 50 sq.arcmin in the GOODS-South field as a part of the Early Release Science program. The uniqueness of these new UV data is that they are observed in 3 UV/optical (WFC3 UVIS) channel filters (F225W, F275W and F336W), which allows us to identify three different sets of UV-dropout samples. We apply Lyman break dropout selection criteria to identify F225W-, F275W- and F336W-dropouts, which are z~1.7, 2.1 and 2.7 LBG candidates, respectively. Our results are as follows: (1) these WFC3 UVIS filters are very reliable in selecting LBGs with z~2.0, which helps to reduce the gap between the well studied z~>3 and z~0 regimes, (2) the combined number counts agrees very well with the observed change in the surface densities as a function of redshift when compared with the higher redshift LBG samples; and (3) the best-fit Schechter function parameters from the rest-frame UV luminosity functions at three different redshifts fit very well with the evolutionary trend of the characteristic absolute magnitude, and the faint-end slope, as a function of redshift. This is the first study to illustrate the usefulness of the WFC3 UVIS channel observations to select z<3 LBGs. The addition of the new WFC3 on the HST has made it possible to uniformly select LBGs from z~1 to z~9, and significantly enhance our understanding of these galaxies using HST sensitivity and resolution.Comment: Accepted for publication in ApJ (24 pages, 7 figures

    Hubble Space Telescope Imaging of Lyman Alpha Emission at z=4.4

    Get PDF
    We present the highest redshift detections of resolved Lyman alpha emission, using Hubble Space Telescope/ACS F658N narrowband-imaging data taken in parallel with the Wide Field Camera 3 Early Release Science program in the GOODS CDF-S. We detect Lyman alpha emission from three spectroscopically confirmed z = 4.4 Lyman alpha emitting galaxies (LAEs), more than doubling the sample of LAEs with resolved Lyman alpha emission. Comparing the light distribution between the rest-frame ultraviolet continuum and narrowband images, we investigate the escape of Lyman alpha photons at high redshift. While our data do not support a positional offset between the Lyman alpha and rest-frame ultraviolet (UV) continuum emission, the half-light radii in two out of the three galaxies are significantly larger in Lyman alpha than in the rest-frame UV continuum. This result is confirmed when comparing object sizes in a stack of all objects in both bands. Additionally, the narrowband flux detected with HST is significantly less than observed in similar filters from the ground. These results together imply that the Lyman alpha emission is not strictly confined to its indigenous star-forming regions. Rather, the Lyman alpha emission is more extended, with the missing HST flux likely existing in a diffuse outer halo. This suggests that the radiative transfer of Lyman alpha photons in high-redshift LAEs is complicated, with the interstellar-medium geometry and/or outflows playing a significant role in galaxies at these redshifts.Comment: Submitted to the Astrophysical Journal. 11 pages, 10 figure

    Spectrophotometrically Identified stars in the PEARS-N and PEARS-S fields

    Get PDF
    Deep ACS slitless grism observations and identification of stellar sources are presented within the Great Observatories Origins Deep Survey (GOODS) North and South fields which were obtained in the Probing Evolution And Reionization Spectroscopically (PEARS) program. It is demonstrated that even low resolution spectra can be a very powerful means to identify stars in the field, especially low mass stars with stellar types M0 and later. The PEARS fields lay within the larger GOODS fields, and we used new, deeper images to further refine the selection of stars in the PEARS field, down to a magnitude of mz = 25 using a newly developed stellarity parameter. The total number of stars with reliable spectroscopic and morphological identification was 95 and 108 in the north and south fields respectively. The sample of spectroscopically identified stars allows constraints to be set on the thickness of the Galactic thin disk as well as contributions from a thick disk and a halo component. We derive a thin disk scale height, as traced by the population of M4 to M9 dwarfs along two independent lines of sight, of h_thin = 370 +60/-65 pc. When including the more massive M0 to M4 dwarf population, we derive h_thin = 300 +/- 70pc. In both cases, we observe that we must include a combination of thick and halo components in our models in order to account for the observed numbers of faint dwarfs. The required thick disk scale height is typically h_thick=1000 pc and the acceptable relative stellar densities of the thin disk to thick disk and the thin disk to halo components are in the range of 0.00025<f_halo<0.0005 and 0.05<f_thick<0.08 and are somewhat dependent on whether the more massive M0 to M4 dwarfs are included in our sample
    • …
    corecore