Indian J. pure appl. Math., 27(4) : 323-342, April 1996

VIEW-OBSTRUCTION AND A CONJECTURE OF
SCHOENBERG

V. C. DuMIR!, R. J. HANS-GILL! AND J. B. WILKER?

ICentre for Advanced Study in Mathematics, Panjab University,
Chandigarh 160 014, India
2Physical Sciences Division, Scarborough College, University of Toronto,
Scarborough, Ontario M1C 1A4, Cahada

(Received 8 November 1994; after revision 31 August 1995;
accepted 25 September 1995)

Here a conjecture of Schoenberg regarding the billiard ball problem for spheres is
proved in the Euclidean space R" for n = 3, 4. Markoff type chains of related
isolated extreme values are also obtained. This is achieved by using the theory of
view-obstruction problems developed by the authors eartier and applying known
results about covering radii of lattices in the plane and in IR°. Analogous results for
(n ~ 2)-dimensional trajectories in R", for all n 23, are also obtained.

1. INTRODUCTION

The view-obstruction problem was originally formulated by Cusick?, though it
had been studied earlier in another formulation by Wills!’. It was later generalised
by the authors® 5 where rays were replaced by flats. In Dumir er al’, we observed
that the problem of obstructing the view through lines is related to the billiard ball
motion problem considered by Schoenberg!!'1 (see also Konig and Sziics® and Hardy
and Wright®, p. 378). Here we shall use some results obtained in Dumir er al’ to
prove a conjecture of Schoenberg for spheres in three and four dimensional spaces.
We also obtain Markoff type chains of related isolated extreme values and some
analogous results for (n — 2)-dimensional trajectories in IR” for all n=3. A different
analogous problem has been studied by various authors, see e.g. Bambah!.

Let IR” be n-dimensional Euclidean space; Z", the integral lattice, %, the point
1 1 1
(5 s 5 s ,5) € IR™ and A, the shifted lattice % + Z". Let C be a closed, convex

body with centre 0, and dc (K, K'), the C-norm distance between subsets K, K' C
IR”. For each flat F C IR” and for each subspace U C IR", we define, as in Dumir
et al’

v(C, F) = dc(A, F)
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=inf {a > 0 : (@C + A) ) F = ¢},
v(C, U) = sup {V(C, F) : F is a translate of U}
and, for each dimension d = 1,
V(C, d) = sup {V(C, U) : dim U = d; U not contained
in a coordinate hyperplane}
= sup {v(C, F) : dim F = d; F not contained in
a hyperplane x; = constant}.

In Dumir et al> we showed that ¥(C, U) can be obtained by computing
v(C, V) for a suitable "rational” subspace V (see section 2 for more details). Using
this we determined W(C, n — 1) and, in fact, the complete spectrum W(C, U) for
(n — 1)-dimensional subspaces U. It is easily seen that for a rational subspace U of
dimension d, ¥(C, U) is equal to the covering radius of an (n — d)-dimensional lattice
with respect to a suitable convex body. Here we shall determine a formula for
v (B, S), where B is the Euclidean ball of diameter 1 and S is a rational subspace
of dimension n — 2. This leads to the value of V(B, n — 2) and related isolation
results for each dimension n=3 (see Theorem 3 and Corollaries 3 and 4). For
dimension n = 4, we use a method developed in Dumir et al.® to find upper bounds
for ¥(B, U) for rational subspaces U and obtain ¥(B, 1) = V5/4 and related isolations
(see Theorems 5-8 and Corollary 5). In a later paper we shall show that v(B, n — 3)
= V3/2 for n=6.

letF=U+pPpand F =U +P - —;— be two translates of the subspace U. Then,

since the metric d¢ is translation invariant

de(A, F) dc(§+2",U+p)

dc (Z",U+p~%)
= do(Z", F).

It follows that the quantities ¥(C, U) and ¥(C, d) remain unchanged if we modify
their definitions by writing d-(Z", F) at each appearance of v(C, F). This observation
permits us to link view-obstruction problems with Schoenberg’s problem of billiard
ball motion.

Schoenberg!i13 (see also Konig and Sziics® and Hardy and Wright’, p. 378)

considered billiard ball motion within the unit cube : |x,~|s§ ,i=1,2 .., nin
IR*. A point p = p(f) moves with uniform rectilinear motion within the cube and is

reflected in the usual way on striking a boundary hyperplane x; = :-;—. The resulting
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trajectory T, is called ‘non-trivial’ if it is not contained in a hyperplane x; = constant.

If C is an arbitrary closed convex body with centre o, we can follow
Schoenberg’s definitions for /,-balls and set

dc (Fy)=dc ({0}, T))

and

C
Pn =sup dc (Fn)’
where the supremum is taken over all non-trivial trajectories T,.

Schoenberg!® determined pS when C is the unit box with centre o. This also
follows from an earlier result of Wills!®, The initial segment of a trajectory T,

determines a line L in IR”. If the convex body C is symmetric by reflection in the
coordinate hyperplanes, this line satisfies

dC ({0}, rn) = dC (Zn’ L)

Moreover, since non-trivial trajectories correspond to lines not contained in hyper-
planes x; = constant, it follows that

C -
oS = ¥(C, 1).
In a later paper, Schoenberg!® considered higher dimensional trajectories and intro-

duced, at least in the [, case, quantities similar to our V(C, d).

Schoenberg!? conjectured that the quantity related to the I[-ball of radius 1

satisfies
n. 1
o T
p,,)= 12 12n

and that the supremum is attained essentially for the ‘lucky shot’ l": obtained by
sending the particle along the line with direction ratios (1, 1, ..., 1) and through a

point in the unit cube which is a translate of 0,%,%,..., ﬁ;—I by a point of 2.

He proved this conjecture for n = 2 in Schoenberg!! and announced a proof for n
= 3 in Schoenberg!?.

The results about V(B, U) that we prove here give, in particular, a proof of
Schoenberg’s conjecture for n = 3, 4. Because we follow the view-obstruction
tradition and take B to be the /,-ball of diameter 1 rather than radius 1,

P =27 (B, 1.

In the next section, we give a precise statement of the results which will be proved
here.
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2. STATEMENT OF RESULTS

A d-dimensional subspace U of IR" is called rational if it is {0} or if it has a
basis consisting of vectors in Q". Equivalently, a rational subspace of dimension d
is an intersection of n — d independent hyperplanes with normals in Q”. If a subspace
is not rational then it is called irrational. We showed in Dumir et al.* > that every
irrational subspace U is contained in a unique rational subspace M(U) of least
dimension. Also for p € R%, v(B, U + p) = v(B, M (U) + p) and v(B, U) = v(B,
M (U)) (see section 2 of Dumir et al’).

Interchange of co-ordinates and reflection in a co-ordinate hyperplane are
automorphisms of both B and A. A subspace U in IR” is called equivalent to a
subspace U’ (U ~ U") if U is obtained from U’ by applying such automorphisms.
Clearly, if U ~ U’ then v(B, U) = (B, U’) and (B, U) = ¥(B, U’). The equivalence
of flats (and in particular of points) is defined in an analogous manner.

It is easy to determine v(B, F) for hyperplanes F and hence to determine
v(B, n — 1) (see Section 3 of Dumir et al’). Here we shall consider lower
dimensional subspaces. Let n =3 and let § be an (n — 2)-dimensional subspace of
IR" not lying in a coordinate hyperplane. Henceforth we reserve the symbol § for
this special role and denote the Euclidean norm by | x |. We shall prove

Theorem 1 — If S is an irrational (n — 2)-dimensional subspace of IR" which
does not lie in a co-ordinate hyperplane then v (B, S) <1/V2 and strict inequality
holds except when S is contained in a hyperplane ¢ - x = 0, ¢c€ Z", |c|? = 2.

When the subspace S is rational, St () Z" is a 2-dimensional lattice of

determinant A (say). It follows from a result of Smith!® (see also McMullen!?)) that
det (S () Z7) = det(S* () Z7) = A. Let ¢, ¢, be a basis of S* [} 2" with ¢, a

. . - 1
nonzero lattice point nearest to the origin and 0 s¢; sz | ¢ . We have

Theorem 2 — Let S be a rational (n — 2)-dimensional subspace of IR”, which
does not lie in a co-ordinate hyperplane. If a basis ¢;, ¢, of S (\ Z" is chosen

(¢, - &) 1 (e P-e-e)
A2 * A ’

as above then VZ(B, S) = |c1 P ( 1+ where
1

A = det(St M 27y |

Corollary 1 — If in Theorem 2, we have ¢; ¢, = 0 then
- 1 |l 1 1
v2(B,S) = + = + .
e A P el

Corollary 2 — If in Theorem 2, S* contains ¢ € Z” with |¢[? = 2 then

+ é if A?=0(mod2)
(B, S) = 2

1 ) .
(1+F) if AZ=1 (mod 2).

B f—

B [
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Corollary 3 — Suppose that in Theorem 2 the subspace S* does not contain
cE Z" with [c]F=2.

(@ 1f 8t N Z" has a basis ¢, ¢, such that

() ¢;rc;=0and |¢;P=|c;[? =4 or
(i) ¢;rc;=0and |¢;2=3,3 s|c,[?s6, or
Gii)c;cc; =1 and |, P=]c,2 =3
—, .1 1 1 9 . . —,
then v? (B, S) is  or -+ — or —, respectively, and in each case v (B, S)
27 3 e 16
.1
-

(b) If S* () Z" does not have a basis satisfying one of the conditions mentioned

in (a) then ¥2 (B, S) < %

For future use, we introduce the following subspaces :
Siix—-x =0, x3-x4 =0
S;:ix-x=0,x-x3=0

S;ixj—x =0, x;+x,+x3 = 0.

In the spectrum {v(B, S) : dim S = n — 2} these subspaces (when available) give
the highest values, namely 1, v8/9, v5/6 respectively.
Theorem 3 — Let S be a rational subspace of dimension n — 2 in IR", which
does not lie in a co-ordinate hyperplane.
(@) For nz4, v(B, S) s 1 and equality holds iff S ~ S,. Further, v(B, §; + p)
< 1 except when §; + p : xj—x,=m/2, x3~x4 = m'/2, for odd integers
m, m'.
(b) For n =3, V(B, S) <V8/9 and equality holds iff S ~ S,. Further, w(B,

|
x;—x3 =m + -, for

S, + p) <v8/9 except when S; + p : xl—x2=m+1 3

3
integers m, m' (or its reflection in the origin).
Corollary 4 — @) v(B, n —2) =1 for nz4.
®) vB,n-2)=v8/9 for n =3
Theorem 3(b) and Corollary 4(b) give Schoenberg’s conjecture for n = 3.

Now let-L be a line in R* passing through the origin but not lying in a
co-ordinate hyperplane. We shall prove
Theorem 4 — If L is an irrational line in R* which passes through the origin

and does not lie in a co-ordinate hyperplane then v(B, L) < 1 and equality holds iff
L lies in a 2-dimensional subspace equivalent to S,.

For rational lines, the situation is different. There are rational lines in IR* for
which ¥(B, L) > 1. In fact we shall show that the maximum value that can be taken
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by v(B, L) is for rational lines L not lying in a co-ordinate hyperplane v5/4 and
determine precisely such lines for which ¥(B, L) > 1. Keeping this in view, we first
determine v(B, L) for rational lines lying in the subspaces S, S, and S;.

When L is a rational line, we write L = (a ), where a is a primitive point in
Z* Clearly, L ~ L' iff a ~ a', where L’ = (a' ) with a’ & Z* primitive. Since
L does not lie in a co-ordinate hyperplane each co-ordinate of a is non-zero.

We shall prove :

Theorem 5 — If L
equivalent to S; then

(a), where a € Z* is primitive and a lies in a subspace

if |[af=0 (mod4)
v¢(B, L)

2 1 .
1+T(1+Ta—‘2) if |[al?=2 (mod4).

Theorem 6 — If L = (a), where a € Z* is primitive and a lies in a subspace
equivalent to S, then

8 3 -
§+ra—l5 if |al?=0 (mod3)

v2(B, L) =
8, 11 8
9 9lal2 9|al

Theorem 7 — If L = (a), where a € Z* is primitive and a lies in a subspace
equivalent to S; then

if |af2=1 (mod3).

5 6
PRATNT if |a?=0 (mod6)
6 |aj
5 5 1 )
_6_+3|a|2+zlal4 lf |a|2-1(m0d6)
V@, L) =

1 3,3, if {aj?=3 (mod6)

6 |a 2|a}
10 16 .

= - f 2 w4 d 6).
6+3|a|2+3|a|4 if |al?P=4 (mod6)

Theorem 8 — If L is a rational line in IR* which passes through the origin and
does not lie in a co-ordinate hyperplane or in a subspace equivalent to S§; and is
not equivalent to ( (1, 1,1, 3) ), ( (1, 1, 1,2 ), (1L 1L, 2,3))or{( (22 2 3))
then v(B, L) < 1. The values of v?(B, L) for these four lines are
41 53 158

65 .
367297150 63° respectively.

Theorem 9 — If L is a line in IR* which passes through the origin and- does
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not lie in a co-ordinate hyperplane then v(B, L) <V5/4 and equality holds iff L ~
((1, 1,1, 1) ). Further, for L = ( (1, 1, 1, 1) ), v(B, L + p) < V5/4 except when
p EL + q; or their translates through Z* where points q; are obtained from q =

(O, %, %,%) by permuting the co-ordinates. In particular, v(B, 1) = V5/4 for n = 4.

This proves Schoenberg’s conjecture for n = 4.

3. IRRATIONAL SUBSPACES — PROOFS OF THEOREMS 1 AND 4

An irrational subspace S of dimension n — 2 is contained in a unique rational
subspace M(S) and v(B, S) = v(B, M(S)) (see Corollary 4 of Dumir et al). If dim
M(S) = n then v(B, M(S)) = 0 and so v(B, 8) = 0. If dim M(S) = n — 1 and if
M(S) :¢cx =0, ¢c €2Z" ¢ primitive then v(B, S) = v(B, M(S)) = ﬁs% and
equality holds if and only if |¢|?> = 2 (see Theorem 3(ii) of Dumir et al5). This
proves Theorem 1.

To prove Theorem 4 we observe that for an irrational line L in IR%, M(L) is
either IR* or a hyperplane or a two dimensional subspace. In the first case, ¥(B, L)

= v(B, M(L)) = 0; in the second, v(B, L) 5%2 as argued above; and in the third,

we appeal to Theorem 3(a).

4, RATIONAL SPACES : REDUCTION AND SOME KNOWN RESULTS

Here all spaces that we consider will be rational. The flats will also be rational
in the sense that these will be translates of rational subspaces. If U is a rational
subspace of dimension d in IR* then Ut is a rational subspace of dimension n ~ d.
Let @y be the orthogonal projection of IR onto Ut. Then gy (B) is a ball of diameter
1 in the (n — d)-dimensional space UL. Also @y (&) is a lattice and @y (A) =
@u (@M + @y (1/2). 1t is easy to see that V(B, U) is the covering radius of the
lattice @y (Z") with respect to the ball with centre o and diameter 1. In particular,
when S is a rational subspace of dimension n — 2 in IR", the determination of v(B,
S) is equivalent to the determination of the covering radius of a 2-dimensional lattice.
The covering radius of such a lattice is easy to determine and we do this in Section
5. For rational lines L in IR%, the determination of V(B, L) is equivalent to the
determination of the covering radius of a 3-dimensional lattice. Using a reduction of
Voronoi, Barnes? obtained an expression for this which we now describe.

A positive definite quadratic form f is called reduced (in the sense of Voronoi)
if it can be written as

2 2 2
fixy, X2, X3) = Po1 X1 + P2 X3 + Po3 X5 + P12 (X1 —x2)?
+ P (X2 = X3 + p3g (3 —x, )%,

where p, 20 for 0=<i,j=<3. From the results in Section 2 of Barnes? it follows that
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if fis a reduced form associated with the lattice I" then the covering radius 7(I') of
I' with respect to B is given by

r? () =Zp; - 55(%’ - M
where

d(f) = det f = (det ()%, Zp; = Po1 + Poz + Po3 + P12 + P23 + P31

A=min (A Ay, Ao Ag, Aahy),
where A= Po1 P23, A2 = Po2 P31, A3 = Po3 P12
and ¥ = Z po1 Po2 Po3 (P12 + P23 + P31)s

where the sum for k contains four terms obtained by permuting 0, 1, 2, 3 cyclicaily
and putting p; = p;.

Let fy be the form with all p; equal to 1 and E, the ellipsoid fo(x)s%. Let

321
v, 1si<6, be the points obtained from (4’ 4’4) by permuting the co-ordinates.

It follows from Section 2 of Barnes? that the just covered points in the configuration
E, + Z3 are precisely the points v;+Z3, 1 <is6.
If S is a rational (n — 2)-dimensional subspace of IR" and St () 2" is a lattice

of determinant A(S) (say) containing a primitive point ¢ then it follows from
Corollary 10(ii) of Dumir er al’ that

N B [k - ()

[P a2(s)

In the sequel L will stand for a rational line through o in IR% not lying in a
co-ordinate hyperplane. We shall always write L = ( a ), a primitive in Z*. If 8 is
a 2-dimensional subspace containing L, then by Corollary 9(ii) and Remark 1 of
Dumir et al® we obtain

V2(B, L) = V2(B, S) + A2(S)/]a[. (3

For the 3-dimensional lattice Ta=L* {) Z7 we choose a reduced basis

¢, €, €3 by Hermite’s reduction process (see Section 10.3 of Gruber and

Lekkerkerker’). These points are chosen successively to satisfy the following
conditions :

@ Jc|=min {{p]|:p ETa, p=o}.
(i) |ecy]=min {| p|: ¢;, p can be extended to a basis of I'a}.
(i) |ezl=min {| p|: ¢, ¢ p is a basis of I'a}.

Then the following inequalities are satisfied :

lerlsler]=]es| - (4
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lci-cjls%|ci|2 for i <j - (5)
lerlle|sva/3 A . (6)

where A is the determinant of the lattice generated by c,, ¢,, and

lerle2|les]s V2 |al. -~ (7)

Inequality (6) goes back to Lagrange and (7) to Gauss.

On replacing ¢; by — ¢, and ¢3 by — c3, if necessary, we can suppose that
¢;°¢ =20, ¢, -¢c3 =0. .. (8)

The inequalities (6) and (7) together with Hadamard’s inequality give

\/3/4|c1|lc2[sAs|c1||c2|s%|;i|l—l. ()]

Using (2) and (3) we get

- 1 ler ]2 A2
2 L . - (10)
v? (B, )S|c1|2+ A +|a|2

We notice that for 0 < a<sxsf,

2
= ok T:F < max (o), fip)).

X

Thus (10) together with (9) gives

4 3 1 1 2

v2(B, L) = max + + + + .
®. L) I E 36 P 2lal [af ol Tap

- (1D
Using (4) we obtain

1 3 4

- (12)

For later use in section 6.2, we observe that if p = a;¢;+a;¢+ 03¢ EZ8,
for some real oy, ay, a; then pE I'a and hence o, a,, o3 are integers. In particular

%c,-z-;—chZ“ for i=j. - (13)
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5. RATIONAL SUBSPACES OF DIMENSION. n - 2

When S is a rational subspace of dimension n — 2, St M Z" is a 2-dimensional

lattice. Let ¢y, ¢, be a basis of §* () Z" with |¢;|=min { |p |, p €S N Z,

p = o} and Osc¢ -czs%lcl [>. We obtain an orthogonal basis ¢;, ¢, of St by

- ' €€
defining ¢; = cz—ﬁcl. Then
€

A=det (e, e) N ZM=|e ]| el

Write g = gcd. (¢, ¢, (¢, ), h=c, ¢,/g and k = |¢,[*/g. Then O0sh'<k/2 and
ged (hk) = 1. Let d = ke,~ke,=ke,. So | d | = k |cy|= kA/|c, )

The projection of Z" on §* is essentially the 2-dimensional lattice

“’S‘Z"{(lcll’ ldaJ"‘EZ}

= {(L L):u,vEZand uh+v=0(modk)}.

lei]” 1d]

Let r = r(ps (Z")) be the covering radius of the lattice ¢g(Z”) with respect to the
ball B.

1 h? 1 (k- h)?
2| 12 BECHN Y (U S . Sl O
Lemma 1 r ICII( )( + ldf )

2,
les PO TdP ) lerf
_ 1 1+(c1~c2)2 1+(|c,|2-c1~c_2)j
- Icl |2 A2 A2 '
PROOF : The lattice gg(Z") is generated by p = (O,ﬁ) and q =
~~1—, A . The circumradius of the triangle opq is
[er]” [d]
Pq Pq 1 \/ 1 . h* 1 +(k—h)2
25inpoq=7|c]”q|=5|cll fei P AP e P |dF )

Since 0 s¢, ¢, <|¢, 2, the angle ogp is acute and so the triangle epq is acute
angled or right angled. It is well known that the covering radius of the lattice with
respect to B is twice the circumradius of such a triangle and so the Lemma follows.

Remark 1 : For later use in Theorem 3(b), we notice that-in the case when
le;P = |e2P=2and ¢yre; =1, ¢ = (—#2—, %) is thc circumcentre of the

1
)

-

isosceles triangle opq and r' = (3

) is the circumcentre of the triangle
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o, p — q, p. The points of the plane which are furthest from @s(Z") are precisely
the translates of r or r' through points of @g(Z") .

PROOF OF THEOREM 2, COROLLARIES 1 AND 2 : Theorem 2 follows at once
from Lemma 1 and the result stated in the beginning of section 4 which gives

v(B, S) = r(ps (Z7)).

Corollary 1 follows from Theorem 2 on substituting ¢;-¢; = 0 and A? =
| ¢, 2l e, 2. For the proof of Corollary 2 we observe that since by hypothesis S does
not lie in a co-ordinate hyperplane, any point ¢ € St () Z" with |c[? = 2 is a
minimal point of this lattice. So we can take ¢; =¢ in Theorem 2. Then ¢;-¢; = 0
or 1 and so A% = |c;Ples P - (e1:¢? = 2| ¢, or 22 — 1. Therefore A2= 0
or 1 (mod 2) according as ¢; - ¢; = 0 or 1. Hence Corollary 2 follows.

PROOF OF COROLLARY 3 : In each case mentioned in part (a), ¢, is a minimal
point of L+ M Z". So the value of vZ(B, S) is given by the formula in Theorem

2 and is seen 10 be at least %

For part (b), we observe that A2=|¢; 2|, 2 - (¢, - ¢)? = % | €1 | €2 |2 Therefore

inequality (2) of Section 4 gives

1+lc1|25 L, 4 7 1
fe, P a2 “er P 3P 3| 2

(B, S) =

if Jc;[?25. So let us now consider |¢,[* = 3 or 4.

If ¢,-¢; = 0 then by Corollary 1, V2 (B, S) = 1

1 .
. -lTIZ+|c—2|5<E except in the

cases mentioned in part (a).

If ¢;-¢; = 1, then by Theorem 2

21
V2(B, S) = |c11|2(1+X15)(1+*__‘(|q,|32 )2)

Also A?=|c,P |, - 1. If |e P =4, then A?215 and so v*(B, S)
<1.16. 8 1 y e, P = 3, then in this case |c,[? 24 and A’z 11. Therefore

= 112 15 1
In case ¢;-¢; = 2, we have [¢;|> = 4 because |¢; 2 22¢;-¢;. Then A2z 12

2
and by Theorem 2 it follows that v2(B, L) = %(1+%) s—g—<%.
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PROOF OF THEOREM 3 : It follows from Corollary 3 that ¥2 (B, S) s§<% if

le;P =2 When |¢2P=2¢-c,=00r1l Ife-c,=1 then A2z 3 and

2
v2(B, S) = l(1+Z15) sg. If ¢;-¢c; = 0, then A? is even and at least 4.

Hence v2 (B, S) = §+£5 <g unless A? = 4. If A?
fer 2 = |e;]? = 2. This case does not arise when n = 3, but for n=4 it gives
S ~ 8.

For n =4 we determine the translates S; + p of S, for which v(B, S, + p) =
1. Let S; + p be defined by the equations x;—x;—a = 0, x3—x4—f8 = 0. For any
x € A the Euclidean distance of x from S; + p is given by

() —x—a)? + (3 —x4— B)?
2 2 ’

4 then ¥(B, S) = 1 and

d2(x,S,+p) =

1 1
It is clear that we can choose x € A such that |x, ~x,— a|s , X —x, — 6]55

with strict inequality at one place except when 2a and 2§ are both odd integers. So
v(B, S, + p) < 1 except in the case stated in part (a) of the Theorem.

For n = 3, the analysis above shows that v2 (B, S) <8/9 and equality holds if
and only if ¢;-¢; = 1 and A> = 3 ie. § ~ 8,

To determine the points p such that v3(B, S, + p) = 8/9 we appeal to Remark

1. When we choose ¢; = (1, — 1, 0) and ¢, = (0, — 1, 1) then ‘Psz( 1 2)

73’3
~1 1 1 1 " .
(3\/7’\/3)_1- and q)@O ) (3\/_ ‘/_) It is clear that
v(B, S; + p) = V8/9 if and only if g, (S, +p) = s, (p) is a just covered point and

so the equality cases are as stated in the Theorem.

This completes the proof of Theorem 3. Corollary 4 is an immediate consequence
of Theorems 1 and 3.

6. RATIONAL LINES IN R*

6.1. Proofs of Theorems 5, 6, and 7

We consider rational lines lying in special subspaces and prove Theorems 5, 6
and 7 making use of the results on covering radius stated in section 4. In particular,
we use expression (1) repeatedly. Here L = (a), where a € Z* is primitive and

L' M 2% is a 3-dimensional lattice of determinant | a |. For each theorem we
choose a suitable orthogonal basis of the subspace Lt and write @y (Z*) explicitly.
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Then we choose a suitable basis of gp(Z*) so that the associated quadratic form f
is reduced in the sense of Voronoi and use (1) to determine v(B, L) = r(p(Z%).

PROOF OF THEOREM 5 : Without loss of generality we can suppose that L lies
in §;. We can suppose that a = (a, a, b, b), where a, b are relatively prime integers

and a=0, b =0. Let d;, =(1,-1,0,0),4d, =(0,0,1,-1), and d; = (b, b,
— a, — a). Then d,, d,, d; is an orthogonal basis of the subspace L‘ (though not

of the lattice Z* () L4).

The projection of Z* on L can be described as

X —Xa X3—X4 b(xl +x2)—a(x3 +X4)

_ 1
WZ‘”‘{( Vioovi V@R
_ {(uz’ %’ bu—av+|i(i>x2—ax4)):u’v’xz’x“ez}

= {(_u_ 2 Mbu—av+2w):u,v,w62}.

):x,»EZ,lsis4}

V2 V2° |a|
Case (i) : |af = 0 (mod 4)
Here a, b are both odd. The lattice ¢y(Z% is generated by (%, 0, I_:l),
1 1 -1 1 . . .
(0’\/7’ '3|) and (0,\[2—, |3|). The associated quadratic form is

1
fo1, y2,¥3) = 2y1+ (Yz y3)? +| I(y1+yz+y3)

|

l\)l»--d

—1y+1y+1y+ 01-y20
la )7 T [ap?? T [ap T [ap Y172

1 1
+ (E—Ta—lz)(yz-n)“ﬁ@s-yl)z.

This is reduced in the sense of Voronoi since |a|>=4. The related parameters are

d(f) = (det oL (Z*))* = |a|?, Zp;=1+2]al?

2
VY VS S Y Alxz=(1-i) 1

ﬁs" 27|af) Jaf
Since |a[?=4, it follows that A,A;s A, A; =X, A, and so A=|a|*® and
k=|al*(1-4]al*).

Thus V2(B, L) = Zp,~[aP(x+4\)=1+|a |2
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Case (i) : |a] = 2 (mod 4)
Here 2 and b are of opposite parity. Without loss of generality we can suppose
: 1
that a is odd and b is even. Then @ (Z*) is generated by (3,0,0),
(O, %,ﬁ), (0,% ,ﬁ). The associated quadratic form can be written as
2 2 1 1 2
I(Ybyby:&) 2)’1+| IzY2+| |2y3+(2 |a‘2)()’2 }’3)-

The related parameters are

1 3 1 2
d(ﬁ=|=l_|2’ zpij=1+lalz, K'|a|4_|a|6 ,and A = 0.

Therefore (B, L) = Zp,—|a f (x + 40) = 1+|2| I:I‘
PROOF OF THEOREM 6 : Here we can suppose that L lies in S,. We can write
= (a, a, a, b), where a and b are non-zero coprime integers. We take d, = (1,

-1,0,0),d;=(,1,-2,0) and d3 = (b, b, b, -~ 3a) as an orthogonal basis of
L*. Therefore

PL(ZY)

_{(x,—xz X+ X3—-2x3  b(x; + x5 + x3) - 3ax,

vz Ve , V322007 ):xiEZ,lsis4}

u v vb+3w

=‘{(72_,7_6—, V3|a| ):u,v,wEZu-V(mOdz)}-

Case (i) : |alP= 0 (mod 3) ie. b = 0 (mod 3)

Here @ (Z*) is generated by %2,—‘/%,0), —\_7%’71_6—’0)’ and (O’O’I—?—I)'

The associated quadratic form can be written as

1, 1, 3 5,1
f()’l,}’2,)'3)'§yl+g)’2+w)’3+§()’1-)’2)2-

This is reduced in the sense of Voronoi.
Here

1 3 1
-—,244-1 T » e - .
W=Tap> =1+ 1gp> X=gpp = 2 = 0

Therefore (B, L) = Zp,~|aP (x+ 4h) =S4 3

9 [ap’
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Case (ii) : |a]? = 1 (mod 3) ie. b = = 1 (mod 3)
On replacing a by — a, if necessary, we can suppose that b = 1 (mod 3). Then

. 1 1 1 -1 1 1 -
o(Z%) is generated by (ﬁ,ﬁ,ﬁial) and (ﬁ’ﬁ’—ﬁm) and

(0 0, I\/—[) The associated quadratic form can be written as
‘f()’la)’2,)’3)=1 -t OT+y)+7 3 }’3+1 1t 01 -2
307 |af [aP™> 31" |aF
+—1—(Yz“}’3)2+'i“()’3")’1)2-
|af laf
Here
1 2 1 1Y
dfy= o, Epym 4o A= 1)
D=Tap> =1 ap 9|a|4( laP)
1 1 V(1. s 1 1
d - 1-——) (% 1-3-1).
" ® 3|a|2( IaIZ)(s‘“slaF)’“lar"( |a|2)
Then V(B L) = Spy-|aPx+a)=or 2L, 8
! 9 "STaP ' 9[af

PROOF OF THEOREM 7 : Here we suppose that L lies in S;. We can write a8 =
(a, a, — 2a, b), where a and b are non-zero coprime integers. Then the vectors d,;
=(1,-1,0,0),4d,=(, 1,1, 0), and d3 = (b, b, — 2b, — 6a) give an orthogonal
basis of L. The projected lattice is

X1=X3 Xi+Xy+X3 b(x1 + X3 — 2x3) - 6“4

Wm:ﬂﬁ’ Vi Ve red)

_ffuw v bBu-2v)+6w).
_{(‘/_2.,\/37, V6 |a| ).u,v,wEZ}.

):x,-EZ“, 1sis4}

On replacing a by — a, if necessary, we can suppose that b =t (mod 6)
with 0<t<3.

Case (i) : |aj’= 0 (mod 6) ie. b = 0 (mod 6)

Here qp(Z*) is a rectangular lattice generated by (% ,0,0 ) s ( 0, 3 0 ) and

( 0,0, r\/:—‘ ) . Therefore

1,1, 6 5 6

v2 Y e
VB D) = 3 a6 fal
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Case (ii) : |aPP= 1 (mod 6) ie. b = 1 (mod 6)
. . . 1 3 1 -2
Ab f 4 -= =
asis of @ (Z% is given by (‘/7’0"'/—6_|a|) ( 736 |a |) and
0,21 -4
'V3°V6|al| "
The associated quadratic form can be written as

3 2 1 2 2 2 1 5
f(Yl,Y2,)’3) (2 zlalz) lale2+|a|2y3+|a|2(YI yZ)

1
+(3 3|a|2)(yz })+|a|2@3 YI)

It is reduced in the sense of Voronoi. Here

1 3 2 1 4 1
2 o 2 2 —— RN —
Since |ajP=6a>+b = 37 2[aF>[al and3 3|a|2 [af

Therefore }\=}\2}\3=i8. Also
2 3 1 5 1 (1 4 1 5
= 1——— + - - -+
laf' " “faP {37 31aP ) [al* |37 3ap ){27 2[aP

s> (1 __4 P
[al*{3 3Jaf la]> )

5 1
6 3]:1]2 2Jal

and so A,z A=A,

Then
VB, L) = Zp;—|aP(x+4)r) =

Case (iii) : |aP= 3 (mod 6) ie. b = 3 (mod 6)

The associated quadratic form can be written as

3 1
f(YbYZ,yS) (2 2| |2),V1+3)’2+| |2y3+|a|2(y3 }’1)
This is reduced in the sense of Voronoi, since each coefficient is non-negative.

Here

1 5 9 3 (1 3
d(ﬂ=m,zp,‘j——6—+—_—zla|2, A= 0 and K'| I (2 2'8'2)'
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Thus

3 9

5
= - 2 -l 4
VAB, L) = Zp;-|af(x +4}p) 6+]a|2+2la|“'

Case (iv) : |a|*= 4 (mod 6) i.e. b = 2 (mod 6)

4 1 1 2 _=6_ .
Here @p(Z*) has (\/5’0’0 s O’\/?’\/G—Ial and 0,0,‘/“‘ll as a basis.

The associated quadratic form can be written as

12 1 4 2 4 2 2
ﬂyl’y2’y3)‘§yl+(§_3‘a|2)y2+|a12y3+'a’2 (}’2'—)?3)2
and since |a > > 4, all coefficients are non-negative. The related parameters are
1 5 14 4 (1 4
d(ﬂ-I—;F, Zpi}"g"'m, A =10, and Kslal4(3—3|alz).
Therefore

5 10 16
= L 2 -
VB, L) = Zp;—|af(x+4)0) 6+3|a|2+3|a|4'

6.2. Proof of Theorem 8

Here L = (a) does not lie in a subspace equivalent to S,.

First let us suppose that L lies on a subspace equivalent to S,. Then by
Theorem 6

V4B, L)"s—g-+l—:F<l if [a]?>27.

We can suppose that a lies on S, and a = (a, a, a, b), where a, b are positive
co-prime integers. If [af?< 27 then a = (1, 1, 1, b), 1sb=<4, or (2, 2, 2, 1) or
(2, 2, 2, 3). Using Theorem 6, we can check that if a = (2, 2, 2, 1) or (1, 1, 1,
4) then VB, L) < 1. In all other cases V¥(B, L) > 1. We notice that (1, 1, 1, 1)
lies on §,; the values of all other v(B, L) are as listed.

Now suppose that L lies on S;. Then by Theorem 7
VB, L) <2+ 2= <1 if |aft> 36.
’ 6 |af

Let |aPs36 and suppose a = (a, a, — 2a, b), where a, b are positive co-prime
integers. The only possibilities are (2, 2, - 4, 1), (2, 2, -4, 3) and (1, 1, - 2, b)
with 1sbs5.a = (1, 1, - 2, 2) lies on a subspace equivalent to ;. Using Theorem
7 it is easily checked that except for a = (1, 1, — 2, 1) and (1, 1, - 2, 3), (B, L)
< 1.

Now we can suppose that L does not lie in a subspace equivalent to S,, S, or
S;. Let ¢, ¢;, ¢3 be a reduced basis of L+ [} Z* as ‘described in section 4. We break
up the rest of the proof into a sequence of Lemmas.



340 V. C. DUMIR, R. J. HANS-GILL AND J. B. WILKER

Lemma 2 — If ¢, 224 then v(B, L) < 1.

PROOF : By inequality (12), (B, L) < 1 if | ¢, ?=25.

When |c, |2 =4, the same inequality gives v(B, L) < 1 if |¢;[?25. Now we
notice that it is not possible to have |¢, > = | ¢; | = 4 because then both c;, ¢, are

equivalent to (1, 1, 1, 1) and so %cl + % ¢; € Z4, which is a contradiction (see (13)).

Lemma 3 — If |¢;? = 3 then ¥(B, L) < 1.

PROOF;: Since | ¢; 2 > 2, all co-ordinates of a are distinct and therefore | a [* = 30.
By (5) and (8) ¢;-¢; = 0 or 1. By inequality (12), ¥(B, L) < 1 if |c;[* 25 and
so it remains to consider |c; | = 3 and 4.

Let |2 =4 Here ¢; ~ (1, 1, 1,0), ¢ ~(1, 1, 1, 1) and so ¢, ¢; is not 0.
It follows that AZ=|¢; |2} ¢, J? (¢, - ¢;)? = 11 and (10) then gives ¥(B, L) < 1.

When |¢,[2 = 3, ¢; and ¢, are both equivalent to (1, 1, 1, 0). We notice that

¢, - ¢, = 1 would imply %c, +lCZEZ‘; which is a contradiction. Therefore ¢; - ¢;

2
= 0 and A% = 9. Then (10) given V(B, L) < 1.
Lemma 4 — K |c¢,|* =2 and L does not lie in a subspace equivalent to

$:.S, or S;, then ¥(B, L) < 1.

PROOF : Here ¢;-¢; = 0 or 1 follows from (5) and (8). Inequality (12) gives
V(B, L) < 1 when | ¢; |2 =27. We have to discuss the cases 2 = | ¢, |2 s 6 individually.

The case |¢,J2 = 2 does not arise because then the subspace generated by
¢,, €, is equivalent to S; or S,. When |¢; |2 = 3 and ¢, ¢; = 0, the space generated
by ¢;, ¢, is equivalent to S; and so is not to be considered here. So let [¢c; > = 3
and ¢;-¢; = 1. Then A?2 = 5. Then Corollary 2 and inequality (3) give

18 5

v2(B, L) <35+ s <1 if |aP=18.

It can be easily seen that |a [ = 18, since a does not lie in a subspace equivalent
to §,, 8, or S,

When |¢; |2 = 4, ¢; - ¢, cannot be 1 and so ¢, -¢; = 0 and A2 = 8. We observe

that |c;|2 = 4 would give %c2+%c3EZ“, which is not possible by (13). Thus

fes2 2 5. When | e3> = 5 we cannot have ¢; - ¢; equal to 0 or 2. Inequalities (5)
and (8) then give ¢, ¢3 = 1 and also | ¢; - ¢;3| = 1. Since | a | equals the determinant
of the lattice L* {1} Z¢4, we get |a[2=8]c3[2~4(c; - €32~ 2(c; - ¢3)2 = 34. Therefore
(10) gives ¥(B, L) < 1.

Now let ¢, = 5. If ¢;-¢; = O then A2 = 10 and |a ]2 = 10| c; P —5(¢, - ;)
~ 2(cz - ¢3)* 237, because |¢;-¢3|s1 and |¢;-¢3|<2. Then (10) gives W(B, L) <
1. If ¢;-¢c; = 1, then A2 = 9. Since |a]>= 25 by (7), it follows from Corollary 2
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and inequality (3) that

9
V4B, L)581+25 <1

When |c;[2 =6, ¢; ~ (1, - 1, 2, 0). So ¢;-¢; = 0 would give %cﬁ %cz

€ Z* which is a contradiction. Therefore ¢;-¢; = 1 and A2 = 11. Since {a 2= 36
by (7), inequality (10) gives W(B, L) < 1. This completes the proof of Lemma 4
and hence of Theorem 8.

PROOF OF THEOREM 9 : It follows from Theorems 5 and 8 that VB, L) < 5/4
except when L lies in a subspace equivalent to S; and |a|? < 6. Since a does not
lie in a co-ordinate hyperplane, this gives a ~ (1, 1, 1, 1) in which case v¥B, L)
= 5/4.

Now let us suppose a = (1,1, 1, 1), d, =(1,-1,0,0),d, =(0,0, 1, -~ 1),

= (1, 1, — 1, — 1). The proof of Theorem 5 Case (i) shows that relative to the
orthonormal basis d;/}d;}, i = 1, 2, 3, the projected lattice is

~X3 X3—X4 x1+x2—x3—x4).xlez}
bl ]

%(Z‘)={(xlﬁ Y 5

with lattice generators

-1 1
a1, 000)-(72,0,-5)-&
0,00-1=]0—=%,1
e (0, 0, 0, - )"( ’\/2—'2)'32

1
%(0,0,—1,0)=(,71 5) g

and associated quadratic form % fo- Since B has diameter 1, the remarks in Section

4 show that v5/4 B + g, (&*) covers L' with just-covered points

Uy g + Uz & + U3 g3 + o (Z9,

~Jj113
1424
P) = 5/4 must have p of the form

P=u4(-10,0,0)+u(0,00,-1)+u (0,0 -1, 0)

where {u;, u,, us} It follows that the lines L + P satisfying vXB, L +

+ k(1, 1,1, 1) + Z4,
113
4724
give precisely the points described in the statement of Theorem 9.

with {u,, u,, u3} = and k € R. Suitable choices of the free parameters
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The cases of equality in the v-problem are identical with those in the Schoenberg
problem because of the happy accident that for L = ((1,1,1,1)), qu(Z% =

oL(A).
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