2,094 research outputs found

    Modulation and equalisation considerations for high performance radio LANs (HIPERLAN)

    Get PDF

    On suitable codes for frame synchronisation in packet radio LANs

    Get PDF

    High index contrast photonic platforms for on-chip Raman spectroscopy

    Get PDF
    Nanophotonic waveguide enhanced Raman spectroscopy (NWERS) is a sensing technique that uses a highly confined waveguide mode to excite and collect the Raman scattered signal from molecules in close vicinity of the waveguide. The most important parameters defining the figure of merit of an NWERS sensor include its ability to collect the Raman signal from an analyte, i.e. "the Raman conversion efficiency" and the amount of "Raman background" generated from the guiding material. Here, we compare different photonic integrated circuit (PIC) platforms capable of on-chip Raman sensing in terms of the aforementioned parameters. Among the four photonic platforms under study, tantalum oxide and silicon nitride waveguides exhibit high signal collection efficiency and low Raman background. In contrast, the performance of titania and alumina waveguides suffers from a strong Raman background and a weak signal collection efficiency, respectively

    What's in the Gift? Towards a Molecular Dissection of Nuptial Feeding in a Cricket.

    Get PDF
    Journal ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.Nuptial gifts produced by males and transferred to females during copulation are common in insects. Yet, their precise composition and subsequent physiological effects on the female recipient remain unresolved. Male decorated crickets Gryllodes sigillatus transfer a spermatophore to the female during copulation that is composed of an edible gift, the spermatophylax, and the ampulla that contains the ejaculate. After transfer of the spermatophore, the female detaches the spermatophylax and starts to eat it while sperm from the ampulla are evacuated into the female reproductive tract. When the female has finished consuming the spermatophylax, she detaches the ampulla and terminates sperm transfer. Hence, one simple function of the spermatophylax is to ensure complete sperm transfer by distracting the female from prematurely removing the ampulla. However, the majority of orally active components of the spermatophylax itself and their subsequent effects on female behavior have not been identified. Here, we report the first analysis of the proteome of the G. sigillatus spermatophylax and the transcriptome of the male accessory glands that make these proteins. The accessory gland transcriptome was assembled into 17,691 transcripts whilst about 30 proteins were detected within the mature spermatophylax itself. Of these 30 proteins, 18 were encoded by accessory gland encoded messages. Most spermatophylax proteins show no similarity to proteins with known biological functions and are therefore largely novel. A spermatophylax protein shows similarity to protease inhibitors suggesting that it may protect the biologically active components from digestion within the gut of the female recipient. Another protein shares similarity with previously characterized insect polypeptide growth factors suggesting that it may play a role in altering female reproductive physiology concurrent with fertilization. Characterization of the spermatophylax proteome provides the first step in identifying the genes encoding these proteins in males and in understanding their biological functions in the female recipient.Max Planck GesellschaftNational Science FoundationBBSRRoyal Societ

    A kinetic analysis methodology to elucidate the roles of metal, support and solvent for the hydrogenation of 4-phenyl-2-butanone over Pt/TiO<inf>2</inf>

    Get PDF
    The rate and, more importantly, selectivity (ketone vs aromatic ring) of the hydrogenation of 4-phenyl-2-butanone over a Pt/TiO₂ catalyst have been shown to vary with solvent. In this study, a fundamental kinetic model for this multi-phase reaction has been developed incorporating statistical analysis methods to strengthen the foundations of mechanistically sound kinetic models. A 2-site model was determined to be most appropriate, describing aromatic hydrogenation (postulated to be over a platinum site) and ketone hydrogenation (postulated to be at the platinum–titania interface). Solvent choice has little impact on the ketone hydrogenation rate constant but strongly impacts aromatic hydrogenation due to solvent-catalyst interaction. Reaction selectivity is also correlated to a fitted product adsorption constant parameter. The kinetic analysis method shown has demonstrated the role of solvents in influencing reactant adsorption and reaction selectivity.We acknowledge EPSRC for funding as part of the CASTech grant (EP/G011397/1) and the Department of Employment and Learning for a studentship (IM). NSB was funded by a PhD scholarship from the University of Birmingham. SKW was supported by an Engineering Doctorate Studentship in Formulation Engineering at the University of Birmingham sponsored by the EPSRC (EP/G036713/1) and Johnson Matthey.This is the final version of the article. It was first available from Elsevier via http://dx.doi.org/10.1016/j.jcat.2015.06.00

    Effect of solvent on the hydrogenation of 4-phenyl-2-butanone over Pt based catalysts

    Get PDF
    In part I of this study, experimental data were presented for the hydrogenation of 4-phenyl-2-butanone with a 4% Pt/TiO2 catalyst where the reaction rate and selectivity (ketone vs. aromatic ring) varied with solvent. In this paper, a rigorous kinetic model is presented utilising these data, incorporating statistical analysis methods to strengthen the foundations of mechanistically sound kinetic models. A fundamental kinetic model for the system is presented and a 2-site model was determined to be most appropriate, describing aromatic hydrogenation (postulated to be over a platinum site) and ketone hydrogenation (at the platinum titania interface). Solvent choice has little impact on the ketone hydrogenation rate constant but strongly impacts aromatic hydrogenation due to solvent-catalyst interaction. Reaction selectivity is also correlated to a fitted product adsorption constant parameter. This kinetic analysis method is the first of its kind demonstrating the role of solvents in influencing reactant adsorption and reaction selectivity.We acknowledge EPSRC for funding as part of the CASTech grant (EP/G011397/1) and the Department of Employment and Learning for a studentship (IM). NSB was funded by a PhD scholarship from the University of Birmingham. SKW was supported by an Engineering Doctorate Studentship in Formulation Engineering at the University of Birmingham sponsored by the EPSRC (EP/G036713/1) and Johnson Matthey.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.jcat.2015.06.00

    Estimating the health effects of greenhouse gas mitigation strategies: addressing parametric, model, and valuation challenges.

    Get PDF
    BACKGROUND: Policy decisions regarding climate change mitigation are increasingly incorporating the beneficial and adverse health impacts of greenhouse gas emission reduction strategies. Studies of such co-benefits and co-harms involve modeling approaches requiring a range of analytic decisions that affect the model output. OBJECTIVE: Our objective was to assess analytic decisions regarding model framework, structure, choice of parameters, and handling of uncertainty when modeling health co-benefits, and to make recommendations for improvements that could increase policy uptake. METHODS: We describe the assumptions and analytic decisions underlying models of mitigation co-benefits, examining their effects on modeling outputs, and consider tools for quantifying uncertainty. DISCUSSION: There is considerable variation in approaches to valuation metrics, discounting methods, uncertainty characterization and propagation, and assessment of low-probability/high-impact events. There is also variable inclusion of adverse impacts of mitigation policies, and limited extension of modeling domains to include implementation considerations. Going forward, co-benefits modeling efforts should be carried out in collaboration with policy makers; these efforts should include the full range of positive and negative impacts and critical uncertainties, as well as a range of discount rates, and should explicitly characterize uncertainty. We make recommendations to improve the rigor and consistency of modeling of health co-benefits. CONCLUSION: Modeling health co-benefits requires systematic consideration of the suitability of model assumptions, of what should be included and excluded from the model framework, and how uncertainty should be treated. Increased attention to these and other analytic decisions has the potential to increase the policy relevance and application of co-benefits modeling studies, potentially helping policy makers to maximize mitigation potential while simultaneously improving health
    • …
    corecore