413 research outputs found

    View-obstruction and a conjecture of Schoenberg

    Get PDF

    On the computation of zone and double zone diagrams

    Full text link
    Classical objects in computational geometry are defined by explicit relations. Several years ago the pioneering works of T. Asano, J. Matousek and T. Tokuyama introduced "implicit computational geometry", in which the geometric objects are defined by implicit relations involving sets. An important member in this family is called "a zone diagram". The implicit nature of zone diagrams implies, as already observed in the original works, that their computation is a challenging task. In a continuous setting this task has been addressed (briefly) only by these authors in the Euclidean plane with point sites. We discuss the possibility to compute zone diagrams in a wide class of spaces and also shed new light on their computation in the original setting. The class of spaces, which is introduced here, includes, in particular, Euclidean spheres and finite dimensional strictly convex normed spaces. Sites of a general form are allowed and it is shown that a generalization of the iterative method suggested by Asano, Matousek and Tokuyama converges to a double zone diagram, another implicit geometric object whose existence is known in general. Occasionally a zone diagram can be obtained from this procedure. The actual (approximate) computation of the iterations is based on a simple algorithm which enables the approximate computation of Voronoi diagrams in a general setting. Our analysis also yields a few byproducts of independent interest, such as certain topological properties of Voronoi cells (e.g., that in the considered setting their boundaries cannot be "fat").Comment: Very slight improvements (mainly correction of a few typos); add DOI; Ref [51] points to a freely available computer application which implements the algorithms; to appear in Discrete & Computational Geometry (available online

    Chemical Genetic Screen for AMPKα2 Substrates Uncovers a Network of Proteins Involved in Mitosis

    Get PDF
    The energy-sensing AMP-activated protein kinase (AMPK) is activated by low nutrient levels. Functions of AMPK, other than its role in cellular metabolism, are just beginning to emerge. Here we use a chemical genetics screen to identify direct substrates of AMPK in human cells. We find that AMPK phosphorylates 28 previously unidentified substrates, several of which are involved in mitosis and cytokinesis. We identify the residues phosphorylated by AMPK in vivo in several substrates, including protein phosphatase 1 regulatory subunit 12C (PPP1R12C) and p21-activated protein kinase (PAK2). AMPK-induced phosphorylation is necessary for PPP1R12C interaction with 14-3-3 and phosphorylation of myosin regulatory light chain. Both AMPK activity and PPP1R12C phosphorylation are increased in mitotic cells and are important for mitosis completion. These findings suggest that AMPK coordinates nutrient status with mitosis completion, which may be critical for the organism's response to low nutrients during development, or in adult stem and cancer cells.National Institutes of Health (U.S.) (Grant R01-GM068762

    Hypermethylated 14-3-3-σ and ESR1 gene promoters in serum as candidate biomarkers for the diagnosis and treatment efficacy of breast cancer metastasis

    Get PDF
    Background: Numerous hypermethylated genes have been reported in breast cancer, and the silencing of these genes plays an important role in carcinogenesis, tumor progression and diagnosis. These hypermethylated promoters are very rarely found in normal breast. It has been suggested that aberrant hypermethylation may be useful as a biomarker, with implications for breast cancer etiology, diagnosis, and management. The relationship between primary neoplasm and metastasis remains largely unknown. There has been no comprehensive comparative study on the clinical usefulness of tumor-associated methylated DNA biomarkers in primary breast carcinoma and metastatic breast carcinoma. The objective of the present study was to investigate the association between clinical extension of breast cancer and methylation status of Estrogen Receptor1 (ESR1) and Stratifin (14-3-3-σ) gene promoters in disease-free and metastatic breast cancer patients. Methods: We studied two cohorts of patients: 77 patients treated for breast cancer with no signs of disease, and 34 patients with metastatic breast cancer. DNA was obtained from serum samples, and promoter methylation status was determined by using DNA bisulfite modification and quantitative methylation-specific PCR. Results: Serum levels of methylated gene promoter 14-3-3-σ significantly differed between Control and Metastatic Breast Cancer groups (P < 0.001), and between Disease-Free and Metastatic Breast Cancer groups (P < 0.001). The ratio of the 14-3-3-σ level before the first chemotherapy cycle to the level just before administration of the second chemotherapy cycle was defined as the Biomarker Response Ratio [BRR]. We calculated BRR values for the "continuous decline" and "rise-and-fall" groups. Subsequent ROC analysis showed a sensitivity of 75% (95% CI: 47.6 - 86.7) and a specificity of 66.7% (95% CI: 41.0 - 86.7) to discriminate between the groups for a cut-off level of BRR = 2.39. The area under the ROC curve (Z = 0.804 ± 0.074) indicates that this test is a good approach to post-treatment prognosis. Conclusions: The relationship of 14-3-3-σ with breast cancer metastasis and progression found in this study suggests a possible application of 14-3-3-σ as a biomarker to screen for metastasis and to follow up patients treated for metastatic breast cancer, monitoring their disease status and treatment response.This study was supported by a grant from the Ministerio de Ciencia e Innovación: SAF 2004-00889; JL Linares is supported by the Junta de Andalucía (P06-CTS-1385)

    Strategic green infrastructure planning in Germany and the UK: a transnational evaluation of the evolution of urban greening policy and practice

    Get PDF
    The evolution of Green Infrastructure (GI) planning has varied dramatically between nations. Although a grounded set of principles are recognized globally, there is increasing variance in how these are implemented at a national and sub-national level. To investigate this the following paper presents an evaluation of how green infrastructure has been planned for in England and Germany illustrating how national policy structures facilitate variance in application. Adopting an evaluative framework linked to the identification of GI, its development and monitoring/ feedback the paper questions the impacts on delivery of intersecting factors including terminology, spatial distribution and functionality on effective GI investment. This process reviews how changing policy structures have influenced the framing of green infrastructure policy, and subsequent impact this has on the delivery of green infrastructure projects

    Sugary interfaces mitigate contact damage where stiff meets soft

    Get PDF
    The byssal threads of the fan shell Atrina pectinata are non-living functional materials intimately associated with living tissue, which provide an intriguing paradigm of bionic interface for robust load-bearing device. An interfacial load-bearing protein (A. pectinata foot protein-1, apfp-1) with L-3,4-dihydroxyphenylalanine (DOPA)-containing and mannose-binding domains has been characterized from Atrina's foot. apfp-1 was localized at the interface between stiff byssus and the soft tissue by immunochemical staining and confocal Raman imaging, implying that apfp-1 is an interfacial linker between the byssus and soft tissue, that is, the DOPA-containing domain interacts with itself and other byssal proteins via Fe3(+)-DOPA complexes, and the mannose-binding domain interacts with the soft tissue and cell membranes. Both DOPA-and sugar-mediated bindings are reversible and robust under wet conditions. This work shows the combination of DOPA and sugar chemistry at asymmetric interfaces is unprecedented and highly relevant to bionic interface design for tissue engineering and bionic devices

    HDAC7 Is a Repressor of Myeloid Genes Whose Downregulation Is Required for Transdifferentiation of Pre-B Cells into Macrophages

    Get PDF
    B lymphopoiesis is the result of several cell-commitment, lineage-choice, and differentiation processes. Every differentiation step is characterized by the activation of a new, lineage-specific, genetic program and the extinction of the previous one. To date, the central role of specific transcription factors in positively regulating these distinct differentiation processes to acquire a B cell-specific genetic program is well established. However, the existence of specific transcriptional repressors responsible for the silencing of lineage inappropriate genes remains elusive. Here we addressed the molecular mechanism behind repression of non-lymphoid genes in B cells. We report that the histone deacetylase HDAC7 was highly expressed in pre-B cells but dramatically down-regulated during cellular lineage conversion to macrophages. Microarray analysis demonstrated that HDAC7 re-expression interfered with the acquisition of the gene transcriptional program characteristic of macrophages during cell transdifferentiation; the presence of HDAC7 blocked the induction of key genes for macrophage function, such as immune, inflammatory, and defense response, cellular response to infections, positive regulation of cytokines production, and phagocytosis. Moreover, re-introduction of HDAC7 suppressed crucial functions of macrophages, such as the ability to phagocytose bacteria and to respond to endotoxin by expressing major pro-inflammatory cytokines. To gain insight into the molecular mechanisms mediating HDAC7 repression in pre-B cells, we undertook co-immunoprecipitation and chromatin immunoprecipitation experimental approaches. We found that HDAC7 specifically interacted with the transcription factor MEF2C in pre-B cells and was recruited to MEF2 binding sites located at the promoters of genes critical for macrophage function. Thus, in B cells HDAC7 is a transcriptional repressor of undesirable genes. Our findings uncover a novel role for HDAC7 in maintaining the identity of a particular cell type by silencing lineage-inappropriate genes
    corecore