123 research outputs found

    Monotherapy efficacy of blood-brain barrier permeable small molecule reactivators of protein phosphatase 2A in glioblastoma

    Get PDF
    Glioblastoma is a fatal disease in which most targeted therapies have clinically failed. However, pharmacological reactivation of tumour suppressors has not been thoroughly studied as yet as a glioblastoma therapeutic strategy. Tumour suppressor protein phosphatase 2A is inhibited by non-genetic mechanisms in glioblastoma, and thus, it would be potentially amendable for therapeutic reactivation. Here, we demonstrate that small molecule activators of protein phosphatase 2A, NZ-8-061 and DBK-1154, effectively cross the in vitro model of blood-brain barrier, and in vivo partition to mouse brain tissue after oral dosing. In vitro, small molecule activators of protein phosphatase 2A exhibit robust cell-killing activity against five established glioblastoma cell lines, and nine patient-derived primary glioma cell lines. Collectively, these cell lines have heterogeneous genetic background, kinase inhibitor resistance profile and stemness properties; and they represent different clinical glioblastoma subtypes. Moreover, small molecule activators of protein phosphatase 2A were found to be superior to a range of kinase inhibitors in their capacity to kill patient-derived primary glioma cells. Oral dosing of either of the small molecule activators of protein phosphatase 2A significantly reduced growth of infiltrative intracranial glioblastoma tumours. DBK-1154, with both higher degree of brain/blood distribution, and more potent in vitro activity against all tested glioblastoma cell lines, also significantly increased survival of mice bearing orthotopic glioblastoma xenografts. In summary, this report presents a proof-of-principle data for blood-brain barrier-permeable tumour suppressor reactivation therapy for glioblastoma cells of heterogenous molecular background. These results also provide the first indications that protein phosphatase 2A reactivation might be able to challenge the current paradigm in glioblastoma therapies which has been strongly focused on targeting specific genetically altered cancer drivers with highly specific inhibitors. Based on demonstrated role for protein phosphatase 2A inhibition in glioblastoma cell drug resistance, small molecule activators of protein phosphatase 2A may prove to be beneficial in future glioblastoma combination therapies.Peer reviewe

    Effects of Dual Targeting of Tumor Cells and Stroma in Human Glioblastoma Xenografts with a Tyrosine Kinase Inhibitor against c-MET and VEGFR2

    Get PDF
    Contains fulltext : 118357.pdf (publisher's version ) (Open Access)Anti-angiogenic treatment of glioblastoma with Vascular Endothelial Growth Factor (VEGF)- or VEGF Receptor 2 (VEGFR2) inhibitors normalizes tumor vessels, resulting in a profound radiologic response and improved quality of life. This approach however does not halt tumor progression by diffuse infiltration, as this phenotype is less angiogenesis dependent. Combined inhibition of angiogenesis and diffuse infiltrative growth would therefore be a more effective treatment approach in these tumors. The HGF/c-MET axis is important in both angiogenesis and cell migration in several tumor types including glioma. We therefore analyzed the effects of the c-MET- and VEGFR2 tyrosine kinase inhibitor cabozantinib (XL184, Exelixis) on c-MET positive orthotopic E98 glioblastoma xenografts, which routinely present with angiogenesis-dependent areas of tumor growth, as well as diffuse infiltrative growth. In cultures of E98 cells, cabozantinib effectively inhibited c-MET phosphorylation, concomitant with inhibitory effects on AKT and ERK1/2 phosphorylation, and cell proliferation and migration. VEGFR2 activation in endothelial cells was also effectively inhibited . Treatment of BALB/c nu/nu mice carrying orthotopic E98 xenografts resulted in a significant increase in overall survival. Cabozantinib effectively inhibited angiogenesis, resulting in increased hypoxia in angiogenesis-dependent tumor areas, and induced vessel normalization. Yet, tumors ultimately escaped cabozantinib therapy by diffuse infiltrative outgrowth via vessel co-option. Of importance, in contrast to the results from experiments, blockade of c-MET activation was incomplete, possibly due to multiple factors including restoration of the blood-brain barrier resulting from cabozantinib-induced VEGFR2 inhibition. In conclusion, cabozantinib is a promising therapy for c-MET positive glioma, but improving delivery of the drug to the tumor and/or the surrounding tissue may be needed for full activity

    Altered metabolic landscape in IDH‐mutant gliomas affects phospholipid, energy, and oxidative stress pathways

    Get PDF
    Heterozygous mutations in NADP‐dependent isocitrate dehydrogenases (IDH) define the large majority of diffuse gliomas and are associated with hypermethylation of DNA and chromatin. The metabolic dysregulations imposed by these mutations, whether dependent or not on the oncometabolite D‐2‐hydroxyglutarate (D2HG), are less well understood. Here, we applied mass spectrometry imaging on intracranial patient‐derived xenografts of IDH‐mutant versus IDH wild‐type glioma to profile the distribution of metabolites at high anatomical resolution in situ. This approach was complemented by in vivo tracing of labeled nutrients followed by liquid chromatography–mass spectrometry (LC‐MS) analysis. Selected metabolites were verified on clinical specimen. Our data identify remarkable differences in the phospholipid composition of gliomas harboring the IDH1 mutation. Moreover, we show that these tumors are characterized by reduced glucose turnover and a lower energy potential, correlating with their reduced aggressivity. Despite these differences, our data also show that D2HG overproduction does not result in a global aberration of the central carbon metabolism, indicating strong adaptive mechanisms at hand. Intriguingly, D2HG shows no quantitatively important glucose‐derived label in IDH‐mutant tumors, which suggests that the synthesis of this oncometabolite may rely on alternative carbon sources. Despite a reduction in NADPH, glutathione levels are maintained. We found that genes coding for key enzymes in de novo glutathione synthesis are highly expressed in IDH‐mutant gliomas and the expression of cystathionine‐β‐synthase (CBS) correlates with patient survival in the oligodendroglial subtype. This study provides a detailed and clinically relevant insight into the in vivo metabolism of IDH1‐mutant gliomas and points to novel metabolic vulnerabilities in these tumors

    Increased mitochondrial activity in a novel IDH1-R132H mutant human oligodendroglioma xenograft model: in situ detection of 2-HG and α-KG

    Get PDF
    Background: Point mutations in genes encoding NADP+-dependent isocitrate dehydrogenases (especially IDH1) are common in lower grade diffuse gliomas and secondary glioblastomas and occur early during tumor development. The contribution of these mutations to gliomagenesis is not completely understood and research is hampered by the lack of relevant tumor models. We previously described the development of the patient-derived high-grade oligodendroglioma xenograft model E478 that carries the commonly occurring IDH1-R132H mutation. We here report on the analyses of E478 xenografts at the genetic, histologic and metabolic level. Results: LC-MS and in situ mass spectrometric imaging by LESA-nano ESI-FTICR revealed high levels of the proposed oncometabolite D-2-hydroxyglutarate (D-2HG), the product of enzymatic conversion of α-ketoglutarate (α-KG) by IDH1-R132H, in the tumor but not in surrounding brain parenchyma. α-KG levels and total NADP+-dependent IDH activity were similar in IDH1-mutant and -wildtype xenografts, demonstrating that IDH1-mutated cancer cells maintain α-KG levels. Interestingly, IDH1-mutant tumor cells in vivo present with high densities of mitochondria and increased levels of mitochondrial activity as compared to IDH1-wildtype xenografts. It is not yet clear whether this altered mitochondrial activity is a driver or a consequence of tumorigenesis. Conclusions: The oligodendroglioma model presented here is a valuable model for further functional elucidation of the effects of IDH1 mutations on tumor metabolism and may aid in the rational development of novel therapeutic strategies for the large subgroup of gliomas carrying IDH1 mutations

    Mutant IDH1 Differently Affects Redox State and Metabolism in Glial Cells of Normal and Tumor Origin

    Get PDF
    IDH1R132H (isocitrate dehydrogenase 1) mutations play a key role in the development of low-grade gliomas. IDH1wt converts isocitrate to α-ketoglutarate while reducing nicotinamide adenine dinucleotide phosphate (NADP+), whereas IDH1R132H uses α-ketoglutarate and NADPH to generate the oncometabolite 2-hydroxyglutarate (2-HG). While the effects of 2-HG have been the subject of intense research, the 2-HG independent effects of IDH1R132H are still ambiguous. The present study demonstrates that IDH1R132H expression but not 2-HG alone leads to significantly decreased tricarboxylic acid (TCA) cycle metabolites, reduced proliferation, and enhanced sensitivity to irradiation in both glioblastoma cells and astrocytes in vitro. Glioblastoma cells, but not astrocytes, showed decreased NADPH and NAD+ levels upon IDH1R132H transduction. However, in astrocytes IDH1R132H led to elevated expression of the NAD-synthesizing enzyme nicotinamide phosphoribosyltransferase (NAMPT). These effects were not 2-HG mediated. This suggests that IDH1R132H cells utilize NAD+ to restore NADP pools, which only astrocytes could compensate via induction of NAMPT. We found that the expression of NAMPT is lower in patient-derived IDH1-mutant glioma cells and xenografts compared to IDH1-wildtype models. The Cancer Genome Atlas (TCGA) data analysis confirmed lower NAMPT expression in IDH1-mutant versus IDH1-wildtype gliomas. We show that the IDH1 mutation directly affects the energy homeostasis and redox state in a cell-type dependent manner. Targeting the impairments in metabolism and redox state might open up new avenues for treating IDH1-mutant gliomas.publishedVersio

    Multiplex RNA-based detection of clinically relevant MET alterations in advanced non-small cell lung cancer

    Get PDF
    We studied MET alterations in 474 advanced non-small-cell lung cancer (NSCLC) patients by nCounter, an RNA-based technique. We identified 3% with MET Δex14 mRNA and 3.5% with very-high MET mRNA expression, a surrogate of MET amplification. MET alterations identified by nCounter correlated with clinical benefit from MET inhibitors. Quantitative mRNA-based techniques can improve the selection of patients for MET-targeted therapies. MET inhibitors have shown activity in non-small-cell lung cancer patients (NSCLC) with MET amplification and exon 14 skipping (METΔex14). However, patient stratification is imperfect, and thus, response rates have varied widely. Here, we studied MET alterations in 474 advanced NSCLC patients by nCounter, an RNA-based technique, together with next-generation sequencing (NGS), fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and reverse transcriptase polymerase chain reaction (RT-PCR), exploring correlation with clinical benefit. Of the 474 samples analyzed, 422 (89%) yielded valid results by nCounter, which identified 13 patients (3%) with MET Δex14 and 15 patients (3.5%) with very-high MET mRNA expression. These two subgroups were mutually exclusive, displayed distinct phenotypes and did not generally coexist with other drivers. For MET Δex14, 3/8 (37.5%) samples positive by nCounter tested negative by NGS. Regarding patients with very-high MET mRNA, 92% had MET amplification by FISH and/or NGS. However, FISH failed to identify three patients (30%) with very-high MET RNA expression, among which one received MET tyrosine kinase inhibitor treatment deriving clinical benefit. Our results indicate that quantitative mRNA-based techniques can improve the selection of patients for MET-targeted therapies

    Myosin5a tail associates directly with Rab3A-containing compartments in neurons

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of American Society for Biochemistry and Molecular Biology. The definitive version was published in Journal of Biological Chemistry, 286 (2011): 14352-14361, doi:10.1074/jbc.M110.187286.Myosin-Va (Myo5a) is a motor protein associated with synaptic vesicles (SVs) but the mechanism by which it interacts has not yet been identified. A potential class of binding partners are Rab GTPases and Rab3A is known to associate with SVs and is involved in SV trafficking. We performed experiments to determine whether Rab3A interacts with Myo5a and whether it is required for transport of neuronal vesicles. In vitro motility assays performed with axoplasm from the squid giant axon showed a requirement for a Rab GTPase in Myo5a-dependent vesicle transport. Furthermore, mouse recombinant Myo5a tail revealed that it associated with Rab3A in rat brain synaptosomal preparations in vitro and the association was confirmed by immunofluorescence imaging of primary neurons isolated from the frontal cortex of mouse brains. Synaptosomal Rab3A was retained on recombinant GST-tagged Myo5a tail affinity columns in a GTP-dependent manner. Finally, the direct interaction of Myo5a and Rab3A was determined by sedimentation v e l o c i t y analytical ultracentrifugation using recombinant mouse Myo5a tail and human Rab3A. When both proteins were incubated in the presence of 1 mM GTPγS, Myo5a tail and Rab3A formed a complex and a direct interaction was observed. Further analysis revealed that GTP-bound Rab3A interacts with both the monomeric and dimeric species of the Myo5a tail. However, the interaction between Myo5a tail and nucleotidefree Rab3A did not occur. Thus, our results show that Myo5a and Rab3A are direct binding partners and interact on SVs and that the Myo5a/Rab3A complex is involved in transport of neuronal vesicles

    Concerns about anti-angiogenic treatment in patients with glioblastoma multiforme

    Get PDF
    BACKGROUND: The relevance of angiogenesis inhibition in the treatment of glioblastoma multiforme (GBM) should be considered in the unique context of malignant brain tumours. Although patients benefit greatly from reduced cerebral oedema and intracranial pressure, this important clinical improvement on its own may not be considered as an anti-tumour effect. DISCUSSION: GBM can be roughly separated into an angiogenic component, and an invasive or migratory component. Although this latter component seems inert to anti-angiogenic therapy, it is of major importance for disease progression and survival. We reviewed all relevant literature. Published data support that clinical symptoms are tempered by anti-angiogenic treatment, but that tumour invasion continues. Unfortunately, current imaging modalities are affected by anti-angiogenic treatment too, making it even harder to define tumour margins. To illustrate this we present MRI, biopsy and autopsy specimens from bevacizumab-treated patients. Moreover, while treatment of other tumour types may be improved by combining chemotherapy with anti-angiogenic drugs, inhibiting angiogenesis in GBM may antagonise the efficacy of chemotherapeutic drugs by normalising the blood-brain barrier function. SUMMARY: Although angiogenesis inhibition is of considerable value for symptom reduction in GBM patients, lack of proof of a true anti-tumour effect raises concerns about the place of this type of therapy in the treatment of GBM

    Estimates of adherence and error analysis of physical activity data collected via accelerometry in a large study of free-living adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activity monitors (AM) are small, electronic devices used to quantify the amount and intensity of physical activity (PA). Unfortunately, it has been demonstrated that data loss that occurs when AMs are not worn by subjects (removals during sleeping and waking hours) tend to result in biased estimates of PA and total energy expenditure (TEE). No study has reported the degree of data loss in a large study of adults, and/or the degree to which the estimates of PA and TEE are affected. Also, no study in adults has proposed a methodology to minimize the effects of AM removals.</p> <p>Methods</p> <p>Adherence estimates were generated from a pool of 524 women and men that wore AMs for 13 – 15 consecutive days. To simulate the effect of data loss due to AM removal, a reference dataset was first compiled from a subset consisting of 35 highly adherent subjects (24 HR; minimum of 20 hrs/day for seven consecutive days). AM removals were then simulated during sleep and between one and ten waking hours using this 24 HR dataset. Differences in the mean values for PA and TEE between the 24 HR reference dataset and the different simulations were compared using paired <it>t</it>-tests and/or coefficients of variation.</p> <p>Results</p> <p>The estimated average adherence of the pool of 524 subjects was 15.8 ± 3.4 hrs/day for approximately 11.7 ± 2.0 days. Simulated data loss due to AM removals during sleeping hours in the 24 HR database (n = 35), resulted in biased estimates of PA (p < 0.05), but not TEE. Losing as little as one hour of data from the 24 HR dataset during waking hours results in significant biases (p < 0.0001) and variability (coefficients of variation between 7 and 21%) in the estimates of PA. Inserting a constant value for sleep and imputing estimates for missing data during waking hours significantly improved the estimates of PA.</p> <p>Conclusion</p> <p>Although estimated adherence was good, measurements of PA can be improved by relatively simple imputation of missing AM data.</p
    corecore