26 research outputs found

    Apolipoprotein E mRNA expression in mononuclear cells from normolipidemic and hypercholesterolemic individuals treated with atorvastatin

    Get PDF
    Abstract\ud \ud Background\ud Apolipoprotein E (apoE) is a key component of the lipid metabolism. Polymorphisms at the apoE gene (APOE) have been associated with cardiovascular disease, lipid levels and lipid-lowering response to statins. We evaluated the effects on APOE expression of hypercholesterolemia, APOE ε2/ε3/ε4 genotypes and atorvastatin treatment in Brazilian individuals. The relationship of APOE genotypes and plasma lipids and atorvastatin response was also tested in this population.\ud \ud \ud Methods\ud APOE ε2/ε3/ε4 and plasma lipids were evaluated in 181 normolipidemic (NL) and 181 hypercholesterolemic (HC) subjects. HC individuals with indication for lowering-cholesterol treatment (n = 141) were treated with atorvastatin (10 mg/day/4-weeks). APOE genotypes and APOE mRNA in peripheral blood mononuclear cells (PBMC) were analyzed by TaqMan real time PCR.\ud \ud \ud Results\ud HC had lower APOE expression than NL group (p < 0.05) and individuals with low APOE expression showed higher plasma total and LDL cholesterol and apoB, as well as higher apoAI (p < 0.05). Individuals carrying ε2 allele have reduced risk for hypercholesterolemia (OR: 0.27, 95% I.C.: 0.08-0.85, p < 0.05) and NL ε2 carriers had lower total and LDL cholesterol and apoB levels, and higher HDL cholesterol than non-carriers (p < 0.05). APOE genotypes did not affect APOE expression and atorvastatin response. Atorvastatin treatment do not modify APOE expression, however those individuals without LDL cholesterol goal achievement after atorvastatin treatment according to the IV Brazilian Guidelines for Dyslipidemia and Atherosclerosis Prevention had lower APOE expression than patients with desirable response after the treatment (p < 0.05).\ud \ud \ud Conclusions\ud APOE expression in PBMC is modulated by hypercholesterolemia and the APOE mRNA level regulates the plasma lipid profile. Moreover the expression profile is not modulated neither by atorvastatin nor APOE genotypes. In our population, APOE ε2 allele confers protection against hypercholesterolemia and a less atherogenic lipid profile. Moreover, low APOE expression after treatment of patients with poor response suggests a possible role of APOE level in atorvastatin response

    Apolipoprotein E mRNA expression in mononuclear cells from normolipidemic and hypercholesterolemic individuals treated with atorvastatin

    Get PDF
    Abstract\ud \ud \ud \ud Background\ud \ud Apolipoprotein E (apoE) is a key component of the lipid metabolism. Polymorphisms at the apoE gene (APOE) have been associated with cardiovascular disease, lipid levels and lipid-lowering response to statins. We evaluated the effects on APOE expression of hypercholesterolemia, APOE ε2/ε3/ε4 genotypes and atorvastatin treatment in Brazilian individuals. The relationship of APOE genotypes and plasma lipids and atorvastatin response was also tested in this population.\ud \ud \ud \ud Methods\ud \ud APOE ε2/ε3/ε4 and plasma lipids were evaluated in 181 normolipidemic (NL) and 181 hypercholesterolemic (HC) subjects. HC individuals with indication for lowering-cholesterol treatment (n = 141) were treated with atorvastatin (10 mg/day/4-weeks). APOE genotypes and APOE mRNA in peripheral blood mononuclear cells (PBMC) were analyzed by TaqMan real time PCR.\ud \ud \ud \ud Results\ud \ud HC had lower APOE expression than NL group (p < 0.05) and individuals with low APOE expression showed higher plasma total and LDL cholesterol and apoB, as well as higher apoAI (p < 0.05). Individuals carrying ε2 allele have reduced risk for hypercholesterolemia (OR: 0.27, 95% I.C.: 0.08-0.85, p < 0.05) and NL ε2 carriers had lower total and LDL cholesterol and apoB levels, and higher HDL cholesterol than non-carriers (p < 0.05). APOE genotypes did not affect APOE expression and atorvastatin response. Atorvastatin treatment do not modify APOE expression, however those individuals without LDL cholesterol goal achievement after atorvastatin treatment according to the IV Brazilian Guidelines for Dyslipidemia and Atherosclerosis Prevention had lower APOE expression than patients with desirable response after the treatment (p < 0.05).\ud \ud \ud \ud Conclusions\ud \ud APOE expression in PBMC is modulated by hypercholesterolemia and the APOE mRNA level regulates the plasma lipid profile. Moreover the expression profile is not modulated neither by atorvastatin nor APOE genotypes. In our population, APOE ε2 allele confers protection against hypercholesterolemia and a less atherogenic lipid profile. Moreover, low APOE expression after treatment of patients with poor response suggests a possible role of APOE level in atorvastatin response.The present study was supported by a grant from FAPESP (Protocol # 2009/15125-8). We thank the volunteers for their participation and physicians and nurses from the Medical Clinics Division of the University Hospital of the University of Sao Paulo for technical support during patient selection. Alvaro Cerda is a recipient of a fellowship from CONICYT-Chile, Mario H. Hirata and Rosario D.C. Hirata were recipients from CNPq-Brazil, and Fabiana D.V. Genvigir, Maria A.V. Willrich and Simone S. Arazi were recipients from FAPESP-Brazil

    Evaluation of neuromotor development by means of the Harris Infant Neuromotor Test

    Get PDF
    Objective: To investigate the neuromotor development of at-risk children between three and 12 months of life, administering the Brazilian version of the Harris Infant Neuromotor Test (HINT).Method: A longitudinal study, with 78 children and 76 parents/guardians discharged from a neonatal intensive care unit in Fortaleza-CE/Brazil. Two instruments were administered: HINT and a socioeconomic questionnaire, between July/2009 to August/2010. Data from 55 preterm and 23 term children were analyzed. Results: The final mean scores ranged from 14.6 to 25.2 and from 11.2 to 24.7, for preterm and term, respectively, showing that 91% of children demonstrated good neuromotor performance; seven premature infants showed alterations which led to the referral of three children to a specialized clinic for examination and diagnostics.Conclusion: The test allowed nurses to assess infant development, identify deviations early, and plan interventions

    Pharmacogenetics of OATP Transporters Reveals That SLCO1B1 c.388A>G Variant Is Determinant of Increased Atorvastatin Response

    Get PDF
    Aims: The relationship between variants in SLCO1B1 and SLCO2B1 genes and lipid-lowering response to atorvastatin was investigated. Material and Methods: One-hundred-thirty-six unrelated individuals with hypercholesterolemia were selected and treated with atorvastatin (10 mg/day/4 weeks). They were genotyped with a panel of ancestry informative markers for individual African component of ancestry (ACA) estimation by SNaPshot® and SLCO1B1 (c.388A&gt;G, c.463C&gt;A and c.521T&gt;C) and SLCO2B1 (−71T&gt;C) gene polymorphisms were identified by TaqMan® Real-time PCR. Results: Subjects carrying SLCO1B1 c.388GG genotype exhibited significantly high low-density lipoprotein (LDL) cholesterol reduction relative to c.388AA+c.388AG carriers (41 vs. 37%, p = 0.034). Haplotype analysis revealed that homozygous of SLCO1B1*15 (c.521C and c.388G) variant had similar response to statin relative to heterozygous and non-carriers. A multivariate logistic regression analysis confirmed that c.388GG genotype was associated with higher LDL cholesterol reduction in the study population (OR: 3.2, CI95%:1.3–8.0, p &lt; 0.05). Conclusion: SLCO1B1 c.388A&gt;G polymorphism causes significant increase in atorvastatin response and may be an important marker for predicting efficacy of lipid-lowering therapy

    an international multi center serum protein electrophoresis accuracy and m protein isotyping study part i factors impacting limit of quantitation of serum protein electrophoresis

    Get PDF
    AbstractBackgroundSerum protein electrophoresis (SPEP) is used to quantify the serum monoclonal component or M-protein, for diagnosis and monitoring of monoclonal gammopathies. Significant imprecision and inaccuracy pose challenges in reporting small M-proteins. Using therapeutic monoclonal antibody-spiked sera and a pooled beta-migrating M-protein, we aimed to assess SPEP limitations and variability across 16 laboratories in three continents.MethodsSera with normal, hypo- or hypergammaglobulinemia were spiked with daratumumab, Dara (cathodal migrating), or elotuzumab, Elo (central-gamma migrating), with concentrations from 0.125 to 10 g/L (n = 62) along with a beta-migrating sample (n = 9). Provided with total protein (reverse biuret, Siemens), laboratories blindly analyzed samples according to their SPEP and immunofixation (IFE) or immunosubtraction (ISUB) standard operating procedures. Sixteen laboratories reported the perpendicular drop (PD) method of gating the M-protein, while 10 used tangent skimming (TS). A mean percent recovery range of 80%–120% was set as acceptable. The inter-laboratory %CV was calculated.ResultsGamma globulin background, migration pattern and concentration all affect the precision and accuracy of quantifying M-proteins by SPEP. As the background increases, imprecision increases and accuracy decreases leading to overestimation of M-protein quantitation especially evident in hypergamma samples, and more prominent with PD. Cathodal migrating M-proteins were associated with less imprecision and higher accuracy compared to central-gamma migrating M-proteins, which is attributed to the increased gamma background contribution in M-proteins migrating in the middle of the gamma fraction. There is greater imprecision and loss of accuracy at lower M-protein concentrations.ConclusionsThis study suggests that quantifying exceedingly low concentrations of M-proteins, although possible, may not yield adequate accuracy and precision between laboratories

    Apolipoprotein E mRNA expression in mononuclear cells from normolipidemic and hypercholesterolemic individuals treated with atorvastatin

    No full text
    Abstract Background Apolipoprotein E (apoE) is a key component of the lipid metabolism. Polymorphisms at the apoE gene (APOE) have been associated with cardiovascular disease, lipid levels and lipid-lowering response to statins. We evaluated the effects on APOE expression of hypercholesterolemia, APOE ε2/ε3/ε4 genotypes and atorvastatin treatment in Brazilian individuals. The relationship of APOE genotypes and plasma lipids and atorvastatin response was also tested in this population. Methods APOE ε2/ε3/ε4 and plasma lipids were evaluated in 181 normolipidemic (NL) and 181 hypercholesterolemic (HC) subjects. HC individuals with indication for lowering-cholesterol treatment (n = 141) were treated with atorvastatin (10 mg/day/4-weeks). APOE genotypes and APOE mRNA in peripheral blood mononuclear cells (PBMC) were analyzed by TaqMan real time PCR. Results HC had lower APOE expression than NL group (p APOE expression showed higher plasma total and LDL cholesterol and apoB, as well as higher apoAI (p APOE genotypes did not affect APOE expression and atorvastatin response. Atorvastatin treatment do not modify APOE expression, however those individuals without LDL cholesterol goal achievement after atorvastatin treatment according to the IV Brazilian Guidelines for Dyslipidemia and Atherosclerosis Prevention had lower APOE expression than patients with desirable response after the treatment (p Conclusions APOE expression in PBMC is modulated by hypercholesterolemia and the APOE mRNA level regulates the plasma lipid profile. Moreover the expression profile is not modulated neither by atorvastatin nor APOE genotypes. In our population, APOE ε2 allele confers protection against hypercholesterolemia and a less atherogenic lipid profile. Moreover, low APOE expression after treatment of patients with poor response suggests a possible role of APOE level in atorvastatin response.</p
    corecore