471 research outputs found

    Potential distribution range of invasive plant species in Spain

    Get PDF
    Success of invasive species has been frequently estimated as the present distribution range size in the introduced region. However, the present distribution range is only a picture of the invasion for a given time step and do not inform on the potential distribution range of the species. Based on niche-based models we used climatic, geographic and landscape information on the present distribution range for 78 major plant invaders in Spain to estimate and map their potential distribution range. We found a positive relationship between present and potential distribution of species. Most of the species have not yet occupied half of their potential distribution range. Sorghum halepense and Amaranthus retroflexus have the widest potential distribution range. Sorghum halepense and Robinia pseudoacacia have the highest relative occupancy (i.e. proportion of potential distribution range currently occupied). Species with a larger minimum residence time have, on average, higher relative occupancy. Our study warns managers that it might be only a matter of time that currently localized invasive species reach their potential area of distribution

    Why would plant species become extinct locally if growing conditions improve?

    Get PDF
    wo assumptions underlie current models of the geographical ranges of perennial plant species: 1. current ranges are in equilibrium with the prevailing climate, and 2. changes are attributable to changes in macroclimatic factors, including tolerance of winter cold, the duration of the growing season, and water stress during the growing season, rather than to biotic interactions. These assumptions allow model parameters to be estimated from current species ranges. Deterioration of growing conditions due to climate change, e.g. more severe drought, will cause local extinction. However, for many plant species, the predicted climate change of higher minimum temperatures and longer growing seasons means, improved growing conditions. Biogeographical models may under some circumstances predict that a species will become locally extinct, despite improved growing conditions, because they are based on an assumption of equilibrium and this forces the species range to match the species-specific macroclimatic thresholds. We argue that such model predictions should be rejected unless there is evidence either that competition influences the position of the range margins or that a certain physiological mechanism associated with the apparent improvement in growing conditions negatively affects the species performance. We illustrate how a process-based vegetation model can be used to ascertain whether such a physiological cause exists. To avoid potential modelling errors of this type, we propose a method that constrains the scenario predictions of the envelope models by changing the geographical distribution of the dominant plant functional type. Consistent modelling results are very important for evaluating how changes in species areas affect local functional trait diversity and hence ecosystem functioning and resilience, and for inferring the implications for conservation management in the face of climate change

    Farmland bird assemblages exhibit higher functional and phylogenetic diversity than forest assemblages in France

    Get PDF
    Aim: Under a global change scenario, research focused on changes in assembly patterns over spatial and temporal axes is more than timely as it will improve our understanding about how biological communities respond to anthropogenic disturbance. Despite an increasing need to assess whether associations among diversity and community metrics change in relation to environmental heterogeneity, the way in which community assembly rules vary across habitats has been hardly explored. Here, we tested for differences in patterns of functional diversity (FD) and phylogenetic diversity (PD) between farmland and forest bird communities. Taxon: 107 species of breeding common birds. Location: continental France. Methods: We used an extensive dataset (13 years; 7,115 bird communities) from the French Breeding Bird survey in conjunction with a matrix of 142 functional traits (including information on habitat, diet, life-stories, behaviour, and morphology) to compute different metrics of FD and PD. Results: We found that farmland assemblages showed higher FD and PD than forest assemblages, which were phylogenetically clustered. Both FD and PD of forest assemblages increased with increasing species richness, whereas in farmland assemblages the relationship turned out to be asymptotic in both cases. It may be due to the accumulation of generalists, which can end up displacing specialist species when the environment becomes oversaturated triggering a decline in diversity. Contrary to expectations, FD and PD of farmland assemblages increased over the study period, whereas forest assemblages showed a non-linear pattern. Farmland and forest assemblages also showed divergent trajectories over time in relation to FD metrics. Main conclusions: We conclude that, although farmland intensification has led to a sharp decline in population of farmland birds, agriculture landscapes in Southern Europe still harbor diversity-rich communities probably due to the legacy effects of past land-use (traditional practices). Our study highlights the need to take into account the influence of historic landscape configurations when assessing the effect that contemporary land uses have on biotic communities. info:eu-repo/semantics/publishedVersio

    Vulnérabilité des écosystèmes montagnards aux changements globaux par une modélisation spatialement explicite -implications pour la conservation

    Get PDF
    Les conséquences des récents changements environnementaux sont déjà observables sur les écosystèmes du monde entier et menacent la biodiversité. Dans l'objectif de conserver les bénéfices que nous procurent les écosystèmes, l'enjeu est de comprendre et prédire la dynamique spatiale et temporelle des paysages et de la biodiversité afin de mieux anticiper les changements possibles et adapter les décisions de conservation. En zone de montagne, où l'environnement est très hétérogène, les effets combinés des modifications du climat et de l'agriculture sont susceptibles d'avoir un impact important sur les écosystèmes. La présente thèse a pour objectif principal de caractériser les espèces et les habitats vulnérables aux changements climatiques et changements d'utilisation des terres dans les Alpes Françaises. Elle apporte sa contribution en se basant sur des données accumulées par le Conservatoire Botanique National Alpin et le Parc national des Ecrins (PNE), et en utilisant trois angles d'approche complémentaires. Dans une première partie, les cadres théoriques expliquant la coexistence des espèces et leur répartition spatiale ont été testés empiriquement. Les patrons de rareté des plantes des Alpes françaises ont ainsi été reliés aux caractéristiques des espèces, mettant en évidence les compromis entre différentes stratégies fonctionnelles. Une seconde analyse de la répartition de 21 espèces cibles a démontré la différence entre les facteurs expliquant la présence d'une espèce à un endroit donné et ceux expliquant son abondance. Cette analyse a également permis de souligner l'importance de la dispersion et mis en évidence des dynamiques source-puits chez certaines espèces. La deuxième partie s'appuie sur les mêmes cadres théoriques et a consisté à développer un modèle dynamique de la structure et de la diversité de la végétation. Ce modèle a été calibré et validé sur la végétation du PNE. Une troisième partie porte son attention sur les évolutions possibles de la végétation sous plusieurs scénarios de changements climatiques et d'utilisation des terres. Les simulations ont montré qu'il est nécessaire de considérer la dynamique temporelle du fait que les conséquences d'un changement climatique peuvent être observées bien après la phase du changement. D'autre part, l'analyse a montré les effets conjugués que peuvent avoir les changements climatiques et la déprise agricole sur la structure de la végétation. Un tel modèle ouvre la voie à l'exploration de multiples scenarios, en permettant non seulement de décrire des paysages futurs potentiels mais aussi les états de transition qui devraient y mener.On-going global changes have already affected ecosystems and threaten the biodiversity all over the world. In order to maintain the ecosystems services provided to humans and adapt conservation planning, the challenge is to improve our understanding of the mechanisms underlying the maintenance of biodiversity and to predict its response to global changes. In mountainous areas, where the environment is very heterogeneous, the modifications of both climate and land use are expected to strongly influence the landscapes and current biodiversity. This PhD thesis has for main objective to assess the vulnerability of species and habitat to environmental changes in the French Alps. It uses three different approaches and relies on the large databases accumulated by two institutions: the National Alpine Botanical Conservatory and the Ecrins National Park (PNE). The first part of the PhD confronts theoretical hypotheses for species coexistence to observations and describes the characteristics of the regional flora. The species ecological niche breadth has been estimated and related to other rarity facets and trade-off between plant functional strategies. A second analysis disentangles the drivers of the presence or the local abundance of 21 focal species and highlights the importance of the dispersion and the source-sink dynamics. The second part is based on the same conceptual background and aims to develop a dynamic model of the vegetation structure and diversity. The model has been validated for the vegetation of the PNE. The last part proposes an application of this dynamic model to provide multiple biodiversity scenarios in respect to change in both climate and land management. The simulations showed that the consequences of climate change might be visible only after a certain time-lag, demonstrating the interest of considering the spatial but also temporal vegetation dynamics. Furthermore, the analysis pointed out the importance of the interplay effects between climate and land use abandonment. Such a model should pave the way for the exploration of multiples scenarios and will be able to describe not only the potential future landscapes but also the transition states leading to it.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    The Contribution of Vegetation and Landscape Configuration for Predicting Environmental Change Impacts on Iberian Birds

    Get PDF
    Although climate is known to be one of the key factors determining animal species distributions amongst others, projections of global change impacts on their distributions often rely on bioclimatic envelope models. Vegetation structure and landscape configuration are also key determinants of distributions, but they are rarely considered in such assessments. We explore the consequences of using simulated vegetation structure and composition as well as its associated landscape configuration in models projecting global change effects on Iberian bird species distributions. Both present-day and future distributions were modelled for 168 bird species using two ensemble forecasting methods: Random Forests (RF) and Boosted Regression Trees (BRT). For each species, several models were created, differing in the predictor variables used (climate, vegetation, and landscape configuration). Discrimination ability of each model in the present-day was then tested with four commonly used evaluation methods (AUC, TSS, specificity and sensitivity). The different sets of predictor variables yielded similar spatial patterns for well-modelled species, but the future projections diverged for poorly-modelled species. Models using all predictor variables were not significantly better than models fitted with climate variables alone for ca. 50% of the cases. Moreover, models fitted with climate data were always better than models fitted with landscape configuration variables, and vegetation variables were found to correlate with bird species distributions in 26–40% of the cases with BRT, and in 1–18% of the cases with RF. We conclude that improvements from including vegetation and its landscape configuration variables in comparison with climate only variables might not always be as great as expected for future projections of Iberian bird species.Peer reviewe

    Genetic consequences of climate change for northern plants

    Get PDF
    Climate change will lead to loss of range for many species, and thus to loss of genetic diversity crucial for their long-term persistence. We analysed range-wide genetic diversity (amplified fragment length polymorphisms) in 9581 samples from 1200 populations of 27 northern plant species, to assess genetic consequences of range reduction and potential association with species traits. We used species distribution modelling (SDM, eight techniques, two global circulation models and two emission scenarios) to predict loss of range and genetic diversity by 2080. Loss of genetic diversity varied considerably among species, and this variation could be explained by dispersal adaptation (up to 57%) and by genetic differentiation among populations (FST; up to 61%). Herbs lacking adaptations for long-distance dispersal were estimated to lose genetic diversity at higher rate than dwarf shrubs adapted to long-distance dispersal. The expected range reduction in these 27 northern species was larger than reported for temperate plants, and all were predicted to lose genetic diversity according to at least one scenario. SDM combined with FST estimates and/or with species trait information thus allows the prediction of species' vulnerability to climate change, aiding rational prioritization of conservation efforts

    Clustering species with residual covariance matrix in Joint Species Distribution models

    Get PDF
    International audienceModelling species distributions over space and time is one of the major research topics in both ecology and conservation biology. Joint Species Distribution models (JSDMs) have recently been introduced as a tool to better model community data, by inferring a residual covariance matrix between species, after accounting for species' response to the environment. However, these models are computationally demanding, even when latent factors, a common tool for dimension reduction, are used. To address this issue, Taylor-Rodriguez et al. (2017) proposed to use a Dirichlet process, a Bayesian nonparametric prior, to further reduce model dimension by clustering species in the residual covariance matrix. Here, we built on this approach to include a prior knowledge on the potential number of clusters, and instead used a Pitman-Yor process to address some critical limitations of the Dirichlet process. We therefore propose a framework that includes prior knowledge in the residual covariance matrix, providing a tool to analyze clusters of species that share the same residual associations with respect to other species. We applied our methodology to a case study of plant communities in a protected area of the French Alps (the Bauges Regional Park), and demonstrated that our extensions improve dimension reduction and reveal additional information from the residual covariance matrix, notably showing how the estimated clusters are compatible with plant traits, endorsing their importance in shaping communities

    Global drivers of population density in terrestrial vertebrates

    Get PDF
    Aim: Although the effects of life history traits on population density have been investigated widely, how spatial environmental variation influences population density for a large range of organisms and at a broad spatial scale is poorly known. Filling this knowledge gap is crucial for global species management and conservation planning and to understand the potential impact of environmental changes on multiple species. Location: Global. Time period: Present. Major taxa studied: Terrestrial amphibians, reptiles, birds and mammals. Methods: We collected population density estimates for a range of terrestrial vertebrates, including 364 estimates for amphibians, 850 for reptiles, 5,667 for birds and 7,651 for mammals. We contrasted the importance of life history traits and environmental predictors using mixed models and tested different hypotheses to explain the variation in population density for the four groups. We assessed the predictive accuracy of models through cross‐validation and mapped the partial response of vertebrate population density to environmental variables globally. Results: Amphibians were more abundant in wet areas with high productivity levels, whereas reptiles showed relatively higher densities in arid areas with low productivity and stable temperatures. The density of birds and mammals was typically high in temperate wet areas with intermediate levels of productivity. The models showed good predictive abilities, with pseudo‐R2 ranging between 0.68 (birds) and 0.83 (reptiles). Main conclusions: Traits determine most of the variation in population density across species, whereas environmental conditions explain the intraspecific variation across populations. Species traits, resource availability and climatic stability have a different influence on the population density of the four groups. These models can be used to predict the average species population density over large areas and be used to explore macroecological patterns and inform conservation analyses

    Residence time and potential range : crucial considerations in modelling plant invasions

    Get PDF
    Wilson, J.R.U., et al. 2007. Residence time and potential range: crucial considerations in modelling plant invasions. Diversity and Distributions, 13:11-22. doi:10.1111/j.1366-9516.2006.00302.xThe original publication is available at https://onlinelibrary.wiley.com/journal/14724642A prime aim of invasion biology is to predict which species will become invasive, but retrospective analyses have so far failed to develop robust generalizations. This is because many biological, environmental, and anthropogenic factors interact to determine the distribution of invasive species. However, in this paper we also argue that many analyses of invasiveness have been flawed by not considering several fundamental issues: (1) the range size of an invasive species depends on how much time it has had to spread (its residence time); (2) the range size and spread rate are mediated by the total extent of suitable (i.e. potentially invasible) habitat; and (3) the range size and spread rate depend on the frequency and intensity of introductions (propagule pressure), the position of founder populations in relation to the potential range, and the spatial distribution of the potential range. We explored these considerations using a large set of invasive alien plant species in South Africa for which accurate distribution data and other relevant information were available. Species introduced earlier and those with larger potential ranges had larger current range sizes, but we found no significant effect of the spatial distribution of potential ranges on current range sizes, and data on propagule pressure were largely unavailable. However, crucially, we showed that: (1) including residence time and potential range always significantly increases the explanatory power of the models; and (2) residence time and potential range can affect which factors emerge as significant determinants of invasiveness. Therefore, analyses not including potential range and residence time can come to misleading conclusions. When these factors were taken into account, we found that nitrogen-fixing plants and plants invading arid regions have spread faster than other species, but these results were phylogenetically constrained. We also show that, when analysed in the context of residence time and potential range, variation in range size among invasive species is implicitly due to variation in spread rates, and, that by explicitly assuming a particular model of spread, it is possible to estimate changes in the rates of plant invasions through time. We believe that invasion biology can develop generalizations that are useful for management, but only in the context of a suitable null model.DST-NRF Centre of Excellence for Invasion Biology. GDRI project ‘France South Africa — Dynamics of biodiversity in Southern African ecosystems and sustainable use in the context of global change: processes and mechanisms involved’ ARC-Plant Protection Research Institute provided funding for the SAPIA Project.https://onlinelibrary.wiley.com/doi/10.1111/j.1366-9516.2006.00302.xPublisher’s versio
    corecore