9 research outputs found

    Experimentelle Nachbildung von internen KurzschlĂŒssen in Lithium-Ionen-Pouchzellen mittels prĂ€ziser Nadelpenetration

    Get PDF
    Die Lithium-Ionen-Zelle ist ein weit verbreiteter elektrischer Energiespeicher und Bestandteil vielfĂ€ltiger technischer Produkte. Die bekannte Sicherheitsproblematik dieser Speichertechnologie stellt hĂ€ufig grĂ¶ĂŸere Herausforderungen fĂŒr den praktischen Einsatz dar. Das Verlassen der Betriebsgrenzen, die Einwirkung mechanischer KrĂ€fte oder interne Produktionsfehler können aufgrund der hohen Energiedichte und der Verwendung reaktionsfreudiger Materialien zu einem „Thermischen Durchgehen“ der Zelle fĂŒhren. Der interne Kurzschluss, also der zellinterne elektrisch leitende Kontakt beider Elektroden stellt hierbei einen besonders relevanten und gefĂ€hrlichen Fehlerfall dar. Genau dieser Fehlerfall ist derzeit jedoch noch nicht vollstĂ€ndig verstanden. Ein wesentlicher Grund hierfĂŒr ist die fehlende Möglichkeit einen realitĂ€tsnahen internen Kurzschluss zuverlĂ€ssig nachbilden zu können. Die derzeit hĂ€ufig angewandte Nagelpenetration, als Bestandteil vieler Normen, bildet viele Fehlerursachen des internen Kurzschlusses, insbesondere die Dendritenbildung und die Partikelkontamination, aufgrund geringer LokalitĂ€t nicht realistisch nach. Sie liefert somit nur unzureichende Erkenntnisse zur Charakteristik eines solchen internen Kurzschlusses. In dieser Arbeit wird eine neue Methode zur realitĂ€tsnahen Nachbildung von internen KurzschlĂŒssen in Pouchzellen entwickelt und an mehr als 30 Zellen erfolgreich angewendet. HierfĂŒr wird als Nadelpenetration eine dĂŒnne Nadel (KanĂŒle) prĂ€zise und mit einer geringen Vorschubgeschwindigkeit (1 ”m/s) von außen in die Zelle eingestochen. Die Minimierung von Ă€ußeren StörgrĂ¶ĂŸen (z.B. eine konstante Zelltemperatur) ermöglicht es, die auftretenden Streuungen auf den internen Kurzschluss selbst zurĂŒckzufĂŒhren und so eine fundierte Fehlerbewertung abzuleiten. Aus der umfangreichen Zustandscharakterisierung leitet sich bisher fehlendes Wissen zur Entstehung, Entwicklung und möglichen Detektion des internen Kurzschlusses ab, welche fĂŒr die praktische Anwendung hohe Relevanz besitzen und dabei helfen, das ausgehende Risiko eines internen Kurzschlusses zu minimieren. Die Ergebnisse zeigen, dass es in vielen FĂ€llen zu einem dynamischen Prozess der Fehlerentwicklung kommt, welcher sich insbesondere durch wiederholte kurzzeitige Spannungsabsenkung mit darauffolgender schneller Spannungserholung (Relaxation) charakterisiert. Dieser dynamische Zustand kann zum spontanen „Thermischen Durchgehen“ der Zelle fĂŒhren. Oftmals bildet sich jedoch nach einigen Minuten ein konstanter hochohmiger interner Kurzschluss aus, welcher die Zelle zunĂ€chst unauffĂ€llig aussehen lĂ€sst. Besonders kritisch ist hierbei, dass fĂŒr den weiteren Betrieb eine GefĂ€hrdung durch eine irreversible StrukturbeschĂ€digung gegeben ist, die sich allerdings durch keine zerstörungsfreie elektrochemische Messmethode zuverlĂ€ssig nachweisen lĂ€sst. Hieraus leitet sich als neue Erkenntnis die Notwendigkeit ab, den internen Kurzschluss sofort bei der ersten Entstehung durch eine genaue, hinreichend schnelle Spannungserfassung frĂŒhzeitig zu erkennen und daraufhin Maßnahmen zur GefĂ€hrdungsminimierung einzuleiten.The lithium-ion cell is a widely used electrical energy storage and a key component of many technical products. However, the well-known safety issues associated with this storage technology often pose major challenges for practical use. Running the cell out of operating limits, the effect of mechanical forces or internal production defects can lead to a "thermal runaway" of the cell due to the high energy density in combination with the use of reactive materials. The internal short circuit, which means the electrically conductive contact between the two electrodes inside the cell, is a particularly relevant and dangerous failure mode. Exactly this type of failure is currently not yet fully understood. One of the main reasons for this is the missing possibility to reliably reproduce a close to reality internal short circuit. Nail penetration, which is currently often used in many standards, does not realistically replicate many of the causes of internal short-circuits, particularly dendrite formation and particle contamination, due to its limited locality. Therefore, this method only provides insufficient information on the characteristics of such an internal short circuit. In this work, a new method for the realistic replication of internal short circuits in pouch cells is developed and successfully applied to more than 30 cells. For this method, a thin needle (cannula) is precisely penetrated into the cell from the outside with a low speed (1 ”m/s). The minimisation of external disturbance (e.g. a constant cell temperature) makes it possible to attribute the occurring scattering to the internal short circuit itself and thus derive a well-founded failure evaluation. Comprehensive state characterisation has provided the missing knowledge on the triggering, development and possible detection of the internal short circuit, which is highly relevant for practical applications in order to minimise the outgoing risk of an internal short circuit. The results show that in many cases a dynamic process of fault development occurs, which is characterised in particular by repeated short-term voltage drops followed by rapid voltage recovery (relaxation). This dynamic state can lead to spontaneous "thermal runaway" of the cell. However, a constant high-resistance internal short circuit often develops after a few minutes, which initially makes the cell look inconspicuous. In this case, it is particularly critical that further operation is risky due to irreversible structural damage, which cannot be reliably detected by any non-destructive electrochemical measurement method. The new insight derived from this is the need to detect the internal short circuit immediately when it first occurs by precise, sufficiently fast voltage detection and then initiate actions to minimise the danger

    Phage Therapy and Photodynamic Therapy: Low Environmental Impact Approaches to Inactivate Microorganisms in Fish Farming Plants

    Get PDF
    Owing to the increasing importance of aquaculture to compensate for the progressive worldwide reduction of natural fish and to the fact that several fish farming plants often suffer from heavy financial losses due to the development of infections caused by microbial pathogens, including multidrug resistant bacteria, more environmentally-friendly strategies to control fish infections are urgently needed to make the aquaculture industry more sustainable. The aim of this review is to briefly present the typical fish farming diseases and their threats and discuss the present state of chemotherapy to inactivate microorganisms in fish farming plants as well as to examine the new environmentally friendly approaches to control fish infection namely phage therapy and photodynamic antimicrobial therapy

    Diversity of Somatic Coliphages in Coastal Regions with Different Levels of Anthropogenic Activity in São Paulo State, Brazil ▿

    No full text
    Bacteriophages are the most abundant and genetically diverse viruses on Earth, with complex ecology in both quantitative and qualitative terms. Somatic coliphages (SC) have been reported to be good indicators of fecal pollution in seawater. This study focused on determining the concentration of SC and their diversity by electron microscopy of seawater, plankton, and bivalve samples collected at three coastal regions in São Paulo, Brazil. The SC counts varied from <1 to 3.4 × 103 PFU/100 ml in seawater (73 samples tested), from <1 to 4.7 × 102 PFU/g in plankton (46 samples tested), and from <1 to 2.2 × 101 PFU/g in bivalves (11 samples tested). In seawater samples, a relationship between the thermotolerant coliforms and Escherichia coli and SC was observed at the three regions (P = 0.0001) according to the anthropogenic activities present at each region. However, SC were found in plankton samples from three regions: Baixada Santista (17/20), Canal de São Sebastião (6/14), and Ubatuba (3/12). In seawater samples collected from Baixada Santista, four morphotypes were observed: A1 (4.5%), B1 (50%), C1 (36.4%), and D1 (9.1%). One coliphage, Siphoviridae type T1, had the longest tail: between 939 and 995 nm. In plankton samples, Siphoviridae (65.8%), Podoviridae (15.8%), Microviridae (15.8%), and Myoviridae (2.6%) were found. In bivalves, only the morphotype B1 was observed. These SC were associated with enteric hosts: enterobacteria, E. coli, Proteus, Salmonella, and Yersinia. Baixada Santista is an area containing a high level of fecal pollution compared to those in the Canal de São Sebastião and Ubatuba. This is the first report of coliphage diversity in seawater, plankton, and bivalve samples collected from São Paulo coastal regions. A better characterization of SC diversity in coastal environments will help with the management and evaluation of the microbiological risks for recreation, seafood cultivation, and consumption

    References

    No full text
    corecore