84 research outputs found

    Bayesian Semiparametric Hierarchical Empirical Likelihood Spatial Models

    Full text link
    We introduce a general hierarchical Bayesian framework that incorporates a flexible nonparametric data model specification through the use of empirical likelihood methodology, which we term semiparametric hierarchical empirical likelihood (SHEL) models. Although general dependence structures can be readily accommodated, we focus on spatial modeling, a relatively underdeveloped area in the empirical likelihood literature. Importantly, the models we develop naturally accommodate spatial association on irregular lattices and irregularly spaced point-referenced data. We illustrate our proposed framework by means of a simulation study and through three real data examples. First, we develop a spatial Fay-Herriot model in the SHEL framework and apply it to the problem of small area estimation in the American Community Survey. Next, we illustrate the SHEL model in the context of areal data (on an irregular lattice) through the North Carolina sudden infant death syndrome (SIDS) dataset. Finally, we analyze a point-referenced dataset from the North American Breeding Bird survey that considers dove counts for the state of Missouri. In all cases, we demonstrate superior performance of our model, in terms of mean squared prediction error, over standard parametric analyses.Comment: 29 pages, 3 figue

    Spatial Fay-Herriot Models for Small Area Estimation with Functional Covariates

    Get PDF
    The Fay-Herriot (FH) model is widely used in small area estimation and uses auxiliary information to reduce estimation variance at undersampled locations. We extend the type of covariate information used in the FH model to include functional covariates, such as social-media search loads or remote-sensing images (e.g., in crop-yield surveys). The inclusion of these functional covariates is facilitated through a two-stage dimension-reduction approach that includes a Karhunen-Lo\`{e}ve expansion followed by stochastic search variable selection. Additionally, the importance of modeling spatial autocorrelation has recently been recognized in the FH model; our model utilizes the intrinsic conditional autoregressive class of spatial models in addition to functional covariates. We demonstrate the effectiveness of our approach through simulation and analysis of data from the American Community Survey. We use Google Trends searches over time as functional covariates to analyze relative changes in rates of percent household Spanish-speaking in the eastern half of the United States.Comment: 26 pages, 5 figure

    Air and water pollution over time and industries with stochastic dominance

    Get PDF
    We employ a stochastic dominance (SD) approach to analyze the components that contribute to environmental degradation over time. The variables include countries\u2019 greenhouse gas (GHG) emissions and water pollution. Our approach is based on pair-wise SD tests. First, we study the dynamic progress of each separate variable over time, from 1990 to 2005, within 5-year horizons. Then, pair-wise SD tests are used to study the major industry contributors to the overall GHG emissions and water pollution at any given time, to uncover the industry which contributes the most to total emissions and water pollution. While CO2 emissions increased in the first order SD sense over 15 years, water pollution increased in a second-order SD sense. Electricity and heat production were the major contributors to the CO2 emissions, while the food industry gradually became the major water polluting industry over time. SD sense over 15 years, water pollution increased in a second-order SD sense. Electricity and heat production were the major contributors to the CO2 emissions, while the food industry gradually

    The Neutrophil's Eye-View: Inference and Visualisation of the Chemoattractant Field Driving Cell Chemotaxis In Vivo

    Get PDF
    As we begin to understand the signals that drive chemotaxis in vivo, it is becoming clear that there is a complex interplay of chemotactic factors, which changes over time as the inflammatory response evolves. New animal models such as transgenic lines of zebrafish, which are near transparent and where the neutrophils express a green fluorescent protein, have the potential to greatly increase our understanding of the chemotactic process under conditions of wounding and infection from video microscopy data. Measurement of the chemoattractants over space (and their evolution over time) is a key objective for understanding the signals driving neutrophil chemotaxis. However, it is not possible to measure and visualise the most important contributors to in vivo chemotaxis, and in fact the understanding of the main contributors at any particular time is incomplete. The key insight that we make in this investigation is that the neutrophils themselves are sensing the underlying field that is driving their action and we can use the observations of neutrophil movement to infer the hidden net chemoattractant field by use of a novel computational framework. We apply the methodology to multiple in vivo neutrophil recruitment data sets to demonstrate this new technique and find that the method provides consistent estimates of the chemoattractant field across the majority of experiments. The framework that we derive represents an important new methodology for cell biologists investigating the signalling processes driving cell chemotaxis, which we label the neutrophils eye-view of the chemoattractant field

    Lessons in uncertainty quantification for turbulent dynamical systems

    Get PDF

    cartography courses

    No full text
    data about US cartography course

    Calibrating a Stochastic, Agent-Based Model Using Quantile-Based Emulation

    No full text
    • …
    corecore