23 research outputs found

    Population ecology of Psammobates oculifer in a semi-arid environment

    Get PDF
    We studied the ecology of Psammobates oculifer over 13 months near Kimberley, South Africa, to ascertain if the population’s life history traits conform to chelonian patterns in arid environments. Capture rates were highest in spring and lowest in winter when environmental conditions were respectively most and least favourable for tortoise activity. Body condition did not change from autumn to spring, but reached lower values during the summer drought. Capture effort averaged 5 hours/tortoise, which corresponds closely to that of species with low population densities in arid regions. Population size structure was skewed towards adults, indicative of low recruitment and/or low juvenile survivorship. Females were larger and heavier than males, confirming sexual dimorphism in this species. Body size of cohorts scaled to annuli counts, indicating a close correspondence between body size and age. Telemetered adults deposited one or no growth ring in the year of study; consequently, annuli counts could underestimate adult age. Regression analyses showed that male and female growth rates did not differ, but males matured at a smaller size and younger age than females. The smallest male showing reproductive behaviour had 12 annuli and a shell volume of 157 cm3, while similar measures for females were 14 annuli and 185 cm3. The sex ratio of the population did not differ from 1:1 but the bias towards males in spring, and towards females in autumn, indicates that studies limited to particular seasons can misrepresent life history traits of populations. We concluded that the life history of P. oculifer conforms to chelonian patterns in arid regions.Web of Scienc

    Higgs Boson Studies at the Tevatron

    Get PDF
    We combine searches by the CDF and D0 Collaborations for the standard model Higgs boson with mass in the range 90--200 GeV/c2/c^2 produced in the gluon-gluon fusion, WHWH, ZHZH, ttˉHt{\bar{t}}H, and vector boson fusion processes, and decaying in the HbbˉH\rightarrow b{\bar{b}}, HW+WH\rightarrow W^+W^-, HZZH\rightarrow ZZ, Hτ+τH\rightarrow\tau^+\tau^-, and HγγH\rightarrow \gamma\gamma modes. The data correspond to integrated luminosities of up to 10 fb1^{-1} and were collected at the Fermilab Tevatron in ppˉp{\bar{p}} collisions at s=1.96\sqrt{s}=1.96 TeV. The searches are also interpreted in the context of fermiophobic and fourth generation models. We observe a significant excess of events in the mass range between 115 and 140 GeV/c2c^2. The local significance corresponds to 3.0 standard deviations at mH=125m_H=125 GeV/c2c^2, consistent with the mass of the Higgs boson observed at the LHC, and we expect a local significance of 1.9 standard deviations. We separately combine searches for HbbˉH \to b\bar{b}, HW+WH \to W^+W^-, Hτ+τH\rightarrow\tau^+\tau^-, and HγγH\rightarrow\gamma\gamma. The observed signal strengths in all channels are consistent with the presence of a standard model Higgs boson with a mass of 125 GeV/c2c^2

    Variable performance of individuals: the role of population density and endogenously formed landscape heterogeneity

    Full text link
    1.   Individuals can show positive correlations in performance (e.g. growth and reproduction) through time beyond the effects of size or age. This ‘performance autocorrelation’ has been attributed previously to traits that differ among individuals or to extrinsic generators of environmental heterogeneity. 2.   A model of mobile consumers on a dynamic resource showed that consumer foraging gave rise to resource heterogeneity that in turn generated autocorrelation in growth in consumers. 3.   Resource heterogeneity and growth autocorrelation were most pronounced when consumers were poorer foragers, moving locally and with an imperfect ability to identify the highest resource cells. 4.   The model predicted that lowered population density enhanced resource heterogeneity and the strength of growth autocorrelation. 5.   Consistent with model predictions, an experiment with tidepool limpets demonstrated that autocorrelation in growth changed with population density, with individuals in lower density tidepools showing stronger temporal correlations in growth. 6.   Our model and empirical results contrast with those of previous studies with plants, where dominance and suppression increases with increasing density. 7.   Our results suggest that growth autocorrelation can occur without invoking size-dependent advantages, intrinsic trait differences or extrinsic generators of environmental heterogeneity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74301/1/j.1365-2656.2003.00742.x.pd
    corecore