
A Framework for Exploring Functional Variability in
Olfactory Receptor Genes
Orna Man1,2.*, David C. Willhite3., Chiquito J. Crasto3, Gordon M. Shepherd3, Yoav Gilad4*

1 Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel, 2 Department of Structural Biology, Weizmann Institute of
Science, Rehovot, Israel, 3 Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America,
4 Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America

Background. Olfactory receptors (ORs) are the largest gene family in mammalian genomes. Since nearly all OR genes are
orphan receptors, inference of functional similarity or differences between odorant receptors typically relies on sequence
comparisons. Based on the alignment of entire coding region sequence, OR genes are classified into families and subfamilies,
a classification that is believed to be a proxy for OR gene functional variability. However, the assumption that overall protein
sequence diversity is a good proxy for functional properties is untested. Methodology. Here, we propose an alternative
sequence-based approach to infer the similarities and differences in OR binding capacity. Our approach is based on similarities
and differences in the predicted binding pockets of OR genes, rather than on the entire OR coding region. Conclusions.

Interestingly, our approach yields markedly different results compared to the analysis based on the entire OR coding-regions.
While neither approach can be tested at this time, the discrepancy between the two calls into question the assumption that
the current classification reliably reflects OR gene functional variability.
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INTRODUCTION
Olfactory receptor (OR) genes, the largest gene family in

mammalian genomes, constitute the basis for the sense of smell

[1–3]. Based on their full length protein sequence similarity,

mammalian OR genes are divided into two classes, 17 families and

,250 subfamilies [4]. OR genes from the same subfamily are

defined as sharing 60% or more of their overall amino acid

sequence. Class I genes are closely related to OR genes found in

fish and are hence referred to as ‘fish like’ [5], while class II OR

genes are specific to terrestrials [3]; but see [6].

Recently, the complete OR gene repertoires of a number of

mammalian species became available, permitting interspecies

comparisons of complete OR gene repertoires [3,7–10]. Such

inter-species comparisons may increase our understanding of the

similarities and differences between the sense of smell of different

species. Humans, for example, have roughly 900 OR genes

[3,11,12], but 54% of them carry one or more coding region

disruptions and therefore are annotated as pseudogenes. In

contrast, the mouse OR gene repertoire is ,30% larger than

that of man [7,13,14], but contains only 20% pseudogenes. Thus,

the mouse putative functional OR gene repertoire is more than

three times larger than that of humans [15]. Similarly low

proportions of OR pseudogenes were found in dogs and rats

[8,9,16]. In fact, it appears that humans have been accumulating

OR pseudogenes faster than other primates [17–19], and as

a result, have fewer intact (and putatively functional) OR genes,

even when compared with chimpanzee, our closest living

evolutionary relative [10].

However, nearly all mammalian OR genes are orphan

receptors, as very few ligand (odorant) – receptor interactions

have been demonstrated for OR genes [20]. Indeed, direct inter-

species functional studies are extremely demanding and hence rare

[21]. As a proxy for functional variability, similarities and

differences between the protein sequence of OR genes are often

used [7,14]. In this approach, it is assumed that when orthologous

OR genes are identical in sequence, both species maintain the

same olfactory capability. More difficult is the interpretation of

sequence differences between orthologous genes. To date, OR genes

have been thought to have a similar function so long as they were

classified into the same subfamily based on the full length of the

OR protein [4,7,14]. This assumption remains untested.

Differences in specific binding properties are expected to be

affected primarily by changes in the receptor’s binding site(s) [22–

24]. Hence, sequence similarity in binding sites, rather than in the

entire protein, may be a more reliable predictor of functional

similarity. To examine this possibility, we assess functional

variability across OR gene repertoires of two species, mouse and

human, by considering only the putative OR protein binding site

[25]. We assume that OR genes with identical binding sites have

the same binding properties and use Grantham’s amino acid

property scales [26] to model functional differences among

binding sites. We note that the assumption underlying our

approach is also not tested. Moreover, at this time we cannot

assess whether our analysis provides more accurate functional

inference than the commonly used analysis based on the entire

OR coding region. Instead, we propose our approach as a second,

sensible solution to a problem that to date has only been addressed

using only a single type of analysis. Interestingly, we find that the

two approaches yield markedly different results, with potentially

important implications for the interpretation of OR gene families.
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RESULTS

Representation of the odorant space
The species’ odorant space can be defined as the collection of all

odorants that a species is capable of detecting as well as their

detection thresholds. Direct mapping of a species’ odorant space

could be achieved by either in vivo testing of the detection threshold

for all possible odorants, or by identifying the binding affinity

properties of all functional OR genes in vitro. Currently, high

throughput data of this type do not exist.

Instead, we take an indirect route to infer the odorant space of

human and mouse by mapping the chemical distances between the

putative specificity determining residues (SDRs) [25] of all OR

genes. These residues were predicted based on protein sequence

analysis and are supported by experimental results (see methods).

In particular, a functional role for most of these putative SDRs was

confirmed by a recent OR protein functional study (Kristin

Schmiedeberg, Elena Shirokova, Hans-Peter Weber, Jens Reden,

Thomas Hummel, Boris Schilling, Wolfgang Meyerhof, and

Dietmar Krautwurst; personal communication). Henceforth, we

refer to the SDR residues as the putative binding site.

For our inter-species comparison of OR repertoire variability,

we use the entire human and mouse OR intact gene repertoires,

the only two species for which we have well characterized

repertoires from finished genomic sequence (the dog OR

repertoire is not yet fully described [8] and the draft of the

chimpanzee genome has relatively low coverage for this type of

analysis [10]). We use previously published multiple alignment of

OR genes from human and mouse [25] in order to identify the

putative binding sites of all OR proteins. To estimate distances

between binding sites, we construct a distance matrix for the 22

amino acid residues of each binding site, utilizing Grantham

indices [26]. We visualize this distance matrix in two and/or three

dimensional space by using the isomap algorithm [27,28] for

geodesic mapping (see methods). This approach assumes that

proximity in binding sites reflects similarity in binding properties

(i.e., that the ORs bind related odorants with similar binding

affinity). Conversely, distant binding sites are assumed to have

highly distinct binding properties. This set of assumptions has also

been made when inferring functional variability from phylogenetic

tree distances between OR genes based on the entire protein

sequence (e.g., [14]).

The human and mouse odorant spaces.
We superimpose two-dimensional representations of the human

and mouse odorant spaces to compare the relative space coverage.

As can be seen in figure 1, the odorant spaces of human and

mouse largely overlap. However, even at low resolution (a high

resolution 3D map of the entire data is available as supplementary

material at http://senselab.med.yale.edu/senselab/ORDB/ord-

b_ent.html), regions of the map enriched in ORs from only one of

the species are readily apparent (e.g. regions a–d in Figure 1). We

note that, as expected, representing the human and mouse OR

repertoires using randomly selected groups of 22 residues of the

OR protein yields vastly different results than those shown here

(Figure S1).

To identify groups of OR genes with highly similar binding

sites, we perform a clustering analysis (see methods). This yields

258 clusters, 64 of which contained only a single gene. Of the 194

clusters with more than one gene, six (P [of observing as many or

more clusters] = 0.34) and 104 (P = 0.01) have greater than 70% of

Figure 1. 2D representation of the human (red) and mouse (blue) odorant spaces. Map regions with an over-representation of binding sites from
either human or mouse are circled (a–d). An example of a pair of human-mouse orthologs (MOR27-1 and OR52P1) with identical binding site is
indicated in (e).
doi:10.1371/journal.pone.0000682.g001
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the genes from either human or mouse, respectively. Moreover, we

find 41 clusters only in one of the two species (5 human-specific

(P = 0.03) and 36 mouse-specific (P = 0.09). Interestingly, these do

not correspond to the classification to OR gene subfamilies. In

fact, inspection of a full-length protein sequence phylogenetic tree

of OR genes reveals that clusters of OR genes with highly similar

binding sites in our analysis are not often monophyletic, and often

are not even in close proximity with one another (as illustrated in

Figure 2A, B). Specifically, only six of the 41 OR clusters specific

to one species consist entirely of genes that form a monophyletic

clade in the phylogenetic tree based on the entire protein

sequences of human and mouse OR genes.

Clustering analysis and the case of isovaleric acid
Our analysis suggests an explanation of the apparent contradiction

between the sensitivity of mice and humans to isovaleric acid (IVA)

and the lack of IVA OR orthologs in humans when full length

sequences are compared. Specifically, the genomic regions

responsible for specific anosmia to Iva in the mouse were

identified [29] and, following the classification of the complete

mouse OR gene repertoire, 12 intact OR genes (as well as two OR

pseudogene with more than two coding region disruptions) were

mapped to these regions [7]. Based on full-length protein sequence

analysis, the 12 intact OR genes were classified into two small

subfamilies that were found to be specific to mouse [7]. Based on

Figure 2. A. 3D representation of the human (red) and mouse (blue) odorant spaces. Shown in dark green is a mouse-specific cluster (consisting of
MOR232-2, MOR232-5, MOR233-1, MOR233-7, MOR235-1). B. A phylogenetic tree based on the full protein sequence that includes all five genes (dark
green) in the mouse specific cluster shown in A. The five genes do not form a monophyletic clade, but instead are interspersed among human (red)
and other mouse (blue) genes.
doi:10.1371/journal.pone.0000682.g002
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the view that sub-family classification is a proxy for functional

similarity, the lack of human OR gene orthologs to either of the

two subfamilies would indicate that humans cannot detect Iva.

However, O’Connell et al. [30] reported that humans can detect

Iva at relatively low threshold concentration. Using the putative

binding sites to cluster OR genes helps resolve this apparent

contradiction: By our approach, the 12 mouse OR genes that

confer the ability to detect Iva cannot be clustered without

including human OR genes i.e., genes from the two species are

interspersed (Figure 3). Thus, consideration of only the binding

sites suggests that genes with similar binding properties are present

in both species and that both humans and mice can detect Iva

(possibly with similar capacity), in agreement with the finding of

O’Connell et al.

DISCUSSION
To date, the functional variability within and between OR gene

repertoires has been assessed by considering overall protein

similarity [7,14]. However, following gene duplication, the binding

properties of an OR gene (or any receptor) may be modified by

a few changes to the binding site. As a result, full-length protein

sequence phylogenetic analysis captures the evolutionary relation-

ship between different OR genes, but not necessarily the similarity

in binding properties. In other words, recently duplicated OR

genes may be highly similar at the overall protein level, but differ

markedly in their binding capacities due to few changes to their

binding sites. Here, we assess functional variability within OR

gene repertoires by comparing the putative binding sites [25] of all

human and mouse putatively functional OR genes.

We find that the odorant spaces of the two species largely

overlap, but that there is a somewhat larger than expected number

of human-specific clusters of genes with highly similar binding

sites, as well as a highly significant number of mouse-enriched

(.70%) clusters. These clusters of genes do not form mono-

phyletic, species-specific lineages when the entire OR protein

sequences were analyzed. The finding that two sets of assumptions

yield such disparate results is interesting in its own right as it calls

into question the reliability of the standard subfamily-based

classification of OR genes into functional groups.

It also raises the question of how to interpret OR gene clusters.

A single receptor is thought to bind a series of chemically related

odorants, with different affinities associated with each interaction

[31,32]. If so, then, even with fewer functional receptors, humans

may have preferentially retained ORs with broad specificities

(‘generalists’) in order to maintain the ability to detect most

odorants [33]. Alternatively, humans may have kept sets of OR

genes that differ subtly in their binding sites in order to maintain

strong binding affinity for each and every odorant in a group of

chemically related compounds that are important in human

evolution. Our analysis may be able to generate hypotheses to

distinguish between these two possibilities: when a species requires

the ability to detect and discriminate between chemically related

odorants at low concentrations, this pressure should give rise to

a cluster of OR genes with only subtly different binding sites.

Conversely, if a region of the odorant space is represented by only

one (or very few) ORs, this might suggest that most of the related

odorants in that space are detected with low affinity (i.e., only at

high concentration).

Overall, our analysis suggests that the odorant spaces of human

and mouse largely overlap suggesting that, at saturating concen-

trations, both species are able to detect most odorants. In this

respect, our results are consistent with the behavioral findings of

Laska et al. [21]. However, we also find dozens of clusters of

similar binding sites that are exclusive to one species, or nearly so.

We speculate that these clusters reflect differences between human

and mouse with respect to threshold detections of odorants bound

by the OR genes that these clusters contain.

This said, we cannot test our predictions, (or the predictions

based on the commonly used analysis of the entire coding region).

Mapping receptor-odorant interactions has proven to be a chal-

lenging task. Indeed, only a few receptor-odorant interactions have

been reported [32,34,35], and a large number of them relate to

a single gene, OR I7 from rat. While the rat I7-odorant

Figure 3. 2D representation of the human (red) and mouse (blue)
odorant spaces. The ‘Iva mouse OR genes’ (yellow) do not form a single
cluster (A). High resolution 2D representations of map regions I (B) and
II (C) reveal that human OR binding sites are interspersed with the
mouse Iva ORs in both regions.
doi:10.1371/journal.pone.0000682.g003
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interactions have been reported in independent publications using

different assays [36], most of the other putative receptor-odorant

interactions have not yet been replicated, and were found using

only one assay, often with unclear implications for in-vivo

receptor-odorant interaction. Moreover, some of the reports have

been contradictory. Thus, existing data are neither comprehensive

nor reliable enough to be used for validation of our predictions.

Since neither our approach nor that of using the full coding

sequence can be validated experimentally, it is unclear which

yields more accurate results.

Moreover, our findings are based on the current prediction of

the OR protein SDR, which may change when a validated OR

protein structure is available, or when other residues that

determine the binding specificity are recognized. Clearly, our

results are dependent on the identity of the 22 residues we analyze.

However, our analysis can be easily repeated for a different set of

residues.

In conclusion, our approach can not replace empirical studies of

receptor-odorant interactions, but can help to generate prediction

that can be tested empirically. In particular, as demonstrated for

the case of the IVA, hypotheses generated using our approach may

be quite different from those generated under the widely used

classification approach which is based on the analysis of the entire

OR protein sequence.

METHODS

Prediction of the specificity determining residues
We rely on previous prediction of 22 specificity determining

residues (SDRs) in OR proteins [25]. The assumption underlying

the prediction of these SDRs was that these residues would be

more conserved among orthologs, which are assumed to have

a similar binding spectrum, than among paralogs, which are

assumed to have a divergent binding spectrum. The implementa-

tion of this concept relied solely on protein sequence information.

The same concept has been previously utilized to predict SDRs in

bacterial transcription factors [37] and eukaryotic and eubacterial

protein kinases [38]. In both cases the predictions were consistent

with solved structures as well as experimental results. For OR

proteins, no X-ray crystallographic structure has been determined

and the only report of a mutation affecting specificity [35] is now

in question [39]. Thus, the only validation of the predicted SDRs

utilized information available from homologous GPCRs: In

a homology model based on a high-resolution X-ray crystallo-

graphic structure of rhodopsin [40], the 22 putative SDRs occupy

the region corresponding to the retinal binding site. In addition, 21

of the 22 predicted SDRs correspond to amino acid positions that

were previously associated with ligand-binding in at least one other

GPCR [25].

Multiple sequence alignment of OR proteins
We used the alignment of [25], which contains 1441 protein

sequences (402 and 1039 sequences from human and mouse,

respectively). The alignment was constructed from all human and

mouse OR protein sequences that span the seven putative

transmembrane regions, contain no ambiguous residues, and no

more than two coding region disruptions (in the text, we refer to all

these as ‘intact’ genes). The approach taken in aligning the

sequences was hierarchical in nature, combining automatic

alignment of closely related sequences and the merger of such

small alignments into larger alignments, each containing all the

sequences belonging to a specific OR family. These family

alignments were manually edited in order to ensure the correct

alignment of the transmembrane regions, as well as of other OR

protein motifs (such as an N-glycosylation site). Also, positions

containing a gap in more than half of the members of the family

were edited out. Finally, the family-wise alignments were manually

merged into a single one, containing all 1441 OR sequences [25].

Phylogenetic analysis
A neighbor-joining tree was constructed from the most reliable

positions in the OR multiple sequence alignment (positions

containing fewer than 1% gaps), using ClustalX v1.83 [41]. Trees

were drawn using TreeExplorer (K. Tamura; http://evolgen.biol.

metro-u.ac.jp/TE/TE_man.html).

Mapping of the odorant spaces of human and

mouse
Currently, there are no solved structures of OR proteins. Here, we

rely on a prediction of the putative binding site based on the

premise that orthologous OR genes are likely to have similar

binding sites while the binding sites of paralogous OR genes are

likely to be different [25]. This theoretical prediction is in general

agreement with the empirical results of Katada et al. [42]. We

extracted the 22 residues corresponding to the putative odorant

binding site from each OR sequence in the multiple alignment

[25]. Nine OR genes (human genes: OR9G3P, OR11J2P,

OR2AE1, OR56B4; mouse genes: MOR188-2, MOR126-1,

MOR126-2, MOR176-3, MOR204-25P) were found to contain

a gap within the putative binding site, and were excluded from

subsequent analyses.

Next, we constructed a distance matrix comparing the putative

binding sites of all possible pairs of OR genes. In modeling the

distance between binding sites, we used the Grantham chemical

difference matrix [26]. It has been shown that differences between

disease alleles and wild-type alleles computed using the Grantham

matrix are on average greater than those observed between

putatively neutral polymorphic alleles, as well as inter-species

differences [43]. This suggests that protein distances predicted by

this matrix are functionally relevant.

We downloaded from the AAIndex database [44] the three amino

acid scales used in the construction of the Grantham chemical

difference matrix [26], namely aax1:GRAR740101 (Composition),

aax1:GRAR740102 (Polarity), and aax1:GRAR740103 (Volume).

We used these indices to translate the putative binding site of each

OR protein into a 66-dimensional vector. We then computed all

pairwise distances between the vectors, using the standardized

Euclidean distance as the distance measure, i.e., weighting each

coordinate by the inverse of its variance.

In order to to visualize the 66-dimensional space in two- and/or

three-dimensions, we used the Isomap algorithm for geodesic

dimensionality reduction [27]. We downloaded the Isomap

Matlab package from http://isomap.stanford.edu/. We then

applied the IsomapII function (in Matlab/Math Works Inc v7

(R14)) to the previously computed distance matrix, using all

available points as landmarks, and requesting that ten dimensions

be calculated. In order to select the appropriate e value, the

neighborhood size parameter, we applied the tuning methodology

described in [28]. Briefly, in this methodology, the algorithm is run

multiple times, varying only the neighborhood size parameter, and

recording each time the values of two cost- functions: the fraction

of variance in geodesic distance estimates not accounted for by the

Euclidean embedding and the fraction of points not included in

the largest connected component of the neighborhood graph, and

thus not included in the Euclidean embedding. The optimal

neighborhood size is then determined as a tradeoff between these

two cost functions. We found e = 14.5 to be the optimal value for

OR Gene Classification
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both the three-dimensional (accounting for 68.9% of the variance)

as well as for the two-dimensional (accounting for 58.1% of the

variance) embeddings. We confirmed the validity of the projection

method by calculating the correlation of the matrix of standard-

ized Euclidean distances based on the 66 dimensions with the

Euclidean distances based on projections to two (r2 = 0.75) or three

(r2 = 0.81) dimensions.

Comparison of the mapping of odorant space

obtained using the SDRs with those obtained using

random sets of OR protein positions
In order to repeat our analysis using random sets of 22 residues,

we used the set of sequence alignments that include only residues

with no gaps as a pool, excluding the 22 SDRs themselves. This

screening step resulted in a pool of 154 residues (of 327 positions in

the original alignment) to choose from. Out of this pool we

randomly chose five sets of positions, each of size 22. We then

repeated the mapping procedure, using these random sets of

positions instead of the SDRs, and reproduced figure 1 for each

random set of residues (Figure S1).

Cluster analysis
We applied agglomerative hierarchical clustering with average

linkage, as implemented in Matlab/Math Works Inc v7 (R14), to

the three-dimensional coordinates obtained from the Isomap

procedure, using Euclidean distances as a distance measure. To

determine the appropriate number of clusters, we utilized the

unrefined L-method [45]. For this purpose, the score for a specific

number of clusters was the distance between the two nearest

clusters (i.e. the clusters that would be merged if we were to

decrease the number of clusters by one). By plotting scores against

the number of clusters we determined the knee of the curve, and

thus the number of optimal clusters, to be 110.

The 110 clusters obtained ranged in size from 1 (singleton

clusters) to 323 ORs. Because of the wide range of cluster sizes, we

decided to re-apply the hierarchical clustering. In order to

determine which clusters would be divided further, we used the

unrefined L-method [45] again, this time plotting cluster size

against cluster rank, where the rank is determined by size. We

found that the knee of the curve corresponded to a cluster of size

46, and, thus, re-applied the hierarchical clustering procedure to

only the seven clusters containing at least 46 OR genes. Our final

analysis yielded 258 clusters, ranging in size from 1 to 29 (mean

size: 5.56).

To test the significance of observing clusters specific to one

species or enriched (.70%) in one species, we took the following

approach: For each group of clusters that are specific or enriched

in one species, containing N clusters of sizes s1$s2$…$sN, we

randomly permuted the species-assignments 100,000 times, and

counted the number of permutations fulfilling the following

conditions (excluding singletons):

1. M, the number of clusters belonging to class X in the random

permutation, fulfills N#M.

2. Let t1$t2$…$tM be the sizes of the clusters belonging to

class X in the random permutation, then: ti$si for every

1#i#N

SUPPORTING INFORMATION

Figure S1

Found at: doi:10.1371/journal.pone.0000682.s001 (0.05 MB

DOC)

ACKNOWLEDGMENTS
We thank M. Przeworski for comments on the manuscript.

Author Contributions

Conceived and designed the experiments: GS YG OM DW. Analyzed the

data: YG OM CC. Wrote the paper: GS YG OM DW CC.

REFERENCES
1. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors:

a molecular basis for odor recognition. Cell 65: 175–187.

2. Mombaerts P (1999) Seven-transmembrane proteins as odorant and chemosen-

sory receptors. Science 286: 707–711.

3. Glusman G, Yanai I, Rubin I, Lancet D (2001) The complete human olfactory

subgenome. Genome Res 11: 685–702.

4. Glusman G, Bahar A, Sharon D, Pilpel Y, White J, et al. (2000) The olfactory

receptor gene superfamily: data mining, classification, and nomenclature.

Mamm Genome 11: 1016–1023.

5. Ngai J, Dowling MM, Buck L, Axel R, Chess A (1993) The family of genes

encoding odorant receptors in the channel catfish. Cell 72: 657–666.

6. Niimura Y, Nei M (2005) Evolutionary dynamics of olfactory receptor genes in

fishes and tetrapods. Proc Natl Acad Sci U S A 102: 6039–6044.

7. Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the

mouse. Nat Neurosci 5: 124–133.

8. Quignon P, Kirkness E, Cadieu E, Touleimat N, Guyon R, et al. (2003)

Comparison of the canine and human olfactory receptor gene repertoires.

Genome Biol 4: R80.

9. Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, et al.

(2004) Genome sequence of the Brown Norway rat yields insights into

mammalian evolution. Nature 428: 493–521.

10. Gilad Y, Man O, Glusman G (2005) A comparison of the human and

chimpanzee olfactory receptor gene repertoires. Genome Res 15: 224–230.

11. Zozulya S, Echeverri F, Nguyen T (2001) The human olfactory receptor

repertoire. Genome Biol 2: RESEARCH0018.

12. Olender T, Feldmesser E, Atarot T, Eisenstein M, Lancet D (2004) The

olfactory receptor universe–from whole genome analysis to structure and

evolution. Genet Mol Res 3: 545–553.

13. Young JM, Friedman C, Williams EM, Ross JA, Tonnes-Priddy L, et al. (2002)

Different evolutionary processes shaped the mouse and human olfactory

receptor gene families. Hum Mol Genet 11: 535–546.

14. Godfrey PA, Malnic B, Buck LB (2004) The mouse olfactory receptor gene

family. Proc Natl Acad Sci U S A 101: 2156–2161.

15. Young JM, Trask BJ (2002) The sense of smell: genomics of vertebrate odorant

receptors. Hum Mol Genet 11: 1153–1160.

16. Olender T, Fuchs T, Linhart C, Shamir R, Adams M, et al. (2004) The canine

olfactory subgenome. Genomics 83: 361–372.

17. Rouquier S, Blancher A, Giorgi D (2000) The olfactory receptor gene repertoire

in primates and mouse: evidence for reduction of the functional fraction in

primates. Proc Natl Acad Sci U S A 97: 2870–2874.

18. Gilad Y, Man O, Paabo S, Lancet D (2003) Human specific loss of olfactory

receptor genes. Proc Natl Acad Sci U S A 100: 3324–3327.

19. Gilad Y, Wiebe V, Przeworski M, Lancet D, Paabo S (2004) Loss of olfactory

receptor genes coincides with the acquisition of full trichromatic vision in

primates. PLoS Biol 2: E5.

20. Reed RR (2004) After the holy grail: establishing a molecular basis for

Mammalian olfaction. Cell 116: 329–336.

21. Laska M, Seibt A, Weber A (2000) ‘Microsmatic’ primates revisited: olfactory

sensitivity in the squirrel monkey. Chem Senses 25: 47–53.

22. Schoneberg T, Schulz A, Biebermann H, Hermsdorf T, Rompler H, et al.

(2004) Mutant G-protein-coupled receptors as a cause of human diseases.

Pharmacol Ther 104: 173–206.

23. Schneider K, Hovel K, Witzel K, Hamberger B, Schomburg D, et al. (2003) The

substrate specificity-determining amino acid code of 4-coumarate:CoA ligase.

Proc Natl Acad Sci U S A 100: 8601–8606.

24. Antikainen NM, Hergenrother PJ, Harris MM, Corbett W, Martin SF (2003)

Altering substrate specificity of phosphatidylcholine-preferring phospholipase C

of Bacillus cereus by random mutagenesis of the headgroup binding site.

Biochemistry 42: 1603–1610.

25. Man O, Gilad Y, Lancet D (2004) Prediction of the odorant binding site of

olfactory receptor proteins by human-mouse comparisons. Protein Sci 13:

240–254.

OR Gene Classification

PLoS ONE | www.plosone.org 6 August 2007 | Issue 8 | e682



26. Grantham R (1974) Amino acid difference formula to help explain protein

evolution. Science 185: 862–864.
27. Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework

for nonlinear dimensionality reduction. Science 290: 2319–2323.

28. Balasubramanian M, Schwartz EL (2002) The isomap algorithm and topological
stability. Science 295: 7.

29. Griff IC, Reed RR (1995) The genetic basis for specific anosmia to isovaleric
acid in the mouse. Cell 83: 407–414.

30. O’Connell RJ, Stevens DA, Zogby LM (1994) Individual differences in the

perceived intensity and quality of specific odors following self- and cross-
adaptation. Chem Senses 19: 197–208.

31. Lancet D, Sadovsky E, Seidemann E (1993) Probability model for molecular
recognition in biological receptor repertoires: significance to the olfactory

system. Proc Natl Acad Sci U S A 90: 3715–3719.
32. Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for

odors. Cell 96: 713–723.

33. Lapidot M, Pilpel Y, Gilad Y, Falcovitz A, Sharon D, et al. (2001) Mouse-human
orthology relationships in an olfactory receptor gene cluster. Genomics 71:

296–306.
34. Kajiya K, Inaki K, Tanaka M, Haga T, Kataoka H, et al. (2001) Molecular

bases of odor discrimination: Reconstitution of olfactory receptors that recognize

overlapping sets of odorants. J Neurosci 21: 6018–6025.
35. Krautwurst D, Yau KW, Reed RR (1998) Identification of ligands for olfactory

receptors by functional expression of a receptor library. Cell 95: 917–926.
36. Mombaerts P (2004) Genes and ligands for odorant, vomeronasal and taste

receptors. Nat Rev Neurosci 5: 263–278.

37. Mirny LA, Gelfand MS (2002) Using orthologous and paralogous proteins to

identify specificity-determining residues in bacterial transcription factors. J Mol

Biol 321: 7–20.

38. Li L, Shakhnovich EI, Mirny LA (2003) Amino acids determining enzyme-

substrate specificity in prokaryotic and eukaryotic protein kinases. Proc Natl

Acad Sci U S A 100: 4463–4468.

39. Bozza T, Feinstein P, Zheng C, Mombaerts P (2002) Odorant receptor

expression defines functional units in the mouse olfactory system. J Neurosci 22:

3033–3043.

40. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, et al. (2000)

Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289:

739–745.

41. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. (2003) Multiple

sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:

3497–3500.

42. Katada S, Hirokawa T, Oka Y, Suwa M, Touhara K (2005) Structural basis for

a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the

odorant-binding site. J Neurosci 25: 1806–1815.

43. Miller MP, Kumar S (2001) Understanding human disease mutations through

the use of interspecific genetic variation. Hum Mol Genet 10: 2319–2328.

44. Kawashima S, Ogata H, Kanehisa M (1999) AAindex: Amino Acid Index

Database. Nucleic Acids Res 27: 368–369.

45. Salvador S, Chan P (2004) Determining the Number of Clusters/Segments in

Hierarchical Clustering/Segmentation Algorithms; pp. 576–584.

OR Gene Classification

PLoS ONE | www.plosone.org 7 August 2007 | Issue 8 | e682


