58 research outputs found

    The Confessing Church

    Get PDF
    In the wake of the rise of Hitler’s National Socialist state a church struggle took over Germany. The “German Christians,” placed by Hitler, under the leadership of Ludwig Muller, fought to blend Christianity with nationalism and political oppression. Muller and the German Christians followed an ideology of Aryan superiority and taught that the Jewish people were sub- human. During the confusion throughout the Protestant church, theologians, pastors, and professors rose up based on their own theology to combat the German Christians. This movement was called the “Confessing Church” and at its peak consisted of about 3000 members. Though the German Christians brought opposition that consisted of political oppression and mass arrests, the Confessing Church fought to teach the Germans that Christ loves the Jewish people and that his word has taught that since before Luther and Hitler

    The Madrid Skylitzes

    Get PDF
    In the late 11th century, following the reign of Emperor Isaac I Komnenos, historian John Skylitzes recorded a history of the Byzantine Empire. This history, later to be called The Synopsis of Histories follows the Byzantine Empire from the year 811CE to 1057. Sometime in the two centuries to follow, the 250 year history was copied by scribes onto several manuscripts. Named after the current city it rests in, the Madrid Skylitzes is the only surviving manuscript of The Synopsis of Histories. Not only is the Madrid Skylitzes the only surviving manuscript of John Skylitzes’ work, it is also the only surviving illuminated manuscript of a Greek chronicle.1 The manuscript contains over 500 individually painted miniatures along with many pages containing space for miniatures that the illuminators failed to complete.2 Along with missing illuminations, many of the original manuscript pages are missing altogether. Despite the manuscript’s incompleteness, it still stands as a significant work in both the fields of history and art. In recent years the manuscript has been the center of many studies and is slowly gaining popular attention

    Center-surround vs. distance-independent lateral connectivity in the olfactory bulb

    Get PDF
    Lateral neuronal interactions are known to play important roles in sensory information processing. A center-on surround-off local circuit arrangement has been shown to play a role in mediating contrast enhancement in the visual, auditory, and somatosensory systems. The lateral connectivity and the influence of those connections have been less clear for the olfactory system. A critical question is whether the synaptic connections between the primary projection neurons, mitral and tufted (M/T) cells, and their main inhibitory interneurons, the granule cells (GCs), can support a center-surround motif. Here, we study this question by injecting a “center” in the glomerular layer of the olfactory bulb (OB) with a marker of synaptic connectivity, the pseudorabies virus (PRV), then examines the distribution of labeling in the “surround” of GCs. We use a novel method to score the degree to which the data fits a center-surround model vs. distance-independent connectivity. Data from 22 injections show that M/T cells generally form lateral connections with GCs in patterns that lie between the two extremes

    Lateral Connectivity in the Olfactory Bulb is Sparse and Segregated

    Get PDF
    Lateral connections in the olfactory bulb were previously thought to be organized for center–surround inhibition. However, recent anatomical and physiological studies showed sparse and distributed interactions of inhibitory granule cells (GCs) which tended to be organized in columnar clusters. Little is known about how these distributed clusters are interconnected. In this study, we use transsynaptic tracing viruses bearing green or red fluorescent proteins to further elucidate mitral- and tufted-to-GC connectivity. Separate sites in the glomerular layer were injected with each virus. Columns with labeling from both viruses after transsynaptic spread show sparse red or green GCs which tended to be segregated. However, there was a higher incidence of co-labeled cells than chance would predict. Similar segregation of labeling is observed from dual injections into olfactory cortex. Collectively, these results suggest that neighboring mitral and tufted cells receive inhibitory inputs from segregated subsets of GCs, enabling inhibition of a center by specific and discontinuous lateral elements

    Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    Full text link
    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multidisciplinary experiments in a laboratory whose projected life span is at least 30 years. From these experiments, a critical suite of experiments is outlined, whose construction will be funded along with the facility. The Facility design permits expansion and evolution, as may be driven by future science requirements, and enables participation by other agencies. The design leverages South Dakota's substantial investment in facility infrastructure, risk retirement, and operation of its Sanford Laboratory at Homestake. The Project is planning education and outreach programs, and has initiated efforts to establish regional partnerships with underserved populations - regional American Indian and rural populations

    Systematic first-principles study of impurity hybridization in NiAl

    Get PDF
    We have performed a systematic first-principles computational study of the effects of impurity atoms (boron, carbon, nitrogen, oxygen, silicon, phosporus, and sulfur) on the orbital hybridization and bonding properties in the intermetallic alloy NiAl using a full-potential linear muffin-tin orbital method. The matrix elements in momentum space were used to calculate real-space properties: onsite parameters, partial densities of states, and local charges. In impurity atoms that are empirically known to be embrittler (N and O) we found that the 2s orbital is bound to the impurity and therefore does not participate in the covalent bonding. In contrast, the corresponding 2s orbital is found to be delocalized in the cohesion enhancers (B and C). Each of these impurity atoms is found to acquire a net negative local charge in NiAl irrespective of whether they sit in the Ni or Al site. The embrittler therefore reduces the total number of electrons available for covalent bonding by removing some of the electrons from the neighboring Ni or Al atoms and localizing them at the impurity site. We show that these correlations also hold for silicon, phosporus, and sulfur.Comment: Revtex, 8 pages, 7 eps figures, to appear in Phys. Rev.

    Notch1 activity in the olfactory bulb is odour-dependent and contributes to olfactory behaviour

    Get PDF
    Notch signalling plays an important role in synaptic plasticity, learning and memory functions in both Drosophila and rodents. In this paper, we report that this feature is not restricted to hippocampal networks but also involves the olfactory bulb (OB). Odour discrimination and olfactory learning in rodents are essential for survival. Notch1 expression is enriched in mitral cells of the mouse OB. These principal neurons are responsive to specific input odorants and relay the signal to the olfactory cortex. Olfactory stimulation activates a subset of mitral cells, which show an increase in Notch activity. In Notch1cKOKln mice, the loss of Notch1 in mitral cells affects the magnitude of the neuronal response to olfactory stimuli. In addition, Notch1cKOKln mice display reduced olfactory aversion to propionic acid as compared to wildtype controls. This indicates, for the first time, that Notch1 is involved in olfactory processing and may contribute to olfactory behaviour

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    • 

    corecore