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LESSONS IN UNCERTAINTY QUANTIFICATION FOR

TURBULENT DYNAMICAL SYSTEMS

Andrew J. Majda and Michal Branicki

Department of Mathematics and Center for Atmosphere and Ocean Science
Courant Institute of Mathematical Sciences, New York University, USA

Abstract. The modus operandi of modern applied mathematics in developing

very recent mathematical strategies for uncertainty quantification in partially
observed high-dimensional turbulent dynamical systems is emphasized here.

The approach involves the synergy of rigorous mathematical guidelines with a

suite of physically relevant and progressively more complex test models which
are mathematically tractable while possessing such important features as the

two-way coupling between the resolved dynamics and the turbulent fluxes,

intermittency and positive Lyapunov exponents, eddy diffusivity parameteri-
zation and turbulent spectra. A large number of new theoretical and computa-

tional phenomena which arise in the emerging statistical-stochastic framework
for quantifying and mitigating model error in imperfect predictions, such as

the existence of information barriers to model improvement, are developed and

reviewed here with the intention to introduce mathematicians, applied math-
ematicians, and scientists to these remarkable emerging topics with increasing

practical importance.

1. Introduction. The ‘inevitable reality’ when it comes to predicting the dynam-
ical behavior of turbulent, high-dimensional systems from nature is that the em-
ployed mathematical and numerical models need to properly account for propaga-
tion of uncertainty arising due to the limited understanding and partial observa-
tions of the true dynamics. Uncertainty Quantification (UQ) is undoubtedly an
important issue in many physics, engineering, neural science and geoscience appli-
cations where complex nonlinear interactions between the resolved and unresolved
processes, as well as various parametric uncertainties, need to be properly treated
in order to reliably estimate the uncertain evolution of the true system on some
subset of coarse-grained variables. In UQ for dynamical systems, one necessarily
measures evolving estimates for the means, variances, etc. of principal quantities of
interest. Thus, the mathematical framework of statistical solutions of complex dy-
namical systems is a starting point for UQ. The development of techniques for UQ in
high-dimensional systems, attempting to estimate the evolution of uncertainty and
minimize the model error in order to improve predictions, has been in its infancy
until recently. There is much current activity in disparate areas of mathematics,
statistics, engineering and computer science leading to ideas and techniques which
are relevant for UQ in dynamical systems; examples range from Bayesian hierar-
chical space-time models (e.g., [121]) to variational approximations (e.g., [118, 53]),
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to statistical-stochastic hybrids [80, 81], to Polynomial Chaos Expansions (e.g.,
[36, 125, 123, 63, 43, 98]) and traditional Monte Carlo methods.

However, despite the rapid improvements in numerical algorithms and avail-
ability of computing power, the fundamental mathematical problems for UQ in
high-dimensional multi-scale systems remain unsolved. One well known obstacle in
high-dimensional applications is the ‘curse of dimensionality’ which renders various
UQ or data assimilation techniques based on brute-force sampling of the underlying
state space unrealistic in such configurations. A more fundamental issue, however,
arises when dealing with natural systems which are only partially observable yet
are vastly more complicated than any conceivable model. A very useful and timely
example is the the Earth’s climate which is undoubtedly an extremely complex sys-
tem coupling physical processes for the atmosphere, ocean, and land over a wide
range of spatial and temporal scales (e.g., [21, 100]). The dynamical equations
for the actual climate system are obviously unknown. Moreover, all that is avail-
able from the true climate are some coarse-grained observations of functions such
as mean or variance of temperature or tracer greenhouse gases, or the large scale
horizontal winds. Thus, a fundamental practical difficulty in estimating sensitiv-
ity of the climate system to external or internal perturbations lies in predicting
the coarse-grained response of an extremely complex high-dimensional system from
partial observations of its present equilibrium combined with imperfect models.

It is clear that UQ techniques for partially observed high-dimensional turbulent
dynamical systems require a synergistic framework capable of quantifying the model
error and systematic model improvement leading to reliable predictions for a subset
of coarse-grained variables of the perfect system. In this context basic questions
and new issues arise such as the following:

(A) How to measure, in an unbiased fashion, the statistical accuracy of a given
imperfect model for reproducing the equilibrium statistics of the true system?

(B) How to make the best possible estimate of response of the true system to
changes in external or internal parameters by utilizing the imperfect knowl-
edge available of the present equilibrium?

(C) Given uncertain initial conditions, how to make the best possible predictions
of the true system dynamics at short times, and at medium-long time ranges
when both the initial data response and the asymptotic system properties are
important?

(D) How do coarse-grained measurements of different functionals of the true equi-
librium on the subset variables which are available for measurements affect
the assessments in (A)-(C)? What are the weights which should be assigned
these functionals to improve the performance of the imperfect models? Which
new functionals of the true equilibrium should be observed in order to improve
the above assessments?

The problem of quantifying and mitigating model error in coarse-grained imperfect
models of complex high-dimensional systems is an important and a challenging one
from both the practical and theoretical viewpoint. This task is especially difficult
in turbulent systems in which energy often flows intermittently from the smaller
unresolved or marginally resolved scales to impact much larger and longer spatio-
temporal scales of motion of interest [72]. Atmospheric sciences, and meteorology in
particular, have long been at the forefront of numerical and theoretical developments
in modeling and forecasting complex turbulent systems. While the initial focus of
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work on numerical general circulation modeling was concerned with the short-term
behavior of the atmosphere (i.e., the “weather”), it was soon realized that the
investigation of long-term trends (i.e., the “climate”) could also be attacked using
a blend of computational techniques and reduced models.

On the other hand, the medium range forecasts, where both the initial conditions
and the asymptotic system characteristics are important, present a substantially
more challenging task and improvements in this area lag behind the other two
regimes. These are the regimes of large contemporary interest in climate atmosphere
ocean science where extended range forecasting including the behavior of extreme
events within a season or the effects of global warming over the next ten to fifty
years have major societal importance worldwide. In fact, these difficulties were
recognized over five decades ago by John von Neumann in the context of numerical
weather prediction who famously stated “The approach [...] is to try first short-
range forecasts, then long-range forecasts of those properties of the circulation that
can perpetuate themselves over arbitrarily long periods, and only finally to attempt
to forecast medium-long time periods ...” [101].

Recently, a stochastic-statistical framework for a systematic improvement of im-
perfect models and linking the statistical equilibrium fidelity of imperfect models
with their sensitivity for capturing the forced response of the perfect system was
proposed in [79, 80, 81, 32]. This newly emerging viewpoint blends detailed, physics-
constrained dynamical modeling, stochastic parameterization and purely statistical
analysis by combining empirical information theory with an appropriate fluctuation
dissipation theorem, and it has at least two mathematically desirable features: (i)
the approach is based on a skill measure given by the relative entropy which, unlike
other metrics in UQ, is unbiased and invariant under the general change of variables
[62, 56, 84, 87], and (ii) the optimization principles based on the relative entropy
systematically minimize the loss of information in the imperfect model which gen-
erally does not imply minimizing the error in individual moments of the associated
probability densities like the mean or covariance; this is particularly important for
UQ in high-dimensional systems.

The main goal of this research expository paper is to describe these recent and
ongoing developments emphasizing the remarkable new mathematical and physical
phenomena that emerge from the modern applied mathematics modus operandi
applied to uncertainty quantification in partially observable high-dimensional dy-
namical systems. The use of these ideas in applied mathematics and numerical
analysis for quantifying model error, as well as in climate change science and vari-
ous engineering applications for improving imperfect predictions, is only beginning
but already the wealth of new important concepts and approaches warrants a de-
tailed treatment. Here, we adopt a systematic framework for discussing these issues
based on a suite of physically relevant and progressively more complex test mod-
els which are mathematically tractable while possessing such important features as
the two-way coupling between the resolved dynamics and stochasticity due to the
interactions with unresolved processes, intermittency and positive Lyapunov expo-
nents, eddy diffusivity parameterization and overdamped turbulent spectra. The
two recurring themes in the following discussion are:

• The utility of the unified stochastic-statistical framework for UQ and improve-
ment of imperfect predictions with model error in turbulent dynamical systems
with intermittency, positive Lyapunov exponents and hidden instabilities;
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• The existence of information barriers to model improvement in classes of im-
perfect models, their hallmarks and consequences for UQ in turbulent dynam-
ical systems.

The mathematical toolkit utilized below includes empirical information theory,
fluctuation-dissipation theorems and systematic physics-constrained, statistical-
stochastic modelling for large-dimensional turbulent dynamical systems. While the
nomenclature of this paper is biased towards the climate science applications, there
are many immediately obvious analogies throughout the text to problems involving
high-dimensional nonlinear and nonautonomous stochastic dynamical systems with
non-trivial attractors in neural science, material science, or engineering.

The important points discussed and illustrated throughout the paper for UQ in
turbulent high-dimensional systems with intermittency include the following:

• The information-theoretic optimization advocated here can dramatically im-
prove predictive performance and sensitivity of imperfect models (see also
[79, 80, 81, 32]).

• Statistical equilibrium fidelity of imperfect models on the coarse-grained sub-
set of resolved variables is necessary but not sufficient for high predictive skill
and sensitivity to perturbations (see also [81]).

• There exist explicit information barriers to model improvement within a given
class of imperfect models beyond which the loss of information can be only
reduced by expanding the class of models to allow for more degrees of freedom
(see also [73, 32]).

• The information-theoretic optimization of imperfect models requires tuning
the marginal probability densities for suitable coarse-grained variables with
those of the perfect system on the unperturbed attractor. In the simplest
Gaussian framework such a procedure implies simultaneous tuning of means
and covariances variances [80, 81].

• The sensitivity of imperfect models to capturing the effects of perturbations of
the perfect system attractor can be tested via algorithms exploiting a suitable
fluctuation dissipation theorem and experiments in the training phase in the
unperturbed climate (see also [81]).

• Nonlinear, non-Gaussian models can have long memory of initial conditions,
including the initial conditions for the unresolved processes. Linear Gaussian
imperfect models cannot reproduce the response in the variance to forcing
perturbations in climate change scenarios. Consequently, the change in vari-
ability due to perturbations of the system’s attractor remain undetected by
linear imperfect models of a nonlinear system (see also [82, 80, 81]).

• Intermittency and the presence of fat-tailed PDFs arising through the complex
interactions with the unresolved processes leads to fundamental limitations in
traditional UQ techniques, such as Polynomial Chaos Expansions and Monte
Carlo simulations [10].

The authors hope that this article inspires other mathematicians, scientists, and
engineers to explore the use of modern applied mathematics in developing strate-
gies for UQ in reduced models of high-dimensional turbulent dynamical systems.
The plan for the remainder of the paper is the following one. In Section 2, we
discuss the general principles of information theory in the context of improving the
statistical fidelity of imperfect models, as well as the origins of information barri-
ers (§2.2) and the important link [79, 80, 81] between the statistical equilibrium
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fidelity of imperfect models and their sensitivity (§2.3). In Section 3 we introduce
the simplest linear Gaussian models with hidden dynamics which are used to illus-
trate the utility of the information-theoretic framework for model optimization of §2
and transparent information barriers for short and intermediate range forecasting.
Other central issues arising in the context of imperfect coarse-grained predictions
are developed in this elementary and instructive context. In Section §4 we discuss
UQ via the statistical-stochastic framework of §2 in two physically relevant nonlin-
ear and non-Gaussian test models with hidden dynamics and intermittency; these
mathematically tractable models for the dynamics of a single mode in a turbulent
signal allow for examining the effects of model error and information barriers due to
moment closure approximations and dimensional reduction in an unambiguous set-
ting. In section 5 we discuss fundamental limitations of truncated Polynomial Chaos
Expansions [10] as a method for UQ in systems with intermittency and fat-tailed
PDFs; two examples based on the models discussed in §4 are used there to show
the failure of such methods in the simplest possible setting. Section §6 discusses
UQ based on the information-theoretic framework of §2 in the complex case of spa-
tially extended systems with turbulent energy spectra and non-trivial interactions
between the mean dynamics and the turbulent fluxes. Finally, Section 7 discusses
a number of instructive examples of purely numerical artifacts which might lead to
severe bias in UQ techniques; these range from fake fat-tailed numerical estimates
for the marginal PDFs of the true statistics to situations where unbounded growth
in time of the statistical moments remains undetected by various UQ techniques.
Concluding remarks and final comments on a number of topics not discussed in this
article are presented in §8.

Below is the table of contents for the remainder of the article:
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2. Statistical dynamics of turbulent dynamical systems and imperfect
model improvement via empirical information theory. Successful predic-
tions in complex nonlinear systems encountered in contemporary climate change,
atmosphere-ocean, or engineering applications are difficult since the actual dynam-
ics is a turbulent large-dimensional system with positive Lyapunov exponents and
intermittency on essentially all spatio-temporal scales. Moreover, the true system
is only partially observable based on some coarse-grained statistical measurements
of functionals on the system’s attractor; here, we assume that the true system has a
global attractor in the general nonautonomous setting (i.e., the global time forward
and pullback attractors exist and coincide; see, e.g., [4, 87] for a detailed discus-
sion of these issues). Applications of empirical information theory and fluctuation
dissipation theory to systematically improve imperfect model predictions have been
addressed at length in the context of climate change applications in [79, 80, 81, 32].
Here, we highlight the most important concepts which are necessary for the fol-
lowing exposition, including the information-theoretic framework for improving im-
perfect model fidelity to the unperturbed attractor, as well as the important link
between the attractor fidelity and sensitivity. As already mentioned, the goal of
such a stochastic-statistical framework is to estimate sensitivity of the true system
to external forcing and/or initial data response and predict with imperfect models
the coarse-grained response of an extremely complex high-dimensional system from
partial observations of the present unperturbed attractor/climate.

Consider here for concreteness the Earth’s climate system. While the actual
equations governing climate dynamics on earth are unknown, it is natural to assume
that these dynamics are Markovian, i.e., the future state depends only on the present
state, on a suitably large space of variables vvv ∈ IRP , P � 1. Thus, it is reasonable
to assume that the perfect dynamical system for the climate is given by

v̇vv = fff(vvv, t) + σ(vvv)Ẇ (t), (1)
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where σ is a P × K noise matrix and Ẇ (t) ∈ IRK is K-dimensional white noise
defined for t ∈ IR. The use of statistical descriptions for the climate system dates
back to early predictability studies for simplified atmosphere models [66, 67, 68, 22].

The high-dimensionality of such problems necessitates the development of re-
duced imperfect models; these are given by a known dynamical system

v̇vvm = fffm(vvvm, t) + σm(vvvm)Ẇ (t), (2)

which has a similar structure to (1) but its phase space, IRM , is typically completely
different from that of the perfect system with M � P ; the perfect system and its
model share, however, the coarse-grained variables uuu ∈ IRN where N 6 P −M .
Throughout the following analysis we are interested in characterizing the statistical
departures of the imperfect model dynamics relative to the perfect model on the
subspace of the coarse-grained, resolved variables uuu.

The evolution of the probability densities p(vvv) and p(vvvm) associated with the
perfect and imperfect models satisfy appropriate Fokker-Planck equations (FPE)
which we omit here for brevity. However, it is important to note that solving FPE
in geophysical or engineering applications involving turbulent flows is unrealistic,
despite the linearity of the problem, due to a massive number of relevant degrees of
freedom in the dynamics. Therefore, a systematic procedure for constructing and
validating reduced models on the subspace of relevant coarse-grained variables is of
great importance in many contemporary AOS and engineering applications.

The assessment of the predictive performance of an imperfect stochastic model
requires appropriate metrics for determining how well the marginal density π(uuu) of
the perfect system on the common coarse-grained variables uuu is approximated by the
imperfect model marginal density πm(uuu). The natural way [62, 87] to measure the
lack of information in one probability density, here the marginal πm(uuu), compared
with the other, here π(uuu), is through the relative entropy, P(π, πm), given by

P(π, πm) =

∫
π ln

π

πm
, (3)

with the integration assumed over the whole subspace of the common coarse grained
variables uuu ∈ IRM . Despite the lack of symmetry in its arguments, the relative
entropy P provides an attractive framework for assessing model error in high-
dimensional turbulent systems, and in particular in AOS applications [56, 84, 17,
19, 2, 79, 12, 117, 37, 38, 80, 81], due to its two ‘distance-like’ properties:

• (i) P(π, πm) is always positive unless π = πm [62, 87],
• (ii) it is invariant under any invertible change of variables [84, 87].

Thus, the relative entropy (3) provides the following useful diagnostic definitions in
the context of uncertainty quantification in high-dimensional turbulent systems:

Definition 2.1. (Model errorModel errorModel error) characterizes the lack of information in the mar-
ginal probability density of the imperfect model, πM , relative to the true mar-
ginal density, π, on the coarse-grained variables uuu [79]. For given Gaussian statis-
tical initial conditions with mean and variance uuu0, R0 so that πt0 ≡ π(uuu, t|ūuu0, R0),
πm
t0 ≡ πm(uuu, t|ūuu0, R0), the model error is

E
(
t | ūuu0, R0

)
= P(πt0 , π

m
t0). (4)

Definition 2.2. (Internal prediction skillInternal prediction skillInternal prediction skill) of a perfect/imperfect model quantifies
the role of initial conditions in the forecast of a future state of a system [56, 37, 38]
and it represents the gain of information beyond the perfect/imperfect climate (i.e.,



8 ANDREW J. MAJDA AND MICHAL BRANICKI

the probability density on the attractor). The prediction skill for the perfect model
and the internal prediction skill for the imperfect model are

Sk
(
t | ūuu0, R0

)
= P(πt0 , πatt), Skm

(
t | ūuu0, R0

)
= P(πm

t0 , π
m
att), (5)

where πt0 ≡ π(uuu, t|ūuu0, R0) is the marginal density on the coarse-grained variables
uuu conditioned on the initial data and πatt(uuu, t) ≡ lim

t0→−∞
πt0 is the climatological

marginal density of the perfect model; analogous definitions hold for the imperfect
model.

Definition 2.3. (Model sensitivityModel sensitivityModel sensitivity [79]) quantifies the gain of information in the
marginal probability density of the perfect/imperfect system on the coarse-grained
variables uuu in response to external perturbations from its climate (the probability
density on the attractor); it is expressed via the relative entropy as

Se
(
t | ūuu0, R0

)
= P(πδ, πatt), Sem

(
t | ūuu0, R0

)
= P(πm

δ , π
m
att) (6)

where the climatological marginal densities πatt, π
m
att are defined as in Definition

2.2 and πδ, π
m
δ are the perfect/imperfect model marginal densities perturbed from

the original attractor and conditioned on the particular perturbation.

Note that most forced dissipative high-dimensional turbulent dynamical systems
have marginal densities for coarse-grained variables on the attractor that are smooth
despite the dissipative fractal pieces of the attractor so Definitions 2.1-2.3 make
sense (see [75] for many examples).

The most practical setup for utilizing the framework of empirical information
theory in AOS applications arises when both the measurements of the perfect sys-
tem and its imperfect model involve only the mean and covariance of the resolved
variables uuu so that πL is Gaussian with climate mean ūuu and covariance R, whereas
πm is Gaussian with model mean ūuum and covariance Rm. In this case, P(πL, π

m) has
an explicit formula [56, 87] which is extensively used throughout this study

P(π, πm) =
[

1
2 (ūuu− ūuum)R−1

m (ūuu− ūuum)
]

+ 1
2

[
tr[RR−1

m ]−N − ln det[RR−1
m ]
]
. (7)

The first term in brackets in (7) is the signal, reflecting the model error in the mean
but weighted by the inverse of the model variance, Rm, whereas the second term
in brackets, the dispersion, involves only the model error covariance ratio, RR−1

m .
The signal and dispersion terms in (7) are individually invariant under any (linear)
change of variables which maps Gaussian distributions to Gaussians; this property
is very important for unbiased model calibration.

2.1. Systematically improving imperfect models through empirical in-
formation theory. As argued earlier in [80, 81, 73], the framework of empirical
information theory provides a convenient and unambiguous way for characterizing
the model error and for improving the performance of imperfect models, as well as
for assessment of the model forced response via appropriate tests in the unperturbed
statistical equilibrium and appropriate fluctuation dissipation theorems [81, 11].

Consider first a class of imperfect models, M; the best imperfect model on the
coarse-grained variables uuu is characterized by the marginal density πm∗ , m∗ ∈ M,
so that the perfect model with the marginal density π has the smallest additional
information beyond the imperfect model density [79, 80, 81, 73], i.e.,

P(π, πm∗) = min
m∈M

P(π, πm). (8)
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An important issue to contend with in any realistic scenario is the fact that the
perfect model density, π, in (8) is not known and only its best unbiased estimate,
πL, based on L measurements ĒEEL of the perfect system during the training phase is
available. The following general principle [75, 79] facilitates the practical calculation
of (8)

P(π, πm
L′) = P(π, πL) + P(πL, π

m
L′), L′ 6 L, (9)

where L′ denotes the number of measurements of the perfect system. The first term
P(π, πL) in (9) represents the lack of information in the least biased density based
on the L measurements πL relative to the true density π and it cannot be reduced
unless more measurements are incorporated. As shown in [75], the information
barrier in (9) is given by

P(π, πL) = S(πL)− S(π), (10)

where

S(π̃) = −
∫
π̃ ln π̃. (11)

is the entropy or uncertainty in the density π̃; we will return to this important
concept in §2.2.

Note also that the second term, P(πL, π
m
L′), in (9) exactly gives the lack of

information in the “coarse-grained” model probability density associated with fewer
constraints, πm

L′ relative to the least biased L-measurement estimate of the true
density. Consequently, the optimization principle (8) can be computed by replacing
the unknown π by the hypothetically known πL so that the optimal model within
the considered class of imperfect models satisfies

P(πL, π
m∗
L′ ) = min

m∈M
P(πL, π

m
L′), L′ 6 L. (12)

Definition 2.4. (Statistical equilibrium or Climate fidelityStatistical equilibrium or Climate fidelityStatistical equilibrium or Climate fidelity) [79, 80, 20] of an im-
perfect model consistent with the L measurements of the coarse-grained variables
uuu arises when

P(πL, π
m∗
L′ )� 1, (13)

with perfect climate fidelity for P(πL, π
m∗
L′ ) ≡ 0.

Remarks: (i) in an effort to minimize unnecessary technicalities in the following
exposition, we frequently abuse the terminology and do not distinguish between
statistical equilibrium in the autonomous case and time-dependent statistics on the
attractor in the nonautonous case; see, e.g., [4, 87], for a detailed discussion of
these issues, (ii) for notational simplicity we skip the subscripts L and L′ in (8) and
(12) in the following discussion with the tacit assumption that the number of the
coarse-grained measurements of the imperfect model does not exceed the number
of analogous measurements of the perfect system (i.e., L′ 6 L).

It turns out, as illustrated in the subsequent sections, that even when the time-
averaged climate fidelity is achieved, i.e.,

P(π, πm∗) ≡ 1

T

∫ T

0

P(π, πm∗)� 1, (14)

with T the period on the attractor of the perfect system, a significant improvement
in the model prediction skill and sensitivity can be achieved. Climate fidelity of
imperfect models is a necessary but not a sufficient condition for good model sensi-
tivity (see [80, 81] for details), as illustrated in the following sections based on a suite
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of increasingly complex models. Below, we provide a simple example of this impor-
tant link which is described in more detail, exploiting the fluctuation-dissipation
theorem in [81, 11].

2.2. Information barriers. The notion of an information barrier will prove to be
an important concept in the following discussion and it requires special attention.
Intuitively, information barriers arise in classes of imperfect models which funda-
mentally limit the skill of any model in the class to reproduce the correct statistical
behavior from nature. As introduced earlier in (9) and (10) the first instance of
information barrier was associated with the intrinsic lack of information P(π, πL)
in the least biased density πL based on L measurements of the true density π.
The intrinsic lack of information (10) cannot be reduced within the class of the
least biased L-measurement densities and, consequently, only a part of the total
lack of information is available for optimization in this configuration through (12).
The information barrier (10) can only be overcome by expanding the framework to
incorporate more measurements of the true density. Note also that additional infor-
mation barriers can exist in the given L-measurement framework if one considers a
subclass of the coarse grained model densities, say πmα

L′ ⊂ πm
L′ , L

′ 6 L, which does
not contain m∗ minimizing (12); this case will be illustrated in §4 and §6.

Another situation in which the information barriers arise naturally is associated
with the sensitivity of imperfect models with climate fidelity to internal or external
perturbations. As shown in [81], the model error between the true perturbed density
and the model density can be expressed in such a case as

P(πδ, π
m
δ ) = P(πδ, πL,δ) +

1

2

∫
π−1
L (δπL − δπm)2 +O(δ3), (15)

where δπL, δπ
m denote the perturbations of the respective densities and P(πδ, πL,δ)

represents the information barrier which cannot be overcome unless more measure-
ments of the perfect systems are taken into consideration. More details regarding
the last formula (15) are given in the next section based on a simple example in the
Gaussian framework.

2.3. The link between statistical equilibrium fidelity and sensitivity of
imperfect models. The crucial issue in climate change science as well as many
other areas involving high-dimensional turbulent systems regards estimating the
accuracy with which the statistical evolution of an imperfect model predicts the
perturbed coarse-grained statistics of the perfect model. The framework developed
in [80, 81] directly links the uncertainty of the imperfect model forecast in response
to external perturbations with its fidelity to the unperturbed climate; this link
can be further exploited to asses the sensitivity of imperfect models to forcing
perturbations based on the fluctuation dissipation theorem and appropriate tests
carried out in the training phase [81, 32, 11] (see also remarks in §8).

In order to understand this link, assume that the perfect system or the imperfect
model or both are perturbed so that πδ(uuu, t) the unknown perfect distribution,
πδ,L(uuu, t), its least-biased density based on L measurements, and πm

δ (uuu, t) the model
distribution all vary smoothly with the parameter δ, i.e.,

πδ(uuu) = π(uuu) + δπ(uuu),

∫
δπ(uuu)duuu = 0, (16)

with analogous expressions for the perturbed imperfect marginal density πm
δ in terms

of πm and δπm; the explicit time dependence in (16) was skipped for clarity. For
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stochastic dynamical systems rigorous theorems guarantee this smooth dependence
under minimal hypothesis [41]. It is instructive to consider here an elementary but
informative example assuming the Gaussian framework based on the measurements
of the means and covariances which are assumed to be strictly diagonal for sim-
plicity. Then, assuming climate fidelity of the imperfect models, the leading order
Taylor expansion in the (small) parameter δ of the error P(πδ, π

m
δ ) of the imperfect

predictions (see Definition 2.1) leads to

P(πδ, π
m
δ ) = S(πδ,G)− S(πδ)

+
1

2

∑
|k|≤N

(δūk − δūmk )R−1
k (δūk − δūmk )

+
1

4

∑
|k|≤N

R−2
k (δRk − δRm

k )
2

+O(δ3). (17)

The entropy difference, S(πδ,G) − S(πδ), in (17) corresponds to the intrinsic error
due to measuring only the mean and covariance of the perfect system. This entropy
difference cannot be reduced within the class of Gaussian models and represents an
information barrier to improving the imperfect model sensitivity; as already signaled
in §2.2, we will return to this important concept repeatedly throughout the paper.
The first (second) summation in (17) is the signal (dispersion) contribution to the
model error (see (7)). For more general results, including the discussion of the
link between climate fidelity and sensitivity of imperfect models via the fluctuation
dissipation theorem, see [80, 32].

Given a class of imperfect models M, the error (17) in predicting the true sys-
tem’s response to external perturbations is minimized for the model which is the
most consistent with the unperturbed climate, i.e., the model m∗ ∈M satisfying
(8) or (12). In fact, climate consistency of an imperfect model is a necessary but
not a sufficient condition for its predictive skill, as shown in [80], where simple yet
instructive examples reveal the possibility of intrinsic barriers to improving model
sensitivity even with perfect climate fidelity. The only way to overcome such barriers
is by extending the class of imperfect models to account for more degrees of free-
dom. In the following sections, we will present further examples of such situations
in more complex non-Gaussian models.

3. UQ and forecasting with model error in linear systems with hidden dy-
namics. Here, we introduce a simple two-dimensional linear stochastic model which
is very useful for elucidating many important effects of model error in short and
medium range imperfect predictions on a common subset of resolved variables. This
is the simplest exactly solvable model which allows for studying these features. An
important source of model error in dynamical forecasts of complex high-dimensional
turbulent systems using imperfect models on the coarse-grained subset of resolved
variables is introduced due to neglecting, or misrepresenting, the interactions with
unresolved processes which are effectively hidden from the coarse-grained imperfect
models.

Here, we utilize the simplest possible two-dimensional linear framework and as-
sume that one of the two dynamical variables is observed/resolved, and the second
variable is hidden from observations while nontrivially affecting the resolved dy-
namics. We will also study imperfect models with correctly prescribed statistical
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properties of the marginal equilibrium dynamics for the observed variable and quan-
tify their short and intermediate range predictive skill. In particular, we focus on
the role of initial conditions in short range imperfect forecasts, and the subtle in-
terplay between the initial data and the asymptotic system characteristics in the
medium range forecasts for the resolved dynamics.

Important issues illustrated in this section are:

• There exist many imperfect models with climate fidelity on the resolved vari-
ables which have very different short and medium range prediction skill;

• Models with high skill for short range predictions are not necessarily those
with high skill for intermediate or long range predictions; moreover, models
with unphysical negative damping in the resolved dynamics can outperform
models with positive damping for short range predictions;

• In the linear Gaussian framework tuning imperfect models to reproduce the
marginal climatological distribution at all time lags guarantees the correct
response to any time dependent external forcing. Models with unphysical
parameter values and inferior initial data response may have high skill in
the forced response, exceeding that of imperfect models which are tuned to
reproduce equilibrium statistics in the marginal climate;

• There exist explicit information barriers for model improvement which require
extending the class of imperfect models in order to achieve further improve-
ment;

• There exist important limitations for estimating the prediction skill based on
the the superensemble framework and mutual information.

As will be shown below and in the following sections, this simple linear Gaussian
framework with hidden/unresolved dynamics provides a very revealing testbed for
analyzing and understanding many important issues associated with short, and
medium range predictions of much more complex nonlinear natural systems where
the partial observability of the true system and the subtle interplay between the
initial conditions and model error are much more difficult to capture. Problems
of this nature arise even in the relatively simple framework of multilevel linear
regression models which attempt to tune imperfect model parameters based on the
marginal dynamics of the resolved variables (see [89] for an extensive treatment);
some remarks regarding this issue are presented in §8.

3.1. The linear system for the perfect model. Consider a situation when the
resolved/observed dynamics x(t) is given by the marginal dynamics of the following
2× 2 linear stochastic system which serves as the perfect model

d

(
x

y

)
=

[
L̂

(
x

y

)
+

(
F (t)

0

)]
dt+

(
0

σ

)
dW (t). (18)

The system matrix L̂ and its eigenvalues λ1,2 are, respectively,

L̂ =

(
a 1

q A

)
, λ1,2 =

1

2

(
a+A±

√
(a−A)2 + 4q

)
. (19)

There are four coefficients (a, q, A, σ) in (18) where a is the damping in the resolved
dynamics x(t), and q is the damping in the unresolved dynamics y(t) with A the
coupling parameter in the unresolved dynamics. Clearly, in the above formulation
the resolved dynamics x(t) is affected by the hidden process y(t). We assume that
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the deterministic forcing F (t) acts only in the resolved subspace x and the stochastic
noise generated by the scalar Wiener process W (t), t ∈ IR, W (0) = 0 is present only
in the unresolved subspace with the variable y. Since the system (18) is linear with
additive noise, it can be easily shown that for constant forcing F it has a Gaussian
invariant measure provided that

a+A = λ1 + λ2 < 0, aA− q = λ1λ2 > 0. (20)

The above stability conditions guarantee that the eigenvalues of L̂ have negative
real parts so that the equilibrium mean of (18) is given by

x̄att = − AF

aA− q , ȳatt =
qF

aA− q . (21)

The autocovariance at equilibrium, Catt(τ) = 〈xxx(t+ τ)⊗xxxT (t)〉att, depends only on
the lag τ regardless of the nature of the forcing and it is given by

Catt(τ) = lim
t0→−∞

C(τ, t, t0) = Σ eL̂
T τ , (22)

where the covariance Σ ≡ Catt(τ = 0, t) on the attractor of (18) is given by

Σ ≡=

(
1 −a
−a aA− q + a2

)
σ2

2(a+A)(q − aA)
. (23)

Extensions to the nonautonomous case with time-periodic forcing are trivially ac-
complished provided that the stability conditions (20) are satisfied so that there
exists a time-periodic Gaussian measure on the attractor (defined in the nonau-
tonomous sense; see, e.g., [87, 4]) with the time-periodic mean, x̄xxatt(t) ≡ lim

t0→−∞
x̄xx(t,

t0), and autocovariance (22).
It is important to realize that even for the class of simple linear systems (18)

the dynamics during the approach to the same attractor can be quite different
depending on the coefficients {a, q, A, σ}. There exist three distinct regimes of
stable dynamics of the linear Gaussian system (18) with different properties of the
statistical evolution of the 2× 2 system (18):

Purely real eigenvalues λ1,2:
• Normal mean dynamics: In this regime the two eigenvectors of the system

matrix L̂ with purely real eigenvalues λ1,2 are nearly orthogonal. Provided
that Λ ≡ λ1/λ2 6= 1, this configuration occurs for

a ≈ 1

2

(
(Λ + 1)λ1 ±

√
(Λ + 1)2λ2

1 − 4(1 + Λλ2
1)

)
.

• Non-normal mean dynamics: For large eigenvalue ratio Λ � 1 and weak
damping, a� Λ, in the resolved dynamics the angle between the eigenvectors
is sensitive to variations of a but only one of the eigenvectors significantly
changes its orientation. For Λ ∼ 1 corresponding to (a − A)2 + 4q ≈ 0,
the eigenvectors are nearly collinear and the direction of both eigenvectors
depends strongly on the damping a in the resolved dynamics.

Complex-conjugate eigenvalues λ1,2:
• Mean dynamics with complex-conjugate eigenvalues. This configuration occurs

for (a − A)2 + 4q < 0 when the complex conjugate eigenvalues satisfy the
stability condition (20).
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We will show in the next section that the marginal statistical properties for the re-
solved variable x(t) on the attractor can be reproduced by many different imperfect
models. The crucial observation is that some of these models may be characterized
by a normal mean dynamics while others will display a high sensitivity to model pa-
rameters and the statistical initial conditions due to non-normal character of their
dynamics.

3.2. Imperfect models. One obvious source of model error in imperfect predic-
tions of natural high-dimensional systems stems from the fact the imperfect models
can be only tuned to the true dynamics on a subset of resolved, coarse-grained
variables on the attractor of the true system. Here, we introduce two classes of
imperfect models of (18) which we use to illustrate the following important facts:

• There exist families of imperfect models of the linear system (18) with the
same statistical characteristics of the resolved dynamics on the attractor (see
§3.2.1).

• Different imperfect models with the same attractor/climate fidelity (13) on the
subspace of resolved variables can have significantly different skill for short and
medium range prediction as well as the forced response (see §3.4).

The imperfect models described below will be subsequently used in combination
with the stochastic-statistical framework of §2 to illustrate a number of important
issues arising in imperfect predictions of vastly more complex nonlinear natural
systems, such as the interplay between forced response and initial data response
and limitations of the superensemble framework. The issues related to predictive
performance of these imperfect models and their forced response sensitivity are
discussed in the subsequent sections.

2× 2 linear models with model error

The imperfect models in this class have the same structure as the perfect system
(18) but with different coefficients (am, Am, qm, σm) and forcing Fm(t). The path-
wise solutions and statistics of the imperfect 2×2 models have the same structure
as those for the perfect system (18), as shown in Appendix A.1.

Here, the model error is introduced by the incorrect coefficients (am, Am, qm, σm)
which are tuned so that the marginal statistics of the resolved dynamics, xm(t), in
the model and the truth, x(t), coincide on the attractor (see §3.2.1).

Mean Stochastic Model (MSM) for the resolved dynamics

These models are the simplest examples representing under-resolution of a perfect
model through a lower dimensional dynamical system. Here, these imperfect models
represent the simplest possible reduced models of the perfect system (18) where the
interactions between the unresolved dynamics y(t) and the resolved dynamics x(t)
are represented by the white noise. Consequently, the resolved dynamics x(t) in
(18) is modelled by the scalar Mean Stochastic Model (MSm) given by the linear
SDE (e.g., [28])

dxmsm(t) =
(
− γmsm xmsm(t) + Fmsm(t)

)
dt+ σmsmdW (t), (24)

where γmsm > 0 is the damping, Fmsm denotes the deterministic forcing, and σmsm is
the amplitude of the white noise forcing defined on the whole real line. The path-
wise solutions and statistics of the Gaussian process satisfying (24) are the standard
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solutions for the Ornstein-Uhlenbeck process and are given in Appendix A.2. The
dynamics of xmsm is stable for γmsm > 0 so that the statistics on the attractor are

x̄msmatt (t) = lim
t0→−∞

∫ t

t0

e−γmsm(t−s)Fmsm(s)ds, Cmsmatt (τ) = Σmsme−γmsmτ , Σmsm =
σ2
msm

2γmsm
.

(25)

The model error in MSm arises due to the dimensional reduction and represent-
ing the interactions with the unresolved processes through white noise forcing. It
is important to note that MSm cannot reproduce the marginal autocovariance,
(Catt)11 (τ), of the perfect system (18) at all lags and it cannot be tuned to re-
produce the marginal equilibrium statistics; this affects the skill for predicting the
forced response (see also Proposition 3 and §3.3).

Finally, we mention that another class of imperfect models of (18) can be obtained
via a multilevel linear least-squares regression of the model coefficients (am, qm, Am,
σm) and the forcing Fm from long time series of the marginal dynamics x(t). The
limitations of the multilevel approach for constructing two-dimensional models and
the advantages of physics-constrained scalar models were discussed at length in [89];
some remarks regarding this approach are relegated to §8.

3.2.1. Families of linear models with the same marginal statistics on the attractor.
Here, we show that there exist families of imperfect linear models of the system
(18) with perfect climate fidelity (cf. Definition 2.4). Moreover, there also exist
families of imperfect models with perfect climate fidelity and correct marginal two-
point statistics at all time lags. This non-uniqueness will be reflected in different
short and medium range forecast skill of imperfect models with climate fidelity and
different forced response properties. The discussion below builds on the results
reported in [89] in the unforced case; more details are given in Appendix A.3 which
outlines straightforward extensions to the time-periodic configuration.

The two definitions below distinguish between two degrees of statistical consis-
tency on the attractor of a stochastic system:

Definition 3.1 (Marginal two-point equilibrium statisticsMarginal two-point equilibrium statisticsMarginal two-point equilibrium statistics). Consider the solution
(x(t, t0), y(t, t0)) of the linear stochastic system (18) satisfying (20) and with a
Gaussian invariant measure at equilibrium with mean (21), and autocovariance
(22). Then, the marginal mean and autocovariance

x̄att,
(
Catt(τ)

)
11
, τ > 0, (26)

is called the marginal two-point statistics on the attractor for the process x(t).

Definition 3.2 (Marginal climatologyMarginal climatologyMarginal climatology (marginal one-point equilibrium statistics)).
Consider the solution

(
x(t, t0), y(t, t0)

)
of the system (18) with Gaussian invariant

measure at equilibrium with mean (21), and autocovariance (22). The marginal
equilibrium mean and variance

x̄att, Σ11 =
(
Catt(τ = 0)

)
11
, (27)

are called the marginal climatology for the Gaussian process x(t).

Remarks: (i) Based on definitions (3.1) and (3.2) it is clear that linear systems
with the same marginal two-point statistics on the attractor are contained within
the family of systems with the same marginal climatology. (ii) The above definitions
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can be trivially extended to the nonautonomous case with a time-periodic attractor
[87, 4] provided that the stability conditions conditions (20) are satisfied.

It can be easily verified with the help of straightforward algebra and Definitions
3.1-3.2 that there exist families of imperfect models of (18) with same equilibrium
marginal statistics, or the same climatology as that of the resolved variable x(t)
satisfying the perfect system (18); we summarize these results below:

Proposition 1. [Family of imperfect 2×2 linear models with the same marginal two-
point equilibrium statistics for x(t)]: Consider the linear 2×2 system (18) satisfying
the stability conditions (20) with constant forcing and coefficients (a, q, A, σ, F ).
Then, the marginal two-point equilibrium statistics of (18) is controlled by three
parameters {

λ1,2, σ, AF
}
. (28)

Since there are five independent coefficients in the (18) and four constraints (28),
there exists a one-parameter family of 2×2 linear models (18) and coefficients(

am(w), qm(w), Am(w), σm(w), Fm(w)
)
, w ∈ IR,

with the same marginal two-point equilibrium statistics for x(t).

Proposition 2 (Family of imperfect 2×2 linear models with the same marginal
climatology for x(t) ). Consider the linear system (18) satisfying the stabil-
ity conditions (20) with constant forcing and coefficients

(
a, q, A, σ, F

)
. Then, the

marginal climatology for x(t) is determined by{
σ2

(a+A)(aA− q) ,
AF

aA− q

}
. (29)

Since there are five coefficients in the system (18) and two constraints (29), there
exists a three-parameter family of linear models with structure (18) and coefficients(

am(www), qm(www), Am(www), σm(www), Fm(www)
)
, www ∈ IR3,

with the same marginal climatology for x(t).

Proposition 3 (MSMs with correct marginal climatology). Consider the Mean Sto-
chastic Model (24) with constant forcing and coefficients

{
γmsm, σmsm, Fmsm

}
. Pro-

vided that γmsm > 0, the climatology of (24) is controlled by two parameters{
σ2
msm

2γmsm
,

Fmsm

γmsm

}
. (30)

The process xmsm(t) satisfying (24) has the same climatology as x(t) satisfying the
perfect system (18) provided that

σ2
msm = −γmsm

σ2

(a+A)(aA− q) , Fmsm = −γmsm
AF

aA− q , (31)

where a,A, q, σ are the coefficients of the perfect system (18) with constant forcing
F . Since there are three coefficients in the system (24) with constant forcing and
two constraints (31), there is a one-parameter family of MSm’s with coefficients{

γmsm(w), σmsm(w), Fmsm(w)
}
, w ∈ IR,
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with the same climatology as that of the perfect system (18). In general, MSm
cannot reproduce the marginal two-point equilibrium statistics of the perfect system
(18).

The proofs of the above propositions are elementary and rely on algebraic manip-
ulations of the expressions for the marginal second-order statistics at equilibrium
of the systems (18) and (24); we omit them here for brevity. Time-averaged ex-
tensions of the above propositions to the nonautonomous case with time-periodic
statistics on the attractor can be easily implemented but they are unnecessary for
the following discussion.

3.3. Imperfect model optimization and information barriers. In many prac-
tical situations, such as actual experiments in climate science, it is important to
understand the response of the true system to changes in external forcing, δF , and
to construct imperfect models whose response captures the features of the true sys-
tem’s response on the resolved coarse-grained variables. Here, following [80, 73],
we discuss the first example of imperfect model optimization via the information-
theoretic principles of §2 which shows unambiguously the existence of information
barriers in the simplest yet revealing case; here, the true system is given by the
linear Gaussian system (18) and the imperfect models have perfect unperturbed
climate fidelity (13). It can be also easily shown that in this linear Gaussian frame-
work only the imperfect models with correct marginal equilibrium statistics at all
time lags (cf. Definition 3.1) have the correct forced response at all times.

Consider the imperfect models of (18) discussed in §3.2 with perfect climate
fidelity (13) on the resolved subspace x. In the linear Gaussian framework this is
easily achieved by matching the equilibrium means and variances, i.e,

x̄matt = x̄msmatt = x̄att, and Em = Emsm = E ≡ (Σatt)11, (32)

where x̄matt, x̄
msm
att are the marginal imperfect model means and Em, Emsm are the

corresponding marginal variances

E = − σ2

2(a+A)(aA− q) , EM = − σ2
m

2(am +Am)(amAm − qm)
, Emsm =

σ2
msm

2γmsm
.

(33)
The asymptotic, infinite-time response of the perfect system to forcing pertur-

bations from the statistically steady state can be obtained by replacing F in (18)
by F + δF while the same experiment in the imperfect models for (18) involves
replacing Fm by Fm + δF . Since the considered models are linear and Gaussian, the
only change in the expected response to forcing perturbations is through the change
in mean

a) δx = − A

aA− q δF, b) δxm = − Am

amAm − qm
δF, c) δxmsm =

1

γmsm
δF,

(34)
while the variance of x, xm and xmsm for the perfect and imperfect models remains
unchanged with the values Em and Emsm tuned to E as in (53).

Now, assume that the perfect linear system (18) with parameters (a, q, A, σ) and
constant forcing F satisfies the stability conditions (20), with A > 0. As shown
in [80, 73] in such a case no MSm (24) with γm > 0 can match the sensitivity of
the perfect system (18) since the perfect and imperfect model sensitivity are always
anti-correlated; this is easy to see by noticing that for A > 0, sign(δx) = −sign(δF )
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in (34a) but for all MSm models sign(δxmsm) = sign(δF ) in (34c). The formula in
(17) applies exactly to these models with perfect climate fidelity with

P(πδ, π
msm
δ ) =

1

2
E−1

∣∣∣∣− A

aA− q −
1

γmsm

∣∣∣∣2 |δF |2. (35)

In this situation with A > 0 there is an intrinsic barrier to sensitivity improvement
for the MSm models (24), since any attempt to minimize the information theoretic
model error in the sensitivity through the general principle in (8) is futile because
no finite minimum over γmsm of (35) is achieved and necessarily γmsm → ∞ in the
approach to this minimum value. This information barrier can only be overcome by
enlarging the class of models beyond (24) by introducing more degrees of freedom
in the model; in this simple framework expanding the class of imperfect models to
include the 2 × 2 linear models allows for a trivial minimization of (17) to achieve
the perfect forced response.

On the other hand, if the perfect system satisfies (20) with A < 0, then using
(35) to optimize the sensitivity of MSm leads to

γ∗msm = −(aA− q)/A, A < 0. (36)

Note that while for A < 0 in (18) the MSm with perfect climate fidelity and γ∗msm
also captures the infinite time forced response of the perfect model on the resolved
variable, it does not correctly reproduce the forced response at finite times; this can
be easily seen using the standard ‘fluctuation-dissipation’ formulas for the mean
linear response of a stochastic system to external perturbations (e.g., [75, 87, 88, 11])
which for the response in the mean are given by

δx̄(t) =

∫ t

t0

Rx̄(t− s)δF (s)ds, Rx̄(τ) =
〈
x(τ)(x(0)− x̄)

〉
att
, (37)

where 〈·〉att denotes the ensemble average at the unperturbed equilibrium; the re-
sponse in the variance is identically zero for linear Gaussian systems. Thus, the
correct forced response at all times in the Gaussian framework requires correct
marginal autocorrelations at all lags τ which cannot be achieved for the MSm (see
Proposition 3). On the other hand, the imperfect 2×2 models with correct two-point
marginal equilibrium statistics have the correct forced response from Proposition 1.

3.4. Prediction skill of imperfect models with perfect statistical equilib-
rium fidelity. The simple linear framework of two-dimensional Gaussian models
with hidden dynamics provides a useful testbed for analyzing and understanding
many important issues associated with short, and medium range predictions of much
more complex nonlinear natural systems where the partial observability of the true
system and the subtle interplay between the initial conditions and model error are
much more difficult to capture. Here, we use the linear Gaussian system (18) and
its imperfect models to illustrate the following issues:

• Initial data response at short and intermediate ranges for the imperfect models
with climate fidelity;

• Limitations of superensemble framework and mutual information for estimat-
ing prediction skill.

As shown in §2, the prediction skill and model error for imperfect models can
be quantified using the information-theoretical metrics given in Definitions 2.1-2.3.
Note first that for imperfect models with perfect statistical equilibrium fidelity
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(see (13) or (14)) and statistical initial conditions ūuu0 ≡ (x̄0, ȳ0), R0, the following
relationships hold

Asymptotic model error : lim
t→∞

P(πt0(t|ūuu0, R0), πm
t0(t|ūuu0, R0)) = 0,

Asymptotic internal prediction skill : lim
t→∞

P(πt0(t|ūuu0, R0), πm
att) = 0.

Unsurprisingly, this implies that all imperfect models with perfect climate fidelity
are equivalent for long range forecasts where the sensitive dependence on the initial
conditions vanishes. However, as already discussed in §3.2.1 imperfect models with
climate fidelity can have very different short and medium range prediction skill due
to different dynamical behavior during the approach to equilibrium from a given
initial condition. Here, the sensitivity of imperfect predictions for the resolved
variable x(t) to the unresolved initial conditions ȳ0 is especially interesting since
the uncertainties in these initial conditions are impossible to control in practice.

In order to mimic realistic forecast situations with uncertainties in initial con-
ditions as well as the model error, we construct ensembles of perfect/imperfect
forecasts with initial conditions normally distributed around the initial ensemble
mean, ūuuuuuuuu0 = (x̄0, ȳ0), and with covariance R0 of the initial conditions in the en-
semble smaller (in a suitable norm) than the climate variance at t0. We use the
analytical formulas for the second-order statistics of the perfect system and the
imperfect models (see Appendix A) and represent every ensemble member by its
mean and covariance.

The examples discussed below are based on a suite of imperfect models introduced
in §3.2 with either the correct marginal two-point statistics or correct marginal
climatology (see Definitions 3.1-3.2 in §3.2.1). Given the perfect model (18) with
coefficients (a, q, A, σ) and constant forcing F , we consider three imperfect models
tuned to have the correct marginal two-point equilibrium statistics and two models
with the correct marginal climatology (see Definitions 3.1, 3.2 and Proporitions
1-3); the cumbersome formulas for the coefficients am, Am, qm, σm, Fm incorporating
the above constraints are relegated to Appendix A.3. The models in the suite are
given by:

Models with correct marginal two-points statistics on attractor

(i) 2×2 model with overestimated damping in xm(t): am = 1.5a and Am, qm, σm,
Fm given by (104),

(ii) 2×2 model with underestimated damping in xm(t): am = a/1.5 and Am, qm,
σm, Fm given by (104),

(iii) 2×2 model with negative damping in xm(t): am = −0.1a and Am, qm, σm, Fm

given by (104).

Models with correct marginal climatology (single-point statistics on at-
tractor)

(iv) 2×2 model with am = 1.1a, and qm = 0.7q, Am = 0.65A obtained from (105),
(v) MSm with correct decorrelation time for the resolved variable: γmsm = −(aA−

q)/(a+A) and σmsm, Fmsm obtained from (106).

Note here that the model (iii) incorrectly assumes negative damping in the resolved
dynamics while reproducing the correct two-point marginal equilibrium statistics
and has, therefore, the correct response for all forcing perturbations. The last two
models (iv) and (v) only have the correct marginal climatology (cf Definition 3.2)
and they lack the correct forced response. Despite these obvious differences, the
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choice of the best model depends largely on the forecast lead time, as discussed
below.

Figures 1, 2, 3, 4 illustrate the model error (4) and internal prediction skill (5) of
the probabilistic forecasts from the imperfect models (i)-(v) in six distinct config-
urations of the perfect model: (1) nearly normal dynamics with the fast direction
perpendicular to the resolved subspace (figure 1), (2) nearly normal dynamics with
the fast direction parallel to the resolved subspace (figure 2), (3) non-normal dy-
namics with non-degenerate eigenspaces (figure 3), (4) non-normal dynamics with
nearly degenerate eigenspaces (figure 4), (5-6) dynamics with complex eigenvalues
(figure 5 with small real parts, and figure 6, with comparable real and imaginary
parts). Note that in of all these regimes the nature of the dynamics in the imperfect
models (i)-(v) can differ drastically from that of the perfect system. High predic-
tive skill of a given imperfect model is achieved for a small model error E and high
potential predictive skill Sk. The main points regarding the predictive skill of the

optimized imperfect models (i)-(v), illustrated in the figures 1, 2, 3, 4, are:

• The choice of the best imperfect model for initial data response depends on the
nature of the true dynamics, the range of initial conditions, and the forecast
range. Moreover, the model sensitivity to initial conditions for the unresolved
dynamics is important.

• When the perfect system dynamics is nearly normal with the strongest at-
tracting direction along the unresolved subspace y, imperfect models with (at
least) correct marginal climatology (Definition 3.2) have good overall predic-
tive skill (figure 1).

• The imperfect model (iv) tends to have the best overall skill in our test suite
and good short range prediction skill in highly oscillatory systems (see figure
5); note that this model only reproduces the correct marginal climatology and
it does not have the correct forced response (see §3.3).

• The predictive skill of MSm, representing the simplest reduced model, is gen-
erally poor and is highly dependent on the initial conditions and the perfect
system geometry.

• Imperfect models with unphysical negative damping but correct marginal two-
point statistics (and forced response) can outperform models with positive
damping for short range forecasts (see model (iii) in the bottom panels of
figures 1, 3, 6) or even medium ranges (model (iii) in bottom panels of figures
4, 5). This model usually has better skill than MSm for predictions with all
lead times.



LESSONS IN UNCERTAINTY QUANTIFICATION 21

0 1 2 3
0

0.02

0.04

0.06

 

 

0 1 2 3
0

0.02

0.04

0.06 Signal term

0 1 2 3
0

1

2

3

4

5
x 10 3

Dispersion term

0 1 2 3
0

0.05

0.1

0.15

 

 

0 1 2 3
0

0.05

0.1

0.15
Signal term

0 1 2 3
0

1

2

3

4

5
x 10 3

Dispersion term

0 1 2 3
0

1

2

3

4

5

 

 

0 1 2 3
0

1

2

3

4

5
Signal term

0 1 2 3
0

0.05

0.1 Dispersion term

0 1 2 3
0

1

2

3

4

5

 

 

p er f ect model

( i ) 2×2 good marg s t at

( i i ) 2×2 good marg s t at

( i i i ) 2×2 good marg s t at

( i v) 2×2 go od marg cl i m

(v) MSM good marg cl i m

0 1 2 3
0

1

2

3

4

5
Signal term

 

 

0 1 2 3
0

0.05

0.1 Dispersion term

1 0.5 0 0.5 1
1

0.5

0

0.5

1

Mean dynamics for perfect system
Phase space portrai t

 

 

0 1 2 3
0

0.02

0.04

0.06

 

 

0 1 2 3
0

0.02

0.04

0.06 Signal term

0 1 2 3
0

1

2

3

4

5
x 10 3

Dispersion term

0 1 2 3
0

0.05

0.1

0.15

 

 

0 1 2 3
0

0.05

0.1

0.15 Signal term

 

 

0 1 2 3
0

1

2

3

4

5
x 10 3

Dispersion term

Sk(t |x̄0, R0)

E (t |x̄0, R0) Sk(t |x̄0, R0) Skm(t |x̄0, R0)

E (t |x̄0, R0)

Model error
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Figure 1. Model error (4) and potential prediction skill (5) for fore-
casts using the imperfect 2×2 linear systems (18) and the MSm (24) with
statistical equilibrium fidelity (13) (models (i)-(iii) also have the correct
two-point equilibrium statistics; see Def. 3.1). The perfect system dy-
namics is nearly normal with parameters (a = −1, λ1 = −1, λ2 =
−10, σ = 0.5, F = 0.1). The two examples are for different statistical
initial conditions x̄0, ȳ0, R0.
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Figure 2. Model error (4) and potential prediction skill (5) for fore-
casts using the imperfect 2 × 2 linear systems (18) and the MSm (24)
with statistical equilibrium fidelity (13) (models (i)-(iii) also have the
correct two-point equilibrium statistics; see Def. 3.1). The perfect sys-
tem dynamics is nearly normal with strongest attracting direc-
tion nearly parallel to x with coefficients (a = −3.7, λ1 = −1, λ2 =
−4, σ = 0.5, F = 0.1). The two examples are for different statistical
initial conditions x̄0, ȳ0, R0.
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Figure 3. Model error (4) and potential prediction skill (5) for fore-
casts using the imperfect 2×2 linear systems (18) and the MSM (24) with
statistical equilibrium fidelity (13) (models (i)-(iii) also have the correct
two-point equilibrium statistics; see Def. 3.1). The perfect system dy-
namics is non-normal with parameters (a = −5.5, λ1 = −1, λ2 =
−10, σ = 0.5, F = 0.1). The two examples are shown for different statis-
tical initial conditions x̄0, ȳ0, R0.



24 ANDREW J. MAJDA AND MICHAL BRANICKI

0 1 2 3 4
0

0.1
0.2
0.3
0.4

0 1 2 3 4
0

0.1

0.2

0.3

Signal term

0 1 2 3 4
0

0.05

0.1

Dispersion term

0 1 2 3 4
0

0.2

0.4

0.6

 

 

0 1 2 3 4
0

0.1

0.2

0.3

0.4
Signal term

0 1 2 3 4
0

0.1

0.2

0.3

0.4
Dispersion term

1 0.5 0 0.5 1

1

0.5

0

0.5

1

Mean dynamics for perfect system
Phase space portrai t

 

 

0 1 2 3 4
0

0.05

0.1

0.15

0 1 2 3 4
0

0.05

0.1

Signal term

0 1 2 3 4
0

0.05

0.1

Dispersion term

0 1 2 3 4
0

0.1

0.2

0.3

0.4

 

 

p er f ect model

( i ) 2×2 good marg s t at

( i i ) 2×2 good marg s t at

( i i i ) 2×2 good marg s t at

( i v) 2×2 good marg cl i m

(v) MSM (good cl i m)

0 1 2 3 4
0

0.01

0.02

0.03

0.04
Signal term

0 1 2 3 4
0

0.1

0.2

0.3

0.4
Dispersion term

0 1 2 3 4
0

0.1
0.2
0.3
0.4

 

 

0 1 2 3 4
0

0.1

0.2

0.3

Signal term

0 1 2 3 4
0

0.05

0.1

Dispersion term

0 1 2 3 4
0

0.05

0.1

0.15

 

 

0 1 2 3 4
0

0.05

0.1

Signal term

0 1 2 3 4
0

0.05

0.1

Dispersion term

Model error Potential prediction skill

Sk(t |x̄0, R0)
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Figure 4. Model error (4) and potential prediction skill (5) for fore-
casts using the imperfect 2×2 linear systems (18) and the MSm (24) with
statistical equilibrium fidelity (13) (models (i)-(iii) also have the correct
two-point equilibrium statistics; see Def. 3.1). The perfect system dy-
namics is nearly normal with parameters (a = −2, λ1 = −1, λ2 =
−1.1, σ = 0.5, F = 0.1). The two examples are shown for different sta-
tistical initial conditions x̄0, ȳ0, R0.
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Figure 5. Model error (4) and potential prediction skill (5) for fore-
casts using the imperfect 2×2 linear systems (18) and the MSm (24) with
statistical equilibrium fidelity (13) (models (i)-(iii) also have the correct
two-point equilibrium statistics; see Def. 3.1). The perfect system and
the imperfect models (except (iv)), have complex-conjugate eigenvalues
λ1,2 = α+ βi, α� βλ1,2 = α+ βi, α� βλ1,2 = α+ βi, α� β; the imperfect model (iv) has purely real eigenva-
lues and correct marginal climatology and parameters (a = −2, λ1,2 =
−0.5 ± 2i, σ = 0.5, F = 0.1). The two examples are shown for different
statistical initial conditions x̄0, ȳ0, R0.
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Figure 6. Model error (4) and potential prediction skill (5) for fore-
casts using the imperfect 2×2 linear systems (18) and the MSM (24) with
statistical equilibrium fidelity (13) (models (i)-(iii) also have the correct
two-point equilibrium statistics; see Def. 3.1). The perfect system and
the imperfect models (except (iv)), have complex-conjugate eigenvalues
λ1,2 = α+ βi, α ∼ βλ1,2 = α+ βi, α ∼ βλ1,2 = α+ βi, α ∼ β; the imperfect model (iv) has purely real eigenva-
lues and correct marginal climatology with parameters (a = −2, λ1,2 =
−1 ± 1i, σ = 0.5, F = 0.1). The two examples are shown for different
statistical initial conditions x̄0, ȳ0, R0.
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4. Elementary Non-Gaussian test models with intermittency. Here, we
discuss two mathematically tractable nonlinear and non-Gaussian models with in-
termittency which are very useful for analyzing and understanding many nontrivial
aspects of UQ and predictive skill in more complex systems; the discussion of UQ
in the spatially extended systems presented in §6 builds on these simple models by
combining them in an appropriate fashion in the Fourier domain.

The first system with intermittency [30, 29, 94, 9] discussed below (§4.1) com-
bines turbulent dynamics of a complex scalar with unresolved processes affecting
the resolved dynamics through colored noise fluctuations in the damping and col-
ored noise fluctuations in the forcing. The second system [76], discussed in §4.2, is
a one-dimensional reduced climate model for low-frequency variability with cubic
nonlinearities and correlated additive and multiplicative white noise forcing; this
model displays regime switching despite a unimodal PDF. Both of these models are
very useful for studying various imperfect Gaussian or non-Gaussian approximations
obtained either via the direct simplification of the true dynamics (e.g., lineariza-
tion of the underlying dynamics, dimensional reduction) and/or moment closure
approximations of the turbulent fluxes. This stochastic approach allows for analyz-
ing many properties which are relevant for UQ and prediction in high-dimensional
turbulent systems in a greatly simplified one-mode setting.

Important points discussed here include:

• Effects of various types of model error on the prediction skill in nonlinear
systems with non-trivial mean-turbulent flux interactions;

• Utility of the information-theoretic framework for systematic model improve-
ment in the presence of intermittency and positive Lyapunov exponents;

• Existence of information barriers for improving the sensitivity response of
imperfect models.

• False multiple equilibria in the imperfect models;
• Physically consistent white noise limits of complex dynamical systems as test

models with judicious model error for UQ and filtering/data assimilation.

4.1. Simple test model with hidden dynamics and intermittency. Consider
a single Fourier mode u(t) of a turbulent signal modeled by the following stochastic
system (see [30, 29, 9, 11])

(a) du(t)=
[
(−γ(t)+iω)u(t)+b(t)+F (t)

]
dt+σudWu(t),

(b) db(t)=(−db+iωb)b(t)dt+σbdWb(t),

(c) dγ(t)=−dγ(γ(t)−γ̂)dt+σγdWγ(t),

(38)

where Wu,Wb are independent complex Wiener processes and Wγ is a real Wiener
process defined for all time t ∈ IR. There are eight parameters in the system (38):
two damping parameters db, dγ > 0, two oscillation frequencies ω and ωb, the
stationary mean of the damping γ̂, and noise amplitudes σu, σb, σγ > 0; F (t) is a
deterministic forcing.

Here, we regard u(t) as one of the resolved modes in a turbulent signal where
the nonlinear mode-interaction terms are replaced by a stochastic drag γ(t) and an
additive noise term b(t), as is often done in turbulence models [75, 18]. The non-
linear system (38), introduced first in [30] for filtering multiscale turbulent signals
with hidden instabilities has a rich dynamics mimicking turbulent signals in various
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Figure 7. Dynamical regimes of the elementary model with in-
termittency (38). Schematic illustration of path-wise dynamics (left)
and time-periodic statistics (at fixed time) on the attractor (right) in two
intermittent and one laminar regime of the system (38); these dynamical
regimes are discussed in §4.1.

regimes of the turbulent spectrum, including intermittently positive finite-time Lya-
punov exponents, as discussed below (see figure 7 and [9, 11]). Moreover, due to the
particular structure of the nonlinearity in (38), exact path-wise solutions and exact
second-order statistics of this non-Gaussian system can be obtained analytically, as
discussed in [33, 34, 30]. The mathematical tractability of this model and its rich
dynamical behavior provides a perfect testbed for analyzing effects of errors due
to various moment closure approximations and dimensional reduction in a suite of
imperfect models introduced in §4.1.1.

The physically relevant dynamical regimes of (38) satisfying the mean-stability
condition (see [9])

χ = −γ̂ +
σ2
γ

2d2
γ

< 0, (39)

are (see also figure 7):

(I) Regime of plentiful, short-lasting transient instabilities in the resolved compo-
nent u(t) with fat-tailed marginal equilibrium PDF. This is a regime charac-
teristic of the turbulent energy transfer range and is associated with rapidly
decorrelating damping fluctuations γ(t);
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typical parameter values are σγ , dγ � 1, σγ/dγ ∼ O(1) and positive γ̂ ∼
O(1).

(II) Regime of intermittent large-amplitude bursts of instability in u(t) with fat-
tailed marginal equilibrium PDF. This regime is characteristic of turbulent
modes in the dissipative range and it occurs for small σγ , dγ , with σγ/dγ ∼
O(1) and γ̂ ∼ O(1).

(III) ‘Laminar’ regime with nearly Gaussian equilibrium PDF. This regime is char-
acteristic of the laminar modes in the turbulent spectrum. Here, fluctuations
in u(t) decorrelate rapidly compared to the damping fluctuations γ(t) and the
transient instabilities in u(t) occur very rarely. This type of dynamics occurs
in (38) for σ2

γ/2d
2
γ � 1, σγ ∼ O(1) and γ̂ � 1.

4.1.1. Imperfect models, information-theoretic optimization and information barri-
ers. We describe here four classes of imperfect models derived from (38) which
introduce model errors through various moment closure approximations or a di-
mensional reduction of the system (38); two of these models are nonlinear with
‘Gaussianized’ statistics while the simplest model, the MSm discussed already in
§3, is both linear and Gaussian. The effects of model errors introduced by these
approximations and ways of mitigating these errors are discussed in §4.1.2 where we
apply the information-theoretic framework discussed in §2 to highlight the following
important points:

• The information-theoretic optimization (§2.1) can dramatically improve pre-
dictive performance and sensitivity of imperfect models. In particular, for
systems with too much dissipation a simple inflation of the stochastic forcing
in order to optimize the time-averaged climate fidelity (14) leads to a signifi-
cant point-wise reduction of model error and greatly improved prediction skill
in models with consistent moment closure approximations.

• Climate fidelity (cf. (13), (14) ) of imperfect models on the coarse-grained
subset of resolved variables is necessary but not sufficient for high skill in
forced response predictions. Climate fidelity requires the optimization of the
whole model density and not its individual moments.

• There exist information barriers to model improvements within a given class
of imperfect models.

• Nonlinear, non-Gaussian models can have long memory of initial conditions,
including the memory of initial conditions for the unresolved processes.

• Linear Gaussian models cannot reproduce the response in the variance to
forcing perturbations in nonlinear systems [82].

The above issues, alongside those discussed in the context of the linear Gaussian
framework in §3, will be important in the spatially extended framework discussed in
§6; the examples discussed here provide an unambiguous illustration of analogous
phenomena occurring in vastly more complex natural systems where they are much
more difficult to capture.

Note first that, with the state vector vvv = (u, b, γ)T of the system (38) with one
resolved component u and two hidden components (b, γ), the deterministic part in
(38) can be written as

fff(vvv, t) = L̂(t)vvv + B(vvv,vvv, t) + F(t), (40)

with L̂ a linear operator, B a bilinear function, and F a spatially uniform term
representing generalized deterministic forcing; the exact form of these terms can be
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easily obtained by comparing (40) with (38) and (1). In what follows we will skip
the explicit dependence on time in fff in order to simplify the notation.

It can be easily shown (e.g., [52, 9]) that by adopting an analogue of the averaged

Reynolds decomposition of the state vector, vvv = v̄vv+vvv′, such that vvv′ = 0 and v̄iv′j = 0,

the evolution of the mean v̄vv and covariance R ≡ vvv′ ⊗ vvv′T for the process vvv satisfying
(38) is given by

a) ˙̄vvv = fff(v̄vv) + B(vvv′, vvv′),

b) Ṙ = RAT (v̄vv)+A(v̄vv)R+Σ + vvv′BT (vvv′, vvv′)+B(vvv′, vvv′)vvv′T ,
(41)

where A is the Jacobian of fff at v̄vv, i.e., A(v̄vv) ≡ ∇fff(v̄vv) and the overbar denotes an
ensemble average.

Due to the particular form of the quadratic nonlinearity in the perfect system
(38), exact formulas for the second-order statistics and path-wise solutions can
be derived [30] without the explicit knowledge of the associated time-dependent
probability density. Derivation of imperfect models in this framework utilizes some
type of moment closure approximation applied to the turbulent fluxes in (41). Below
we describe two nonlinear and two linear imperfect models of the system (38) which
introduce model error due to various moment closure approximations applied to (41)
and/or due to a dimensional reduction. These are standard ways to introduce model
error in vastly more complex turbulent systems with the form (40) (e.g, [22]). The
effects of errors introduced by these models on the short, medium and long range
prediction skill, as well as ways of mitigating these errors via the information-
theoretic framework of §2, are discussed in the following sections. It is important to
foreshadow the following discussion and stress that while the first three imperfect
models below have Gaussian statistics due to the moment closure approximations,
the first two models remain nonlinear in the state variables vvv = (u, b, γ). On the
other hand, the last imperfect model is linear and non-Gaussian due to the presence
of multiplicative noise which arises through appropriate white noise limits of the
true dynamics.

Gaussian Closure model (GCm)Gaussian Closure model (GCm)Gaussian Closure model (GCm). This model is nonlinear in the state variables
but has a ‘Gaussianized’ statistics with nontrivial and consistent mean-fluctuation
interactions. The quasi-Gaussian closure approximation (e.g., [52]), which is fa-
miliar from turbulence theory, implies neglecting the third moment of the true
probability density p(vvv, t) in the equation in (41b) for the covariances. Thus, we
assume

vvv′M BT (vvv′m, vvv′m) + B(vvv′m, vvv′m)vvv′m
T = 0 (42)

in (41b) with vvvm = (um, bm, γm), vvvm = v̄vvm + vvv′m. The closure (42) results in a fully
coupled nonlinear dynamical system for the second-order statistics and it introduces
model error due to neglecting the turbulent fluxes in the covariance (41b) of (38).
Thus, the GCm closure for a general quadratic system is given by

a) ˙̄vvvm = fff(v̄vvm) + B(vvv′m, vvv′m), b) Ṙm = RmA
T (v̄vvm)+A(v̄vvm)Rm + Σm, (43)

with A(v̄vvm) = ∇fff(v̄vvm).
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Deterministic-Mean model (DMm)Deterministic-Mean model (DMm)Deterministic-Mean model (DMm). This model, similarly to GCm, is nonlin-
ear in the state variables and has a Gaussianized statistics but, apart from neglect-
ing the turbulent third-order flux in the covariance, it also neglects the turbulent
backscatter into the mean. This ad-hoc closure corresponds to assuming

a) vvv′mBT (vvv′m, vvv′m) + B(vvv′m, vvv′m)vvv′m
T = 0, b) B(vvv′m, vvv′m) = 0, (44)

in (41). Note that the constraint (44b) is inconsistent with the nontrivial evolution

of the covariance in (41b) and effectively implies that fff(vvvm) = fff(v̄vvm). Thus, the
DMm closure for a general quadratic system is given by

a) ˙̄vvvm = fff(v̄vvm), b) Ṙm = RmA
T (v̄vvm) +A(v̄vvm)Rm + Σm, (45)

with A(v̄vvm) ≡ ∇fff(v̄vvm).

Mean Stochastic model (MSm)Mean Stochastic model (MSm)Mean Stochastic model (MSm). This model with reduced dimensionality was
already discussed in the linear Gaussian framework of §3. MSm uses the same
moment closure approximations (44) as DMm but because of its linearization in
the state variables it only accounts for the dynamics of the resolved variable u(t)
with the mean values of the unresolved variables in (38a), γ = γ̂msm and b = 0. The
MSm model utilized here is given by

u̇msm =
(
− γ̂msm + iωmsm

)
umsm + Fmsm(t) + σmsmẆ (t). (46)

The mean ūmsm and covariance Rmsm for this linear model can be computed analyt-
ically in a standard fashion leading to

ūmsm(t) = e(−γ̂msm+iωmsm)(t−t0)ū0 +

∫ t

t0

e(−γ̂msm+iωmsm)(t−s)Fmsm(s)ds, (47)

Rmsm(t) = eÂ(t−t0)R0e
ÂT (t−t0) +

∫ t

t0

eÂ(t−s)Σmsm e
ÂT (t−s)ds, (48)

where Â ≡ ∇fffu|(ūmsm,b=0,γ̂msm), Σmsm = 1
2diag[σ2

msm, σ
2
msm], and the covariance Rmsm =

ũuu⊗ ũuuT is considered in the real variables ũuu =
(
<e[umsm− ūmsm],=m[umsm− ūmsm]

)T
.

Note that the linearity of MSm implies that the covariance Rmsm is insensitive to
forcing perturbations. Consequences of this fact on improving the model fidelity
and sensitivity are discussed in the next section.

White noise limits of the test system (38)White noise limits of the test system (38)White noise limits of the test system (38). One alternative to obtaining re-
duced models via the moment closure approximations or the direct dynamics lin-
earization is to consider appropriate white noise limits of the unresolved (or poorly
understood) components of the perfect system. Such a procedure leads to simpli-
fied stochastic models with reduced dimensionality and judicious model error. This
approach will prove particularly useful and revealing in §7 where we discuss various
numerical artifacts in complex spatially extended models.

Here, we illustrate this strategy on the single-mode system (38) by assuming
that both the damping fluctuations γ(t) and the additive forcing uncertainty b(t)
affecting the resolved dynamics u(t) decorrelate very fast, i.e., we take the formal
limit in (38)

dγ →∞, σγ →∞, σ̃γ ≡ σγ/dγ = const > 0, (49)

db →∞, σb →∞, σ̃b ≡ σb/db = const > 0. (50)
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As shown in more detail in Appendix B, the formal limit preserving the non-
vanishing correlations u(t)γ(t) leads to the Stratonovitch SDE (e.g., [28]) for the
complex scalar u(t), given by

du(t) =
[(
−γ̂+iω̂(t)

)
u(t)+F (t)

]
dt−σ̃γu(t)◦dWγ(t)+σ̃bdWb(t)+σudWu(t), (51)

where Wγ and the components of Wu = 1√
2
(W1u+iW2u) and Wb = 1√

2
(W1b+iW2b)

are independent Wiener processes defined for all time t ∈ IR. We rewrite (111) in
Ito form as

du(t) =
[(
−α+ iω̂(t)

)
u(t)+F (t)

]
dt− σ̃γu(t)dWγ(t)+ σ̃bdWb(t)+σudWu(t), (52)

where α = γ̂ − 1
2 σ̃

2
γ is the damping term in the white noise limit. In contrast

to the original system (38) with colored multiplicative and additive noise terms,
the marginal equilibrium PDF for the components uR ≡ <e[u], uI ≡ =m[u] for the
system (112) in the unforced case F ≡ 0 can be obtained analytically (see Appendix
B) in the form

peq(uR) =
N0

(σ̃2
γu

2
R + σ̃2

b + σ2
u)δ

, (53)

with δ = 1
2 + (γ̂ − 1

2 σ̃
2
γ)/σ̃2

γ . Although this is not shown, the marginal equilibrium
PDF (53) for u(t) obtained in the white noise limit of γ(t), b(t) provides a very good
approximation of the marginal equilibrium statistics of u(t) in regime I (abundant
transient instabilities) of the original system (38).

4.1.2. Using stochastic parameterization to improve prediction skill and forced re-
sponse of imperfect models. Here, we illustrate the utility of the information-theoretic
framework discussed in §2 to systematically and simultaneously improve the climate
fidelity and prediction skill of imperfect models GCm, DMm, and MSm of the sys-
tem (38) in the presence of intermittency and positive Lyapunov exponents. We
illustrate this approach in this nonlinear and non-Gaussian configuration by dis-
cussing: (i) model optimization and the existence of information barriers, (ii) forced
response of optimized models, and (iii) the prediction skill of optimized imperfect
models when both the initial conditions and the forced response are important; for
more details see [11].

Note that the moment closures employed in the derivation of GCm and DMm
discussed in the previous section, or the dimensionality reduction used in MSm, do
not preserve a-priori the statistical attractor of the perfect system. In fact, as was
shown in [11], these imperfect models have too much dissipation and underestimate
both the equilibrium mean and variance relative to the perfect system (see figure 8).
Here, following the methodology of [80, 11], we focus on improving the model fidelity
by inflating the stochastic forcing in the resolved dynamics of the imperfect models
in order to minimize the annually averaged information content, P(πatt, πm

att) as
in (14) of §2. In figure 8 we show an example of such an optimization procedure
carried out in regime II (see §4.1) of mean-stable dynamics of the perfect system
(38); we point out the following:

• For all imperfect models the attractor fidelity is significantly improved by in-
flating the amplitude of the stochastic forcing σM∗u . The best results can be
achieved for GCm which is based on consistent moment closure approxima-
tions.

• The total lack of information in the imperfect model attractor dynamics is
greatly reduced at all times in the time-periodic setting even though only the



LESSONS IN UNCERTAINTY QUANTIFICATION 33

0 2 4 6 8 10 12
0

0.02

0.04

0.06
Signal

0 2 4 6 8 10 12
0.05
0.06
0.07

0 2 4 6 8 10 12
0.05

0.1

 

 

0 2 4 6 8 10 12
0

5

10

15

x 10 3
Signal

0 2 4 6 8 10 12
0

0.02
0.04
0.06
0.08

Model error

 

 

0 2 4 6 8 10 12
0

0.02

0.04

0.06
Dispersion

1.5
2

2.5

 

 
Model error

GCm
DMm
MSm

1.5
2

2.5
Dispersion

t t

(σu not optimized) (σu optimal)

X

*

Figure 8. Information-theoretic optimization of imperfect
models of the quadratic intermittent system (38). Model er-
ror in the climate, P(πatt, π

m
att), before (left) and after (right) the opti-

mization of the imperfect models of the system (38) by stochastic noise
inflation aimed at minimizing the time-averaged relative entropy (14).
Note the significant improvement in the optimized imperfect models re-
flected in the point-wise decrease of the relative entropy. This example
is typical of regime II in (38); the parameters used in computations are
γ̂ = 1.2, σu = 0.5, σγ = dγ = 0.5.

time-averaged formula (14) is used in the optimization procedure; this was
observed earlier for the Gaussian models in [32].

In the examples discussed below we use the time periodic forcing:

F (t) = A0 +A1 cos(ωt+ φ1) +A2 cos(2ωt+ φ2), (54)

where φ1 = 1, φ2 = 0 and ω = π/6 which ensures that the period T0 = 12 so that it
can be interpreted as a year consisting of 12 months; the forcing has two frequencies
so that the equilibrium statistics of (38) has a more variable structure.

Information barriers to imperfect model improvement
The important issue in model optimization concerns the extent to which the

climate/attractor fidelity of the imperfect models can be improved. This issue is
particularly important and interesting in situations when the true system has a
wide range of dynamical regimes, including turbulent regimes with intermittency.
In figure 9, which is complementary to figure 8, we show results of the information-
theoretic optimization of the imperfect models of (38) which is achieved by the
stochastic noise inflation for different parameters and dynamical regimes of the
perfect system (38). As before, the optimal noise amplitude σm∗

u is determined by
minimizing the time-averaged lack of information (14) in the imperfect models. The
following remarks are based on figure 9:

• There exist barriers to model improvement by noise inflation for DMm and
MSm as the hidden, transient instabilities become more abundant (see the
transition between regimes II and I of (38) for increasing dγ in figure 9).
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Figure 9. Information-theoretic optimization of imperfect
models of the quadratic intermittent system (38). Optimal noise
amplitude σm∗

u for the time-averaged climate fidelity (14) and the cor-
responding model error as functions of the mean damping γ̂ and damp-
ing of fluctuations dγ for the imperfect models GCm, DMm and MSm.
Note the barriers to model improvement by stochastic forcing inflation
in DMm and MSm for increasing dγ as the hidden, transient instabilities
become more abundant in u(t) on the approach to Regime I (see figure 7).

• For weak mean damping γ̂, associated with very intermittent dynamics of u(t)
and fat-tailed marginal equilibrium PDFs (see Regime II in figure 7), perfect
attractor/climate fidelity cannot be achieved by inflating the stochastic forcing

• GCm retains the best climate fidelity throughout the parameter range.

Forced response of imperfect models with optimal noise
Here, the main focus is on elucidating the link between the attractor/climate

fidelity of imperfect models and their sensitivity to perturbations δF (t) of the ex-
ternal forcing. Consequently, we consider here long lead times so that essentially
all knowledge of the initial conditions is lost and only the perturbations to the at-
tractor of the perfect system are important. The sensitivity of the perfect system
and its imperfect models to such perturbations (see Definition 2.3) is quantified via
the relative entropies P(πδF , πatt), P(πm∗

δF , π
m∗
att); this is illustrated in figure 10 in a

typical configuration with intermittent transient instabilities with

δF (t) = (Aδ0 −A0)
tanh(a(t− tc)) + tanh(a tc))

1 + tanh(a tc))
, (55)

where Aδ0 is the perturbed mean forcing, A0 is the unperturbed mean forcing, and a
controls the time scale of the perturbation centered at time tc; in the computations
are A0 = 4, Aδ0 = 4.4, a = 0.3, tc = 20.

The following observations are worth pointing out in this context:

• The sensitivity of GCm and DMm in turbulent regimes with sufficiently long
decorrelation time of the damping fluctuations γ is comparable to that of the
perfect model despite the underestimated imperfect model response in the
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Figure 10. Forced response of the quadratic model with in-
termittency (38) and the sensitivity of its imperfect models.
(Top left) Response of the resolved component u(t) in the perfect sys-
tem (38) to ramp-type forcing perturbations δF . (Top right) Analogous
response computed from the imperfect models with optimal noise σm∗

u in
um(t). (Bottom) The sensitivity P(πδF , πatt) (6) of the perfect system
and its imperfect models to the forcing perturbations δF (55). Note that
MSm fails to reproduce the response in the covariance due to its inherent
linearization. This example represents a typical situation in regime II
(intermittent transient instabilities with large amplitudes in u(t); see fig-
ure 7) of the perfect model dynamics (38), the perfect system parameters
used in computations are γ̂ = 1.2, σu = 0.5, σγ = dγ = 0.5.
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Figure 11. Interplay between the initial data response and the
forced response for the quadratic model with intermittency
(38). (Right) Model error P(πδF,t0 , π

m
δF,t0

) (4) and (left) the internal
prediction skill, P(πδF,t0 , π

m
att), for the predictions of the resolved com-

ponent u(t) using the imperfect models optimized for unperturbed cli-
mate fidelity (14). The initial conditions at t0 are off the attractor and
the subsequent climate change is induced by ramp-type forcing pertur-
bations δF (55). Note the high skill of GCm at all ranges, including the
short range skill in the dispersion. This situation is typical of regime
II (see figure 7) of the perfect model (38) where both GCm and DMm
achieve perturbed climate consistency; MSm has no short range skill and
only a marginal skill for the long range forecasts. The perfect system
parameters used in computations are γ̂ = 1.2, σu = 0.5, σγ = dγ = 0.5.

dispersion. Unlike DMm and MSm, the sensitivity of GCm for the response
in the mean remains very good in all dynamical regimes (not shown); this
stems from the consistent moment closure approximations used in GCm.

• The linear Gaussian model MSm completely fails to detect the covariance re-
sponse to the forcing perturbations. The linearization inherent in the MSm has
relatively little effect in regimes with no transient instabilities in the resolved
dynamics (e.g., nearly-Gaussian regime III of (38)) when all the discussed
models perform well (not shown).

Interplay between initial data and forced response with optimal noise
The most difficult forecasting scenarios are those involving the short and medium

range imperfect model predictions when both the memory of the initial conditions,
model error, and the response due to forcing perturbations are important in the
forecasts [12, 117, 37, 38].
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In figure 11 we illustrate the predictive skill of the imperfect models with optimal
noise in a scenario where the statistical initial condition is away from the attractor
and the external forcing is perturbed at some later time during the evolution. As
described in §2, the predictive skill of the imperfect models optimized for climate
fidelity can be assessed by monitoring the model error, P(πδF,t0(t), πm∗

δF,t0
(t)), and

the internal prediction skill P(πm∗
δF,t0

(t), πm∗
att(t)). The following remarks are based

on the results illustrated in figure 11:

• GCm with optimal stochastic forcing has good prediction skill in dynamical
regimes with intermittent large-amplitude transient instabilities (e.g., regime
II of (38)), including the short term initial data response and the long term
perturbed climate/attractor consistency. DMm has a good short range pre-
diction skill and MSm has no skill in this regime.

• All optimized imperfect models achieve perturbed attractor consistency in
regimes with essentially no transient instabilities like, for example, regime
III of (38 (not shown see [11]). GCm and DMm are essentially the same in
this regime and have good prediction skill for all lead times. MSm, which
completely neglects the dynamics of the unresolved variables has no short
range prediction skill due to a poor initial data response.

• In dynamical regimes characterized by abundant short-lasting transient in-
stabilities (e.g., regime I of (38)) GCm has a good skill for predicting the
mean dynamics but it fails, like all the other imperfect models, at predicting
the covariances (the dispersion part in these cases dominates the total model
error).

4.2. Cubic scalar SDE with regime switching and unimodal PDF. The
systematic development of reduced low-dimensional stochastic models from obser-
vations or comprehensive high-dimensional models is an important topic for atmo-
spheric low-frequency variability, climate sensitivity, and improved extended range
forecasting; other areas where such issues are important include neural science and
engineering applications in situations where low-frequency variability can be effi-
ciently described by just a few large-scale teleconnection patterns dominating the
coarse-grained dynamics. Systematic strategies are essential in successfully develop-
ing reduced models and the recently developed stochastic mode reduction strategy
provides a systematic procedure for the derivation of reduced stochastic models
[86, 85, 75, 77, 78]. Systematically reduced stochastic models are attractive for sen-
sitivity studies of the climate and other complex high-dimensional systems because:
(i) they are computationally much more efficient than state-of-the-art climate mod-
els and have been shown to have comparable prediction skill, and (ii) they allow for
a better understanding of the climate system due to the reduced complexity. Here,
we consider an important example of a nonlinear scalar reduced model with corre-
lated additive and multiplicative noise arising from advection of the large scales by
the small scales and simultaneously strong cubic damping. This normal form for a
single low frequency variable possesses an interesting dynamical configuration with
regime switching despite unimodality of the associated PDF resembling the situ-
ation occurring in comprehensive climate models [77, 74]. Two imperfect models,
one Gaussian and one non-Gaussian, are utilized below to highlight the following
issues:
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Figure 12. Schematic illustration of relevant dynamical regimes of
the cubic scalar system (56) with correlated additive and multiplica-
tive noise. (Left) Path wise solutions and corresponding equilibrium
PDFs (Right). The information-theoretic optimization of two imperfect
models of (56), the nonlinear Gaussian model (GCm) and the linear
non-Gaussian model (58), is discussed in 4.2.1.

• Gaussian approximations of non-Gaussian systems can have, in certain cir-
cumstances, a smaller model error and better climate fidelity than non-Gaussian
imperfect models.

• Moment closure approximations of nonlinear systems can have false multiple
equilibria which can be removed by information-theoretic optimization.

The cubic scalar framework utilized here provides the simplest possible illustration
of both these issues which are important in complex high-dimensional situations
where they are much more difficult to isolate.

The one-dimensional reduced climate model [76] for low-frequency variability
with cubic nonlinearities and correlated additive and multiplicative white noise
forcing is given by

du =
(
− au+ bu2 − cu3 + f(t)

)
dt+ (A−Bu)dWAB(t) + σudWu(t), (56)
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where a, b, c, A,B, σu are arbitrary real constant coefficients, and WAB(t), Wu(t)
are independent Wiener processes defined for t ∈ IR; the correlated additive and
multiplicative noise associated with WAB arises through the systematic stochastic
mode reduction procedure [76]. Even for time-independent forcing this model pos-
sesses a wide range of interesting dynamical regimes which can be deduced from its
equilibrium PDF given by (see [76])

peq(u) =
N0

((Bu−A)2 + σ2
u)a1

exp

(
d1 arctan

(
Bu−A
σu

))
exp

(
−c1u

2 + b1u

B4

)
,

(57)
where N0 is a normalizing constant and

a1 = 1 +
3A2c+ aB2 − 2AbB − cσ2

B4
, b1 = 2bB2 − 4cAB, c1 = cB2,

d =
d1

σu
+ d2σu, d1 = 2

A2bB −A3c−AaB2 +B3f

B4
, d2 =

6cA− 2bB

B4
.

The dynamical regimes of interest are illustrated in figure 12 and include:

(i) Nearly Gaussian regime;
(ii) Regime with symmetric fat-tailed algebraic tails;

(iii) Regime with highly skewed unimodal PDF and no regime switching;
(iv) Regime with highly skewed unimodal PDF and regime switching;
(v) Bimodal regime.

The non-Gaussian cubic system (56) serves as an instructive and revealing model
for comparing nonlinear Gaussian and linear non-Gaussian approximations and un-
derstanding the origins of information barriers to model improvement in the regimes
(i)-(iv) of the cubic test system (56). Here, we consider two imperfect models, one
linear non-Gaussian, and one nonlinear Gaussian; both these models are described
below:

Non-Gaussian linear model with multiplicative noiseNon-Gaussian linear model with multiplicative noiseNon-Gaussian linear model with multiplicative noise
This model is obtained via the linearization of (56) in the state variable u which

leads to

dum =
(
− amum + fm(t)

)
dt+ (Am −Bmum)dWAB(t) + σm

udW (t), (58)

where the model coefficients (am, bm, cm, Bm, Am, σ
m
u ) are, in principle, different from

those of the perfect system (56). For time-independent forcing the equilibrium PDF
associated with (58) can be easily derived as

plineq (um) =
N0

((Bmum −Am)2 + σm
u

2)δ2
exp

(
d2 arctan

(
Bmum −Am

σm
u

))
, (59)

where δ2 = 1− am/B2
m and d2 = 2(Amam +Bmfm)/B2

mσm (compare this with deriva-
tions in Appendix B.2.1).

Gaussian closure model (GCm)Gaussian closure model (GCm)Gaussian closure model (GCm)
This nonlinear model with Gaussianized statistics is obtained in an analogous way

to that discussed in §4.1.1 by consistently neglecting odd moments in the equations
for the mean and variance of u(t); the resulting closed system of ODEs for the



40 ANDREW J. MAJDA AND MICHAL BRANICKI

approximate second-order statistics is given by

a) ˙̄um = −amūm + bmū
2
m + bmu′

2
m − cmū3

m − 3cmūmu′
2
m + fm(t),

b)
˙
u′2m = 2(−am + 2bmūm − 3cmū

2
m − 3cmu′

2
m)

+B2
m[u′2m + (A2

m +B2
mū

2
m − 2AmBmūm + σm

u
2)],

(60)

where the model coefficients (am, bm, cm, Bm, Am, σu
m) are not necessarily identical to

those in the perfect system (56). Here, the time-dependent Gaussian PDF for GCm

is given by pgcm(t) = N
(
ūm, u′

2
m

)
; it is important to note that GCm for the cubic

system (56) can have non-unique invariant measures due to false multiple equilibria
in (60). This important new consequence of model error is discussed in more detail
in the next section and is illustrated in figures 16 and 15.

4.2.1. Information barriers for model optimization. The presence of the correlated
multiplicative and additive noise and the cubic nonlinearity in the non-Gaussian
system (56) for the real scalar u(t) provides a natural complement of the previous
quadratic test model (38) with colored damping fluctuations discussed in §4.1. Here,
we use the system (56) and its imperfect models discussed in the previous section
to address in a simple unambiguous framework two new issues which are important
for UQ in more complex high-dimensional systems: (i) the skill of non-Gaussian
linear models and quasi-Gaussian nonlinear models for approximating non-Gaussian
dynamics, (ii) existence of false multiple equilibria in the statistics of nonlinear
imperfect models. The information-theoretic framework described in §2 is utilized
again to illustrate these new issues in the simple one-dimensional setting.

Systematic model optimization and information barriers
Figure 13 illustrates the results of information-theoretic optimization of the im-

perfect nonlinear Gaussian (60) and linear non-Gaussian (58) models of the cubic
system (56) discussed in the previous section; here, the optimization (§2) is carried
out in various dynamical regimes of the system (56) by a simple additive stochastic
noise inflation to achieve climate fidelity (13) through (12). The coefficients in the
perfect system (56) used in the computations are

a b c A B σu f
Regime (i) 3 0 4 0.01 -1 1 0.01
Regime (ii) 2.2 1.5 1 1 -1 1 2
Regime (iii) 3 -1.5 0.5 0.5 -1 1 0.1
Regime (iv) 4 2 1 1 -1 1 0.1
Regime (v) 2 -2 0.4 0.1 -0.5 1 0.1

The results in figure 13 show the optimal noise values σm∗
u and the minimum

model error at equilibrium, P(πatt, π
m∗
att), as a function of the true additive noise

level σu in the perfect system (56); the results for the Gaussian and non-Gaussian
imperfect models are superimposed in each of the examined dynamical regimes (see
figure 12) for easy comparison. The information barriers for the linear non-Gaussian
model are prominent in the fat-tailed regime (ii) and the bimodal regime (v), while
GCm has information barriers in the highly skewed regimes (iii)-(iv) where the
linear non-Gaussian model performs marginally better. The relative entropies are
computed numerically based on the analytical expressions for the equilibrium PDFs,
since the Gaussian framework (7) is inappropriate in the highly skewed regimes.
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Figure 13. Information-theoretic optimization of imperfect
models of the cubic system (56). The four insets corresponding
to different regimes of (56) show (from top to bottom) the optimal addi-
tive noise amplitude σm∗

u for the attractor/climate fidelity (13) obtained
via (12), the minimum model error at equilibrium, and the PDFs for
the optimized imperfect models for σm∗

u corresponding to σu = 1. Note
the information barriers to the improvement of the linear non-Gaussian
model in regimes (ii) and (v), and the barriers for GCm in the highly
skewed regimes (iii), (iv).

Figure 14 illustrates the attractor/climate fidelity of the two imperfect models
with time-periodic forcing in the phase space spanned by the mean and variance;
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Figure 14. Attractor fidelity of the imperfect models of the
cubic system (56) with time-peroidic forcing. Limit cycles in the
second-order statistics of the system (56) and the imperfect models be-
fore and after the information-theoretic optimization (cf. §2). In the
fat-tailed PDF regime (ii) the optimization is carried out via the ad-
ditive noise inflation σm

u , while in the highly-skewed PDF regime (iii)
the additive noise and the mean forcing are optimized for the minimum
model error.
Forcing: f(t)=f0+f1 sin(t+1)+f2 sin(3t). True parameters in reg. (ii): a=1.5,
b=0.01, c=0.1, A=0, B=−1, σu=1, f0=0.1, f1=1, f2=0.7, Optimal model param-
eters: GCm σm∗

u =0.96, lin. non-Gaussian σm∗
u =Am∗=0.58. Parameters in reg. (iii):

a=2.2, b=1.5, c=1, A=1, B=−1, σu=1, f0=2, f1=.5, f2=0.35, Optimal model pa-
rameters: GCm σm∗

u =0.85, fm∗
0 =1.7, lin. non-Gaussian σm∗

u =0.86, fm∗
0 =1.6.

the two insets, corresponding to the situation before and after the optimal noise
inflation, show the limit cycles in the time-periodic second-order statistics for the
perfect system and the imperfect models. The two examples shown correspond to
the fat-tailed PDF regime (ii) and the highly skewed PDF regime (iii). In both cases
GCm has a significantly better attractor/climate fidelity for the first two statistical
moments even before the optimal noise inflation, although in the highly skewed
PDF regimes the model error in the full PDF of GCm often exceeds that of the
linear non-Gaussian model (see figure 13); in the nearly Gaussian regime (i) both
models perform similarly well.
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perfect  eq.

Figure 15. Information-theoretic optimization of the Gauss-
ian closure model of the cubic system (56) in the presence of
multiple equilibria in the statistics of GCm. The configuration
shown corresponds to the bimodal PDF regime of the perfect system
(56) and the two stable equilibria of GCm are shown in the left col-
umn. The information-theoretic optimization of GCm by the additive
noise inflation leads to a configuration with a single equilibrium in GCm
(right column) whose mean and variance (magenta dot) is close to the
mean and variance of the perfect system (black dot). Note the existence
of configurations with three stable equilibria in the statistics of GCm
for 1.16σm

u61.2. Perfect system parameters: a = 2, b = −2, c = 0.4,
A = 0.6, B = −0.5, σu = 0.75, f = 0.1.

Based on these instructive examples illustrated in figures 13-14, we make the fol-
lowing points:

• GCm has, in general, a better attractor/climate fidelity, including the time-
dependent configurations with nontrivial attractors; GCm can also be better
optimized for climate fidelity by additive stochastic noise inflation except for
highly skewed regimes where the linear non-Gaussian model performs better.

• There exist barriers to imperfect model improvement which can be easily
detected within the information-theoretic framework (§2).

• The information barriers for the linear non-Gaussian model are prominent in
the fat-tailed regime (ii) and the bimodal regime (v), while GCm has infor-
mation barriers in the highly skewed regimes (iii), (iv) (figure 13).
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Figure 16. Information-theoretic optimization of the Gauss-
ian closure model of the cubic system (56) in the presence of
multiple equilibria in the statistics of GCm. The configuration
shown corresponds to the highly-skewed PDF regime of the perfect sys-
tem (56) and the two stable equilibria of GCm are shown in the left col-
umn. In this case the information-theoretic optimization of GCm by the
additive noise inflation has two solutions: (1) global minimum (middle
column) corresponding to the two-equilibria configuration in the statis-
tics of GCm right before the disappearance of the optimal equilibrium
in a saddle-node bifurcation, (2) local minimum (right column); note
that the mean and variance of GCm in this case (magenta dot) is not
close to the mean and variance (black dot) of the perfect system (56).
Perfect system parameters: a = 1.85, b = 2, c = 0.5, A = 0.1, B = −0.5,
σu = 0.2, f = 0.23.

False multiple equilibria in imperfect models
Existence of false equilibria in imperfect models can have profound consequences

for UQ in complex high-dimensional turbulent systems where such artifacts might
not be easily identifiable. In figures 16 and 15 we show two distinct examples of
such artifacts.

First, in figure 15 we show the configuration with two stable and one unstable
equilibria in the Gaussian statistics of GCm when the perfect system (56) has a
bimodal PDF (regime v). The information-theoretic optimization of §2 via the
stochastic noise inflation lads to a one-equilibrium configuration for the statistics
of GCm; note that the equilibrium mean and variance in the optimized GCm is



LESSONS IN UNCERTAINTY QUANTIFICATION 45

0

0.005

0.01

0

0.005

0.01
Sensitivity Model error

Sensitivity Model error

regime (ii)

regime (iii)

truth
GCm

truth
linear non-Gaussian

t t

t t

Figure 17. Forced response of the cubic system (56) and the
sensitivity of the optimized imperfect nonlinear Gaussian and the linear
non-Gaussian imperfect models to ramp-type perturbations δF (61) of
the forcing. The results of tests in two dynamical regimes are shown:
(left) the sensitivity (6) and model error (4) for the two imperfect models
in the regime (ii) with fat-tailed algebraic tails, (right) the sensitivity and
model error for the two imperfect models in the regime (iii) with highly
skewed equilibrium PDFs (see figure 12). Note the poor skill of the linear
non-Gaussian model, this is particularly important in the regime with
highly skewed PDFs where the linear non-Gaussian model has better
attractor/climate fidelity (figure 13).

close to the mean and variance of the perfect system (see black and magenta dots
in figure 15).

A more complicated situation is illustrated in figure 16 showing the configuration
with two stable equilibria in the Gaussian statistics of GCm when the perfect system
(56) has a highly-skewed PDF (regime (iii)). In this case the globally optimal
amplitude σm

u of the additive stochastic noise in GCm corresponds to the two-
equilibrium configuration right before one of the stable equilibria disappears in the
saddle-node bifurcation; note that the fat tail of the perfect model PDF is captured
to some extent. The locally optimal configuration with one equilibrium corresponds
to much larger noise values as shown in the right column of figure 16; note that
in this case the single remaining equilibrium mean and variance of the optimized
GCm is quite different from that of the perfect model (see black and magenta dots
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in figure 16) with the maximum in the PDF of GCm close to the in the trough in
the perfect model PDF.

This new phenomenon, arising as a consequence of model error induced by sym-
metrization of the model PDF, deserves the following comments:

• While the simple Gaussian imperfect models of nonlinear non-Gaussian sys-
tems can have high skill and climate fidelity when appropriately optimized,
there exist dynamical regimes, usually associated with multimodality, where
such imperfect unoptimized models display false multiple equilibria;

• Information-theoretic optimization (§2) is capable of mitigating these errors
and improving the predictive skill even for the simple Gaussian closure models.

Forced response of imperfect models with optimal noise
Here, we consider the sensitivity of optimized linear non-Gaussian (58) and non-

linear Gaussian (60) imperfect models to perturbations δF (t) of the external forcing

δF (t) =

{
t−T1

T2−T1
∆F for T1 6 t 6 T2,

0 for t 6 T1, t > T2.
(61)

Consequently, we consider here long lead times so that essentially all knowledge
of the initial conditions is lost and only the perturbations to the attractor of the
perfect system are important. The imperfect models have the optimal additive
stochastic forcing for attractort/climate fidelity according to (12). As before, the
sensitivity (see Definition 2.3) of the perfect system and the imperfect models to such
perturbations is quantified via the relative entropies, P(πδF , πatt), P(πm∗

δF , π
m∗
att).

We illustrate the sensitivity of the optimized imperfect models in figure 17 in two
intermittent regimes of the perfect cubic system (56); the left panel shows the
sensitivity of the two imperfect models in the regime (ii) with symmetric fat-tailed
PDFs while the right panel shows the results an analogous experiment in the regime
(iii) with highly skewed PDF; for the sake of brevity we do not show the results in
the nearly Gaussian regime (i), where the sensitivity is good for both models, and
in the bimodal regime (v) where both models have poor sensitivity.

The following observations are worth pointing out in this context (see also figure
17):

• The optimized GCm with attractor/climate fidelity has good sensitivity in the
nearly Gaussian and the fat algebraic tail regimes while the optimized linear
non-Gaussian model (58) has an acceptable skill only in the nearly Gaussian
regime.

• Despite the better attractor/climate fidelity in the highly skewed regimes (iii),
(iv), the linear non-Gaussian model has a much worse forced response than
GCm.

• In regimes where the sensitivity of both optimized imperfect models is poor,
including the configuration (iv) with regime switching and the unimodal PDF
(see figure 12), GCm still performs better than the linear non-Gaussian model
(58).

• Unsurprisingly, the sensitivity of both optimized imperfect models is poor in
the bimodal regime of the perfect model (not shown). In the nearly Gaussian
regime (v) the sensitivity of both imperfect optimized models is good, as
expected.
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5. Fundamental limitations of polynomial chaos expansions for UQ in
systems with intermittency. The theory of homogeneous chaos of Wiener [96],
proposed initially for use in the statistical theory of turbulence [97] and widely
discarded some thirty years later (e.g. [103, 15, 16]), has recently regained its
popularity as a method for quantifying propagation of uncertainty in nonlinear dy-
namical systems. Practical implementations of the Wiener Chaos framework for
UQ, commonly referred to as Polynomial Chaos Expansions (PCE), rely on a trun-
cated spectral expansion of the system variables via a (truncated) Galerkin-type
projection onto a space spanned by a fixed orthonormal polynomial basis in ran-
dom variables (see, e.g., [36, 122, 125, 124, 123, 63, 43] for but a few examples).
The PCE framework has many attractive features which are potentially well suited
for numerical computations including the desirable separation of the random and
deterministic components of the dynamics and ‘realizability’ of the resulting ap-
proximations as probability densities.

Here, following [10] we utilize a simple unambiguous test model, related to the
system (38) with intermittency discussed already in §4.1, to show that methods
exploiting truncated spectral expansions have fundamental limitations for UQ in
systems with intermittency or parametric uncertainty in the damping and fat-tailed
probability densities. These shortcoming are important even in the absence of
explicit time dependence, or nontrivial attractors which is a well known problem
for PCE. The model used to illustrate these limitations is given by a scalar with
uncertain damping

u̇(t) = −(γ̂ + γ(t))u(t) + f(t), (62)

where γ̂ is the mean damping and γ(t) represents the damping fluctuations which are
given by either a time-independent random variable in the parametric uncertainty
case, or by a Gaussian Ornstein-Uhlenbeck process in the intermittent case, similarly
to (38).

Intermittency and fat-tailed probability densities are abundant in the inertial and
dissipation range of stochastic turbulence models (e.g., [19]) and we show that in
such important dynamical regimes PCE performs, at best, similarly to the simple
Gaussian moment closure technique utilized earlier in a different context for UQ
within a framework of Empirical Information Theory [11]. The limitations of such
truncated spectral expansions arise from:

• The finite truncation of the spectral expansions of either the solution process;
• Non-uniform convergence in time of PCE which leads to a rapidly increasing

number of terms that are necessary to get a good approximate representation
of the random process as time evolves;

• Constant flux of randomness due to white noise forcing and fundamental prob-
lems with capturing this flux via finite truncations of the spectral representa-
tion of the associated Wiener process.

• Slow decay of the PCE coefficients in the presence of intermittency which
hampers implementation of sparse truncation methods widely used in elliptic
problems or in low Reynolds number flows.

As discussed in detail in [10], the above issues lead to a number of fundamental
limitations of the PCE approximations in systems with fat-tailed PDFs and inter-
mittency; we illustrate these in §5.2 after a brief description of the PCE framework.
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5.1. Truncated polynomial chaos expansions. Polynomial Chaos Expansion
(PCE) of a solution u of an SDE (e.g., [102]) or SPDE (e.g., [108]) separates the
deterministic effects from the randomness arising due to the nonlinear interactions
with unresolved processes. This is achieved by expanding the system variables
via a Galerkin-type projection of the model variables onto the space spanned by
the fixed orthonormal polynomial basis in random variables. In the case of the so-
called Wiener-Hermite expansion, the orthonormal polynomials are given by infinite
products of normalized Hermite polynomials

Tα(ξξξ) =

∞∏
i=1

Hαi(ξi), (63)

where the multi-indices α≡{α1, α2, . . . } with integer entries satisfy
∑∞
i=1 αi < ∞;

the polynomials (63) are orthonormal with respect to the Gaussian measure gen-
erated by iid normal random variables ξξξ = (ξ1, ξ2, . . . ), ξi ∼ N (0, 1), 〈ξiξj〉 = δij ,
which are used to represent the stochasticity of the solution process.

According to the Cameron-Martin theorem [13], any process with 〈|u(t, ξξξ)|2〉 <∞
has the following expansion in terms of the orthonormal Wick polynomials Tα (see
Appendix C for more details),

u(t, ξξξ) =
∑
α

uα(t)Tα(ξξξ), uα(t) =
〈
u(t, ξξξ)Tα(ξξξ)

〉
. (64)

While the convergence of the infinite expansion (64) is guaranteed by the Cameron-
Martin theorem, it is however, not uniform in time and the expansion coefficients are
related by an infinite-dimensional set of ODEs in an infinite number of unknowns.
Thus, the doubly infinite expansion (64) is useless in applications unless a suitable
truncation is employed. The need for finite truncations of these expansions required
in applications leads to important limitations for UQ in systems with intermittency,
as discussed in the following section. The simplest such truncation is obtained by
retaining only the first K random Gaussian variables ξi and the Wick polynomials
up to order N , leading to the truncated expression

uK,N (t, ξξξ) =
∑
|α|6N

uα(t)

K∏
i=1

Hαi(ξi), (65)

so that the resulting approximation has altogether
∑N
n=0

(
K + n− 1

n

)
terms; clearly

the number of coefficients in the truncated expansion grows rapidly with increasing
K and/or N . In order to reduce the number of expansion coefficients and the com-
putational overhead, Luo [69, 70] and Hou et al. [49] proposed a sparse truncation
method for reducing the number of PCE coefficients at a given truncation order.
Similar sparse truncation methods were proposed for elliptic problems in [114, 25].
We will show in the next section (see also [10]) that such truncation methods are
not adequate for turbulent systems with energy transfer on the attractor and/or
intermittency due to a slow decay of amplitudes of the expansion coefficients.

5.2. Intermittency, fat-tailed PDFs and shortcomings of truncated PCE.
We illustrate the limitations of the truncated PCE approximations in systems with
fat-tailed PDFs and intermittency based on two instructive examples. The first
example corresponds to stochastic dynamics of a scalar variable with the parametric
uncertainty in the damping due to time-independent Gaussian fluctuations. This
dynamics is described by an ODE with random initial values of the damping and
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Figure 18. Truncated PCE approximations for parametric un-
certainty in damping fluctuations (66). Truncated PCE approx-
imation of the second-order statistics for dynamics of u in (66) with
parametric uncertainty. Here, the damping fluctuations are represented
by a Gaussian random variable ξ ∼ N (0, 1). The bottom-line benchmark
is given by the Gaussian moment closure (GC). Note that both GC and
the Monte Carlo simulations (with 50000 runs) fail to detect the onset of
unbounded growth of the variance (see also Appendix C). System param-
eters: γ̂=10, σγ=2γ̂=10, σγ=2γ̂=10, σγ=2, Initial conditions:

〈
u(0)

〉
=1, V ar

(
u(0)

)
=0, Forcing:

f(t)=1.

can be easily shown to have fat-tailed PDFs (see figure 18 and [10]). In the second
example the intermittent dynamics of u(t) is driven by a purely deterministic forcing
and stochastic damping fluctuations given by an OU process (figure 19). In both
cases the truncated PCE approximations fail to capture the intermittency which
results in grossly underestimated approximations of low-order statistics (see [10] for
more details).

PCE approximation of dynamics with uncertain dampingPCE approximation of dynamics with uncertain dampingPCE approximation of dynamics with uncertain damping
and fat-tailed PDFsand fat-tailed PDFsand fat-tailed PDFs

This simple configuration is frequently used for testing PCE techniques for sys-
tems with simple parametric uncertainty in the damping fluctuations γ of (62) which
leads to fat-tailed PDFs (see figure 18); this simple system is given by

u̇(t) = −(γ̂ + σγξ)u(t) + f(t), ξ ∼ N (0, 1). (66)

Contrary to the second case discussed below, the statistically exactly solvable dy-
namics in this configuration is non-mixing and the autocorrelation of the damping
fluctuations is constant and equal to σ2

γ . Moreover, it can be easily shown that the
mean and variance grow unboundedly in time, despite a possible initial metastable
phase (see [10] for details).
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The Cameron-Martin theorem [13] rigorously guarantees that the solutions of
(66) admit the PCE expansion (64) on any finite time interval and the truncated
equations for the PCE coefficients of the system (62) are

u̇α = −γ̂(t)uα −
∑

p∈JK,N

∑
06β6α

β+p=α1

C(α, β, p)uα−β+pγβ+p + f(t)δα0, (67)

where α1 = (1, 0, 0, . . . ) and the PCE coefficients for the time-independent damping
fluctuations are given by γα1 = σγ and γα = 0 for α 6= α1. In deriving (67)we uti-
lized the orthonormality of the Wick polynomials Tα together with the important
identity which allows for expressing the nonlinear terms in (62) via infinite expan-
sions in the Wick polynomials (see [95, 69, 49, 70] and Theorem 2 of Appendix C)

u γ =
∑
α∈J

(∑
p∈J

∑
06β6α

C(α, β, p)uα−β+pγβ+p

)
Tα. (68)

Here, we additionally require that〈
u(t0)

〉
= 1, V ar

(
u(t0)

)
= 0,

〈
u(t0)γ

〉
= 0, (69)

which leads to the following initial conditions in (67):

uα0(t0) = 1, and uα(t0) = 0 for α 6= α0, (70)

where α0 = (0, 0, . . . ).

Examples of truncated PCE approximations for this system are shown in figure
18 which we use to illustrate the following shortcomings of PCE in this simple
configuration with parametric uncertainty:

• Despite a good performance of truncated PCE approximations for sufficiently
short times, even very high-order truncations fail to reproduce the inevitable
unbounded growth of the statistics at later times; see figure 18. Thus, the
good accuracy of the PCE approximations at short times can be misleading.

• The unbounded growth of the statistics remains essentially undetected below
certain truncation order which is parameter dependent but often high (in
figure 18 the threshold is approx. N = 9); this shortcoming is also associated
with the Gaussian Closure or Monte Carlo simulations.

PCE approximations in systems with intermittent transientPCE approximations in systems with intermittent transientPCE approximations in systems with intermittent transient
instabilitiesinstabilitiesinstabilities

Here, the intermittency in the dynamics of u is induced by the stochastic damping
fluctuations γ given by an Ornstein-Uhlenbeck process; the corresponding system
is given by

a) u̇(t) = −(γ̂ + γ(t))u(t) + f(t),

b) γ̇(t) = −dγγ + σγẆγ(t).
(71)

where γ̂, dγ re the mean damping parameters, f is deterministic forcing, and

σγẆγ(t) represents stochastic white noise forcing defined for all time with am-
plitude σγ .

Based on the Cameron-Martin theorem [13] the solutions of (66) admit the PCE
expansion (64) with the truncated equations for the PCE coefficients of the system
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Figure 19. Truncated PCE approximations of intermittent
dynamics of a scalar u(t) (71) with stochastic damping fluc-
tuations and no white noise in the resolved component. The PCE ap-
proximation is illustrated for two different damping parameters γ̂ corre-
sponding to nearly Gaussian dynamics (top) and intermittent dynamics
(bottom) with a fat-tailed equilibrium PDF. The bottom line bench-
mark given by the Gaussian moment closure (GC). Initial conditions:〈
u0

〉
=1, V ar

(
u0

)
=0, V ar(γ0)= 1

2
V areq(γ), 〈u0γ0〉 = 0 Forcing: f(t)=0.

(71) given by

a) u̇α = −γ̂uα −
∑

p∈JK,N

∑
06β6α

C(α, β, p)uα−β+pγβ+p + f(t)δα0,

b) γ̇α = −dγγα + σγ

K∑
i=1

I{αj=δij}mi(t),

(72)

where for fixed i, Iαj=δij equals 1 if αj = δij and equals zero otherwise; the or-
thonormal basis functions mi(t) are used in the truncated spectral representation
of the Wiener process Wγ(t) (see [49, 69, 10] and the Appendix C). In deriving
(72) we utilized the orthonormality of the Wick polynomials Tα and the identity
(68). The white-noise forcing in the above truncated deterministic system of ODEs
for the coefficients uα, γα is represented by the K basis functions mi(t). Note that
truncating (68) results in neglecting, at least partially, the effects of small scale
fluxes on the ‘resolved’ dynamics u(t) which is particularly important in the pres-
ence of intermittency and non-vanishing energy transfer between Fourier modes of
u at equilibrium.
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Here, we assume that

〈u0〉 = 1, V ar(u0) = 0, V ar(γ0) =
1

2
V areq(γ), 〈u0γ0〉 = 0, (73)

and we also require that the white noise Ẇγ is uncorrelated with the initial condi-
tions, i.e.,

〈u0Ẇ (t0)〉 = 0, 〈γ0Ẇ (t0)〉 = 0. (74)

The constraints (73)-(74) lead to the following initial conditions

uα0 = 1, uα1 = 0, uα2 =
√
σ2
γ/4dγ , uα = 0 for α 6= α0, α2, (75)

and the truncated representation of the Wiener process

Wγ(t) =

K∑
i=3

ξi

∫ t

t0

mi−2(τ)dτ. (76)

Limitations of the truncated PCE method for solving white noise driven dynamics
were noted in [49] where reliable integration of the uncertain dynamics required an
unreasonably large dimension of the random vector ξξξ, except for sufficiently short
times. The examples of PCE approximations of the second-order statistics of the
system (71) show that the performance of this method is diminished further for
UQ in systems with intermittency driven by unresolved, white noise processes. The
following remarks are in place based on the examples shown in figure 19:

• Finite truncations of the PCE approximations of the dynamics driven by white
noise require a compromise between the order of truncation N and the num-
ber K of random variables used in the spectral approximation of the Wiener
process.

• Truncated PCE approximation performs well in nearly Gaussian regimes with
strong mean damping provided that the white noise driving the evolution of
damping fluctuations γ is sufficiently well resolved; however, in such cases the
Gaussian closure performs similarly well and is more efficient.

• PCE performs poorly in intermittent regimes, except for short times (figure
19 with weak mean damping γ̂), when both the high order of approximation
and a good spectral resolution of the the white noise forcing are required (see
also [49]). In the intermittent example shown in figure 19 long integration
is needed when the statistics of u is of interest and the number of expansion
coefficients necessary for accurate approximation grows to unacceptable levels.

• Sparse truncation methods in the intermittent regimes driven by white noise
are hampered by the slow decay of expansion coefficients.

• For low order approximation (N ∼ 1) with sufficiently large number of random
variables K ∼ 50 only short-time PCE approximation acceptable

• For higher order truncations N ∼ 4 longer time approximation improves but
there are insufficient number of random variables, realistically K ∼ 6, to
obtain a decent approximation at either short or long times

6. Turbulent diffusion: New exactly solvable test models for UQ in com-
plex high-dimensional systems. One of the important paradigm models for the
behavior of turbulent systems [7, 71] and the associated uncertainty quantification
involves a passive tracer T (xxx, t) which is advected by a velocity field vvv(xxx, t) with
dynamics given by

∂tT + vvv ·∇T = κ∆T, (77)
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where κ > 0 is molecular diffusion and the velocity field vvv is incompressible, ∇·vvv = 0.
When vvv(xxx, t) is a turbulent velocity field, the statistical properties of solutions of
(79) such as their large scale effective diffusivity, energy spectrum, and probability
density function (PDF) are all important in applications. These range from, for
example, the spread of pollutants or hazardous plumes in environmental science
to the behavior of anthropogenic and natural tracers in climate change science
[26, 27, 99], to detailed mixing properties in engineering problems such as non-
premixed turbulent combustion [107, 105, 8]; some more specific important topics
include:

• Transitions between Gaussian and fat tailed highly intermittent PDFs for the
tracer in laboratory experiments as the Peclet number varies with a mean
background gradient for the tracer [40, 50, 51],

• Fat tail PDFs for anthropogenic and natural tracers with highly intermittent
exponential tails in observations of the present climate [99],

• The nature of the sustained turbulent spectrum for scalar variance with a
background gradient for the tracer [116],

• Eddy diffusivity approximations for tracers in engineering and climate change
science [26, 27, 79].

For turbulent random velocity fields, the passive tracer models in (79) also serve as
simpler prototype test problems for closure theories for the Navier Stokes equations
since (79) is a linear equation but is statistically nonlinear [58, 59, 5, 6, 90, 91, 60,
61, 115, 71].

Recent advances addressing the above issues [80, 92] and complementing the
earlier work mentioned above utilized elementary stochastic models for turbulent
diffusion of tracers with a background mean gradient

T (xxx, t) = T ′(xxx, t) + αxxx, (78)

in (79) and which led to new physically important intermittent regime with com-
plex statistical features mimicking crucial aspects of laboratory experiments and
atmospheric observations. These statistical features include the transition to in-
termittent scalar probability density functions with fat exponential tails as certain
variances of the advecting mean velocity are increased while satisfying important
physical constraints, and exact formulas for tracer eddy diffusivity which is nonlo-
cal in space and time, as well as exact formulas and simple numerics for the tracer
variance spectrum in a statistical steady state [92]. The recent use of such simple
models with complex statistics as unambiguous test models for central contempo-
rary issues in both climate change science and the real time filtering of turbulent
tracers from sparse noisy observations and other important applications [35].

In this section we utilize a suite of Gaussian and non-Gaussian turbulent tracer
models to discuss and illustrate a number of issues encountered in many other
turbulent high-dimensional spatially extended systems; similarly to the previous
sections, the emphasis is on the role of intermittency with nontrivial mean-turbulent
flux interactions in UQ applications, and methods for mitigating imperfect model
deficiencies through the use of the information-theoretic framework discussed in §2.
The approach we assume for the imperfect models is motivated by the contemporary
AOS numerical models which have too much dissipation in the model velocity field
and employ various parameterizations of the unresolved processes, including eddy
diffusivity parameterization. Thus, the imperfect models, which are discussed in
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more detail below, have the following general structure

∂tT
m + vvvm ·∇Tm = κm∆Tm + σ(x, t)Ẇ (t), (79)

where vvvm is the coarse-grained model velocity, κm is the model eddy diffusivity for
the tracer, and σ(x, t)Ẇ (t), t ∈ IR, is the judiciously introduced stochastic forcing
which can be spatially correlated; we will show based on detailed examples how the
stochastic forcing can improve the climate fidelity and prediction skill for various
coarse-grainings in the imperfect models with too much dissipation in this spatially
extended case.

Important new issues for UQ discussed here (in addition to those discussed in §3
and §4 for the single Fourier mode) are:

• The interplay between coarse-graining and uncertainty in imperfect models,
• Consequences of overdamped/underdamped turbulent velocity spectra on the

predictive skill of spatially extended models,
• Mean-wave interactions, eddy diffusivity parameterization, and mitigation of

model error via stochastic forcing,
• Information-theoretic optimization and information barriers in spatially ex-

tended systems.

6.1. New exactly solvable test models for turbulent diffusion with hidden
instabilities and intermittency. Here, we utilize instructive models for turbu-
lent diffusion of a scalar tracer with nontrivial eddy-diffusivity, variance spectrum,
and intermittent non-Gaussian statistics like tracers in the atmosphere [26] to pro-
vide a highly nontrivial demonstration of improving the fidelity of imperfect models
through stochastic forcing. The two classes of statistically exactly solvable models
introduced below build on the models discussed earlier for the single Fourier mode
in §4; the resulting spatially extended models generalize all the models discussed
earlier in [79, 35, 80, 81, 92, 32] by incorporating additional intermittency due to
(i) transient instabilities in the dynamics of the shear flow in the turbulent veloc-
ity field driving the tracer dynamics and/or (ii) intermittent fluctuations in the
concentration of a reactive scalar with large scale instabilities.

Next, we present a geophysical interpretation of these models although versions
with engineering applications can be easily set-up [35]. Both of these systems have a
zonal (east-west) turbulent jet, U(t), a family of planetary and synoptic scale waves
with north-south velocity v(x, t) with x, a spatially periodic variable representing a
fixed mid-latitude circle in the east-west direction, and tracer fluctuations T ′(x, t)
with a north-south mean gradient α; the governing equations for these two models
can be written compactly as

a)
∂U

∂t
= −dUU + f(t) + σUẆU (t),

b)
∂v

∂t
= P

(
∂

∂x
, U(t)

)
v + fv(t) + bv(x, t) + σv(x)Ẇv(t),

c)
∂T ′

∂t
= Q

(
∂

∂x
, U(t)

)
T ′ − αv(x, t) + κ

∂2T

∂x2
,

(80)

where f(t), fv(x, t) are known deterministic functions, bv(x, t) represents a sto-
chastic finitely correlated uncertainty in the forcing of the one-dimensional shear
v, while ẆU , Ẇv represent two independent white noise fluctuations defined for all
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time. The zonal jet U(t) = Ū(t) + U ′(t), where Ū(t) > 0 is the climatological peri-
odic mean which is strongly eastward while the random fluctuations, U ′(t), have a
standard deviation consistent with such eastward dynamical behavior. The above
system is solved by Fourier series with independent scalar complex variable versions
of (80) for each different wave number k; in Fourier space the pseudo-differential

operators P and Q have the symbols P̂k = −γvk + iωvk and Q̂k = −γTk + iωTk
respectively, with γvk , γTk , ωvk , ωTk known functions of time which can be given by
stochastic processes, as discussed below.

Non-Gaussian models with intermittent instabilities in the velocityNon-Gaussian models with intermittent instabilities in the velocityNon-Gaussian models with intermittent instabilities in the velocity
fieldfieldfield

This non-Gaussian statistically exactly solvable system for the turbulent tracer
with the mean gradient α is driven by a correlated turbulent velocity field with
intermittency due to transient instabilities in the turbulent shear v(x, t). This
model is obtained by adopting

P̂k = −γvk(t) + iωvk(t), and Q̂k = −dTk + iωTk(t),

for the symbols of P and Q in (80) with each γvk(t) given by a Gaussian stochastic
process and ωvk , ωTk prescribed functions of wavenumber k. For the passive tracer
mode T ′k in correlated velocity field with turbulent Rossby waves in the shear, we
have

ωvk(t) = akU(t) + bk, ωTk(t) = −kU(t), (81)

with the values of the real coefficients ak, bk depending on the physical situation
considered, as in [92]. In particular, for uncorrelated baroclinic Rossby waves ak ≡
0 and bk ∝ k/(k2 + Fs) where and Fs is the stratification; this configuration is
considered in one of the examples below.

The equations for the k-th Fourier mode of the tracer fluctuations T ′k and the
shear flow vk with a spatially uniform zonal flow U are

a) Ṫ ′k(t) = (−dTk + iωTk(t))T ′k(t)− αvk(t),

b) U̇(t) = −dUU(t) + fU (t) + σUẆU (t),

c) v̇k(t) = (−dvk − γvk(t) + iωvk(t))vk(t) + bvk(t) + fvk(t) + σvkẆvk(t),

d) γ̇vk(t) = −dγvk γvk(t) + σγvk Ẇγvk
(t),

e) ḃvk(t) = (−dbvk + iωbvk )bvk(t) + σbvk Ẇbvk
(t),

(82)

where γvk and bvk are, respectively, the damping fluctuations and the forcing fluc-
tuations in the k-th mode of the turbulent shear flow vk. This statistically exactly
solvable system (see Appendix D for the analytical solutions) reduces to the model
studied in [79, 35, 80, 81, 92, 32] for γvk ≡ 0, bvk ≡ 0, i.e., in the absence of sto-
chastic fluctuations in both the damping and forcing in the dynamics of the Fourier
modes of the vk.

There exist two important and distinct sources of tracer intermittency in this
model, both of them occur for a strongly eastward mean jet Ū . First, similarly
to the simpler model with no transient instabilities in the velocity, i.e., γvk ≡ 0,
the intermittent tracer behavior occurs for a turbulent mean jet U(t) 6= Ū(t), and
finitely correlated in time turbulent shear waves v in the presence of the large scale
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tracer gradient α (see [80] for details). The second source of intermittency arises due
to the transient instabilities in the shear waves v for nontrivial stochastic solutions
in (82) and a sufficiently weak mean damping dvk (see [9, 11]). Combination of these
two sources of intermittency with exact statistical solvability makes the system (82)
a very attractive test model for UQ and data assimilation with judicious model
error in realistic situations with the hidden instabilities due to γvk mimicking, for
example, geophysical boundary layers.

Non-Gaussian models for reactive tracer with intermittentNon-Gaussian models for reactive tracer with intermittentNon-Gaussian models for reactive tracer with intermittent
instabilities in the velocity field and in the tracerinstabilities in the velocity field and in the tracerinstabilities in the velocity field and in the tracer

This non-Gaussian, statistically exactly solvable model for a reactive turbulent
tracer with intermittent large scale tracer instabilities and a correlated velocity field
with intermittent instabilities in the turbulent shear flow is obtained by setting

P̂k = −γvk(t) + iωvk(t) and Q̂k = −dTk − rγ(t) + iωTk(t),

for the symbols of P and Q in (80) with the dispersion relations ωvk , ωTk given by
the general formulas (81). The Fourier modes of the turbulent tracer and velocity
in this model satisfy

a) Ṫ ′k(t) = (−dTk − rγ(t) + iωTk(t))T ′k(t)− αvk(t),

b) γ̇(t) = (−dγ + iωγ)γ(t) + σγẆγ(t),

c) U̇(t) = −dUU(t) + fU (t) + σUẆU (t),

d) v̇k(t) = (−dvk − γvk(t) + iωvk(t))vk(t) + bvk(t) + fvk(t) + σvkẆvk(t),

e) γ̇vk(t) = −dγvk γvk(t) + σγvk Ẇγvk
(t),

f) ḃvk(t) = (−dbvk + iωbvk )bvk(t) + σbvk Ẇbvk
(t),

(83)

where γvk and bvk are, respectively, the damping fluctuations and the forcing fluctu-
ations in the k-th mode of the turbulent shear flow vk, and γ(t) represents the spa-
tially uniform damping fluctuations in the k-th mode of the tracer fluctuations Tk.

In addition to the two physically important sources of intermittency outlined in
the previous model, the system (83) contains a third independent source of tracer
intermittency due to the large scale reactive events in the tracer occurring at the rate
r in (83a). The statistical exact solvability of this model (see Appendix D) makes it
potentially very useful in realistic atmospheric applications with externally driven
intermittent large scale tracer depletion and production.

Below we provide a highly nontrivial demonstration of improving the fidelity
of imperfect models through information-theoretic optimization by inflating the
stochastic forcing in the imperfect models.

6.2. Optimization of coarse-grained models for improved prediction skill
and forced response. For spatially extended systems, the issue of coarse-graining
becomes important in the context of model climate fidelity and sensitivity. Here,
we discuss how coarse-graining is reflected in the quantification of model error us-
ing information metrics discussed in §2. This issue is compounded further by the
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Figure 20. Information-theoretic optimization of turbulent
Gaussian Rossby waves. Rows 1-4: Relative entropy of the imper-
fect model with too much damping before optimizing noise (solid line),
P(π, πm), and after optimizing noise (dashed line), P(π, πm∗), as a func-
tion of coarse-graining. Left side corresponds to coarse-graining up to 15
modes, right side shows coarse-grainings up to 100 modes. Note differ-
ent scales of y-axis on the left and right sides. Row 5: Additional noise
∆σ as a function of coarse-graining obtained by minimizing the lack of
information.

presence of overdamped velocity spectra and eddy diffusivity parameterization in
the imperfect models discussed below.

The first example [32] deals only with the turbulent shear flow which is assumed
linear and Gaussian and we show that the uncertainty in the imperfect models
grows with the number of Fourier modes considered (i.e., the coarse-graining); the
information-theoretic optimization (see §2) by stochastic noise inflation greatly re-
duces the uncertainty for various coarse-grainings. The second example discusses
optimization the Gaussian tracer model [32, 81] which can be obtained from the
more general model (82) as briefly explained below. In this more complex case,
involving the effects of coarse-graining, eddy diffusivity and overdamped velocity
spectra, a significant gain can be achieved using the stochastic-statistical optimiza-
tion advocated in §2.
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Optimization of coarse-grained Gaussian models for turbulentOptimization of coarse-grained Gaussian models for turbulentOptimization of coarse-grained Gaussian models for turbulent

velocityvelocityvelocity

Here, as a simple illustration, we consider a linear Gaussian model for the tur-
bulent shear flow given for each mode vk by (82c) with γvk = βvk ≡ 0, constant
damping and noise amplitude dvk , σvk and constant forcing fvk . The perfect model
has K = 100 modes and the energy spectrum

Ek =
σ2
vk

2dvk
=

E , for k 6 K0

E
(
k
K0

)−θ , (84)

with E = 1,K0 = 10 and θ = 3 which is appropriate for large scale turbulence in
the atmosphere; the forcing is chosen to be roughly twice the standard deviation of
vk, i.e., |fvk |2 = 2σvk(d2

vk
+ ω2

vk
)/dvk .

Most models for turbulence in spatially extended systems have too much dissipa-
tion (Palmer 2001) due to inadequate resolution and deterministic parameterization
of unresolved features involving wave-mean flow interaction and stochastic backscat-
ter. We mimic this overdamping in the imperfect models for the turbulent velocity
by imposing Ek > Em

k through Em = 0.8 and θm = 3.5 in (84).
The information-theoretic optimization discussed in §2 of the overdamped model

for the turbulent shear can be carried out by inflating the stochastic forcing in order
to maximize the climate fidelity (8); the results before and after such an optimization
procedure are shown in figure 20 where, for simplicity, the noise amplitude is the
same for all modes (see [32] for details). The first four rows illustrate the uncertainty
content in the signal and dispersion components of the total uncertainty for different
coarse-grainings, and the bottom row shows the difference between the optimal and
true noise amplitudes for different coarse-grainings.

We note the following facts based on the example shown in figure 20:

• The uncertainty in unoptimized models grows with increasing resolution.
• The model improvement is significant in both the signal and dispersion com-

ponents of the total uncertainty even when the noise amplitude σk = σ is
assumed the same for all modes.

• The difference between the true and optimal noise amplitudes increases with
the number of modes in the coarse graining.

Optimization of coarse-grained Gaussian models for turbulentOptimization of coarse-grained Gaussian models for turbulentOptimization of coarse-grained Gaussian models for turbulent
Gaussian or non-Gaussian tracerGaussian or non-Gaussian tracerGaussian or non-Gaussian tracer

This example is based on the model for the turbulent tracer discussed in [81,
32] which can be obtained from (82) by disregarding the transient instabilities in
the uncorrelated velocity field (U(t), v(x, t)), i.e., we set γvk = bvk ≡ 0 in (82);
moreover we set ωvk = βk/(k2 + Fs) corresponding to the dispersion relation of
baroclinic Rossby waves where β is the north-south gradient of rotation, and Fs is
the stratification. The perfect system is non-Gaussian for σU 6= 0 in (82a) and it is
Gaussian otherwise.

Here, the imperfect models are Gaussian with the same dynamics for the zonal jet
and Rossby waves and coarse-grained components (Um(t), vm(x, t)) and the tracer
equation is given by

∂tT
′m + Ūm(t)∂xT

′m = −αvm(x, t) + κm∂
2
xT
′m + σT Ẇ (x, t), (85)
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Figure 21. Sensitivity and information-theoretic optimization
of Gaussian models for a Gaussian turbulent tracer (82) with
σU = 0. The top panels show the minimum lack of information be-
fore and after the optimal noise inflation in the models (85) at different
coarse-grainings during the growth phase of the forcing perturbartion.
The bottom panel shows the minimum lack of information for the cor-
responding coarse-grainings for the new climate.

where κm = κ + κeddym with κeddym the eddy diffusivity coefficient, often utilized for
parameterization of unresolved turbulence in climate science [26, 27] while Ẇ (x, t)
denotes space-time white noise forcing with variance σT . Contrary to the standard
deterministic parameterizations in climate science with σT = 0, we consider here
an extended class of stochastic models in (85) with σT 6= 0 to be improved by
stochastic forcing inflation [104]. We also assume that the eddy diffusivity is given

by κeddym = θκ∗m with 0 6 θ 6 1 where κ∗m = σ2/2dγ is the exact value of the
eddy diffusivity in the white noise limit of the jet fluctuations fluctuations U ′(t)
the perfect system [80, 81, 92]. Here, we focus on model error for time-periodic
statistical steady states for the tracer which are coarse-grained to a given number of
spatial Fourier modes; the larger the number of these modes, the larger the demands
on the imperfect model to represent smaller scale behavior accurately. Thus, the
natural information metric we utilize here for model fidelity consists of (12) utilized
spatially but averaged over the period on the attractor similarly to (14).

The most important aspects of UQ in spatially extended systems, in addition to
those discussed for the single Fourier mode in the previous sections, are illustrated
in figures 21 and 22 (see [80, 81, 92] for a more detailed treatment of these issues).

Figure 21 shows an example of improvements in the forced response of Gaussian
imperfect models (85) of the Gaussian tracer by optimizing the unperturbed climate
fidelity (14) via inflation of the stochastic forcing; see [32] for details. Here, both the
perfect system and the imperfect models are Gaussian with no transient instabilities
in the shear dynamics and no fluctuations in the zonal jet, i.e., γvk ≡ 0 and σU ≡ 0.
Consequently, the imperfect Gaussian models for the tracer are given by (85) with

κeddym ≡ 0 due to the absence of the mean-wave interaction in the Gaussian perfect
model for the tracer. The external perturbations are imposed by increasing the
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Figure 22. Information-theoretic optimization of Gaussian
models (85) for turbulent non-Gaussian tracer (82) with σU 6= 0.
(Left) optimal noise amplitude in (85) for different eddy diffusivity pa-

rameterizations κeddym = θκ∗
m with κ∗

m the eddy diffusivity in the white
noise limit of the zonal jet fluctuations (see text). (Middle and Right)
Minimal lack of information at different coarse-grainings in the climate
for the class of imperfect models (85) with optimal stochastic forcing.
Note the information barriers (§2.2) for the coarse-grainings k = 5, 8, 12.

strength of the mean jet Ū through a perturbation δfU (t) of the forcing which
is of the ramp type and increases linearly over a finite time interval to reach a
new constant value at the end of the process. However, similar to the previously
discussed example for the turbulent Gaussian shear flow, the imperfect Gaussian
tracer models are driven by overdamped Gaussian velocity fields (here with E =
0.7, θ = 4,K0 = 10, in (84) and the model diffusivity κm = 0.6 instead of the true
κ = 0.001.) The measure of the predictive skill, P(πδ, π

m
δ ), is shown in figure 21

next to the corresponding values of uncertainty for the original imperfect model.
For the coarse-grainings of K = 1, 3, and 5 modes, the improvement is roughly four
fold, while for higher coarse-grainings of up to K = 20 modes, a nearly 20-fold
improvement is achieved by the simple optimal stochastic noise inflation.

Figure 22 illustrates the case of non-Gaussian tracer dynamics with σU 6= 0 in
(82); we show several facets of the systematic information-theoretic improvement
over the deterministic models with σT ≡ 0 in (85) obtained using the imperfect
Gaussian tracer models with optimal stochastic forcing σ∗T 6= 0 according to (14).
First, the optimal value σ∗T increases as the deterministic eddy diffusivity increases
from zero to κ∗m in the white noise limit of the jet fluctuations; secondly, there is a
significant gain of information by utilizing the optimal stochastic imperfect models
compared with the deterministic ones and this information gain is necessarily in the
dispersion of the tracer. Finally, the right panel in figure 22 illustrates existence
of information barriers for optimizing the class of models (85) by noise inflation;

optimal value with the smallest information discrepancy occurs for κeddym = 0.1κ∗m
and this is especially significant for large scale coarse-grainings like k = 1, 2, 3 but
for finer scale coarse-grainings like k = 5, 8, 12 clear information barriers appear for

κeddym regardless of its value.

We make the following points in this context based on the examples shown in figures
21, 22:



LESSONS IN UNCERTAINTY QUANTIFICATION 61

• The predictive skill of the overdamped imperfect models with optimal stochas-
tic noise is greatly improved for various coarse grainings even for simple noise
inflation with the same amplitude across all modes and in the time-averaged
framework (14).

• The uncertainty in unoptimized imperfect models grows with increasing reso-
lution (see also figure 20).

• Optimal noise σ∗T depends on the coarse-graining, and the time interval used
for averaging; σ∗T increases as the deterministic eddy diffusivity increases from
zero to the white noise limit κ∗m.

• In systems with nontrivial mean-wave interactions, the optimal noise σ∗T de-
pends on the number of components used for minimizing the relative entropy
in (8) or (14), e.g., the tracer or the tracer and the velocity (see [32] for
details).

• There exist information barriers to improving imperfect models of spatially
extended systems (figure 22). In this complex setting the nature of such barri-
ers depends on the deterministic parameterizations and it is scale dependent,
often allowing for uncertainty reduction at the coarse scales while hampering
improvements at smaller scales.

7. Numerical artifacts in UQ with long time integration. Incorrect or inap-
propriate numerical algorithms can introduce significant numerical errors into UQ
algorithms and bias both the effects of model error and techniques for mitigating
this error, such as those discussed in the previous sections. The main difficulty in
dealing with numerical artifacts in UQ applications is that even in low-dimensional
configurations they often lead to plausible results without unphysical singularities,
instabilities, etc., and their consequences can be much more elusive than in the
purely deterministic framework. Nevertheless, detection and proper handling of
such numerical artifacts is crucial for reliable UQ procedures and imperfect model
optimization. Here, we illustrate these issues based on the models already discussed
in the previous sections and we discuss a number of examples of numerical artifacts
which are particularly misleading for long time integration of complex nonlinear
systems with unresolved degrees of freedom. The examples used below are:

• Fake intermittency in numerical PDFs;
• Divergence of PCE approximations for long time integrations;
• Failure of MC with large sample due to rare events.

The time scales for the ‘long time integration’ vary depending on the problem;
however, in all cases ‘long time’ means comparable with or exceeding the time
scales associated either with a transient adjustment onto the attractor or time scales
associated with some transient dynamics in the absence of an attractor.

Fake intermittency in numerical PDFs for stochastic systemsFake intermittency in numerical PDFs for stochastic systemsFake intermittency in numerical PDFs for stochastic systems:
In §6 we showed, following [92], how the presence of the mean gradient in the

dynamics of a passive tracer can lead to intermittent PDF with fat tails provided
that the velocity field driving the tracer dynamics is turbulent but with a finitely
correlated in time Rossby waves shearing the turbulent zonal jet. However, it can
be shown (see Appendix D.3) that in the white noise limit of (82) with rapidly
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Figure 23. Numerical artifacts in long time integration of a
stochastic system with a Gaussian invariant measure. Compari-
son of equilibrium PDFs for the tracer mode T1 computed for the system
(86) using Euler scheme with different time steps ∆t. Inadequate time
step in the numerical integration scheme results in erroneous equilibrium
PDFs; for the system parameters used here the PDFs have fat tails for
∆t & 1.2× 10−3.
System parameters: fU = 5, dU = 0.5, σU = 2 fTk = 0, dTk =
0.101, αηvk = 0.5.

decorrelating shear waves v that the tracer dynamics is given by

a) dT ′k(t) =
[
(−dTk − ikU(t))T ′k(t)− αf̄vk(t)

]
dt− αηvkdWvk(t),

b) dU(t) =
[
− dUU(t) + fU (t)

]
dt+ σUdWU (t),

(86)

where f̄vk is the forcing in the dynamics of vk in the white noise limit, ηvk = σvk/dvk ,
ωvk(t) = akU(t) + bk, dTk = dT + κk2; other parameters are defined as in (82). It
can be shown analytically (see Appendix D.3) that when f̄vk = 0 all tracer modes
have Gaussian statistics even in the presence of mean gradient α 6= 0 and turbulent
zonal jet, i.e., for σU 6= 0. We use these analytical results to show that numerical
estimates of these Gaussian PDFs can lead to fat-tailed PDFs if the integration
time step is too large.

In figure 23 we show various fake fat-tailed PDFs obtained from numerical ap-
proximations of (86) with too large time-steps and for the same Fourier mode with
k = 1; the forward Euler method was used in the computations but it is well known
(e.g., [57]) that both the Euler and Milstein methods have the same weak order of
convergence, i.e., they have the same order of accuracy of approximating the sta-
tistics of the solutions. The first inset in figure 23 shows a superposition of all the
erroneous PDFs and the subsequent insets compare the true Gaussian PDF with
the numerical approximations obtained with different integration time steps. Note
that for time steps too small for the presence of fake fat tails, one can obtain nearly
Gaussian PDFs with incorrect variance; such errors might be difficult to spot even
if the Gaussian nature of the true PDF is known.
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Figure 24. Numerical artifacts in long time integration of the
stochastic system with a Gaussian invariant measure. (Top)
Comparison of equilibrium PDFs computed for the system (86) using the
explicit Euler scheme for two different time steps ∆t and four different
wavenumbers k = 1, ..., 4. The forcing in U(t) and Tk, as well as the noise
amplitudes and the damping dU are kept constant and independent of k.
(Bottom) Comparison of the equilibrium PDFs computed for the system
(86) for two different time steps ∆t and noise amplitudes σU .
System parameters: fU = 5, dU = 0.5, fTk = 0, dTk = 0.101, αηvk = 0.5;
σU = 2 (top) and varied (bottom).

Figure 24 illustrates the appearance of fake fat tails in numerically estimated
PDFs for increasing wave number of the tracer (top) and increasing noise amplitude
σU in the jet (bottom). The two insets in the top row show results of computations
with two different integration time steps using the forward Euler method and for
different wave numbers k. For sufficiently small time step (relative to the system
parameters) the numerical approximations remain nearly Gaussian throughout the
considered wavenumbers k = 1, . . . , 4; however, this situation changes dramatically
for larger time steps when approximating the PDFs for high wave numbers, as can
be seen in the inset computed with ∆t = 10−4. Similar fat-tailed artifacts occur
when increasing the noise amplitude, σU , in U(t) as shown in the npottom two
insets of figure 24.

The following points deserve highlighting based on the above examples:

• Insufficiently small time step (relative to the system parameters) in the nu-
merical integration scheme, be it forward Euler or Milstein, leads to erroneous
fat-tailed PDFs (figure 23). The variance is first affected by the errors leading
to nearly Gaussian PDFs with incorrect variance.
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• The time-step value yielding accurate approximations for the statistics of tur-
bulent modes at small wave numbers may be insufficiently small for larger
wave numbers in the spectrum (figure 24).

Note that the above artifacts might be difficult to detect in high-dimensional non-
linear systems since they are not associated with any spectacular divergences, sin-
gularities, etc. There is a great need for mathematical theory and the systematic
assessment of numerical algorithms which capture the long-time statistical dynamics
of turbulent dynamical systems with high accuracy. Recent work in this important
area was carried out in [119, 120] for the example of a turbulent dynamical system
arising in the large Prandtl number limit of classical Rayleigh-Benard convection;
this work serves as a model for further research.

Divergence of PCE approximations for long time integrationsDivergence of PCE approximations for long time integrationsDivergence of PCE approximations for long time integrations
of stochastic systemsof stochastic systemsof stochastic systems.

These limitations of the Polynomial Chaos Expansion approximation were al-
ready discussed in §5 and at length in [10] and are associated with the finite order
truncations in systems with fat-tailed PDFs and intermittency; the most important
of these artifacts are:

• Failure of truncated PCE approximations to detect unbounded growth of sta-
tistics in systems with parametric uncertainty in the damping (see figure 18
and [10]).

• Failure of truncated PCE approximations in systems with nontrivial attractors
(e.g., [106, 64, 3]).

• Divergence of truncated PCE in systems driven by white noise, except at
sufficiently short times (figure 19 and [10]).

Similarly to the issues raised in the previous paragraph, the artifacts arising in the
context of the truncated PCE approximations are not associated with spectacu-
lar blow-up of the approximations; rather, they lead to underestimated statistical
moments which are usually more difficult to detect in complex configurations.

Failure of Monte Carlo simulations with insufficiently largeFailure of Monte Carlo simulations with insufficiently largeFailure of Monte Carlo simulations with insufficiently large
ensemble size due to rare eventsensemble size due to rare eventsensemble size due to rare events.

This shortcoming of the MC was already illustrated in figure 18 of §5 where,
similarly to the PCE approximations and to the Gaussian moment closure, MC
completely failed to detect the unbounded growth in low order statistics despite
large sample sizes for this toy problem with 50000 realizations. The problems
associated with MC simulations and large scale phenomena triggered by rare events
are well known (e.g. [54]) but it is important to stress their role in creating various
artifacts in UQ applications.

8. Concluding remarks. Here, we reviewed the recent developments and dis-
cussed a range of new important mathematical issues arising in the emerging
stochastic-statistical framework to quantifying uncertainty and mitigating model
error in imperfect predictions of partially observed complex high-dimensional tur-
bulent dynamical systems. The systematic discussion of issues in imperfect model
predictions for uncertain initial data at short and medium-long ranges, as well as
the forced response to system perturbations, was accomplished based on a suite of
physically relevant and progressively more complex but mathematically tractable
test models. These instructive test models possessed such important features as
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the two-way coupling between the resolved dynamics and the stochasticity due to
the interactions with unresolved processes, intermittency and positive Lyapunov ex-
ponents, eddy diffusivity parameterization and overdamped turbulent spectra. In
particular, the following two themes were emphasized throughout the article:

• The utility of the unified stochastic-statistical framework for UQ and improve-
ment of imperfect predictions with model error in turbulent dynamical systems
with intermittency, positive Lyapunov exponents and hidden instabilities;

• Existence of information barriers to model improvement, their hallmarks and
consequences for UQ in turbulent dynamical systems.

Other topics developed here were concerned with the role and mitigation of model
error due to coarse-graining and dimensional reduction, moment closure approxi-
mations and associated turbulent flux parameterization, the effects of memory of
initial conditions in producing medium and long range forecasts and the sensitiv-
ity of imperfect models to external perturbations. The mathematical toolkit uti-
lized empirical information theory, fluctuation-dissipation theorems and systematic
physics-constrained, statistical-stochastic modelling for large-dimensional turbulent
dynamical systems. New mathematical and computational phenomena in address-
ing these problems have been discussed throughout this article. Many theoretical
issues remain in UQ and prediction of turbulent dynamical systems and the authors
hope that this review inspires mathematicians, applied mathematicians, and scien-
tists to contribute to this increasingly important contemporary science discipline.

Finally, we mention several important topics for mathematical research directly
connected with this expository article and not discussed in detail.

(1) Data assimilation and filtering with judicious model error(1) Data assimilation and filtering with judicious model error(1) Data assimilation and filtering with judicious model error
for turbulent systemsfor turbulent systemsfor turbulent systems

A key feature of turbulence in inertial and energy dissipation regimes is bursts
of energy across multiple scales with intermittent instabilities and effectively sto-
chastic forcing due to complicated interactions between the turbulent modes; the
resulting dynamics is highly non-Gaussian with associated fat-tailed PDFs. Sto-
chastic Parameterization Extended Kalman Filters (SPEKF) have been introduced
and analyzed recently [30, 29, 94, 93] as computationally cheap algorithms which
make judicious model errors while retaining high filtering skill for complex turbulent
signals [42, 55, 9, 94]. For example, aliasing is usually viewed as a bad feature of
numerical algorithms; in the present context, judicious use of aliasing yields stochas-
tic superresolution [94, 55, 93]. The basis for the SPEKF algorithms is the system
(38), used earlier in a different context, for the complex scalar partially observed
turbulent mode u(t) (the reader can think of a Fourier amplitude of turbulence
at a given spatial wavenumber) coupled with stochastic additive forcing and mul-
tiplicative damping/instability coefficients, γ(t), b(t), which are learned on the fly
from the observed turbulent signal. The advantage of the system (38) is that is
has non-Gaussian dynamics but nevertheless exactly solvable first and second-order
statistics, so they are readily implemented practically in a filtering algorithm. The
rich dynamical behavior of (38), as already illustrated in figure 7, can be utilized to
test the filter performance of a wide variety of Gaussian filter approximations [9].
See the recent book [93] for an elementary introduction to these topics.
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(2) Fluctuation-Dissipation Theorems for high-dimensional(2) Fluctuation-Dissipation Theorems for high-dimensional(2) Fluctuation-Dissipation Theorems for high-dimensional
turbulent systemsturbulent systemsturbulent systems

There is a great need for further developments exploiting the appropriate fluctu-
ation dissipation theorems for linking statistical equilibrium fidelity and sensitivity
of imperfect models of high dimensional turbulent systems within the framework
of information theory for model error and sensitivity. Moreover, much more rig-
orous work, in addition to [41], should be done for time-periodic systems, general
multiplicative noise, and rigorous FDT representation formulas. The recent papers
[1, 79, 74, 80, 81, 82, 11] and, in particular, [81, 88, 31] contain much of the formal
research program and demonstrate it on exactly solvable test models. Some recent
results [81, 11] open up enticing prospects for developing techniques for improving
imperfect model sensitivity based on specific tests carried out in the unperturbed
climate and using the kicked response FDT.

The fundamental concepts justifying the linear response theory for forced dis-
sipative stochastic dynamical systems through the fluctuation dissipation theorem
have been substantially refined since the pioneering work of Leith [65] and are well
known in the literature (see [41] and the references above). Despite this fact, mi-
nor modifications of this general concept appear intermittently in the literature in
various guises. One recent example proposed in [14] is the method for predicting
the low-frequency variability of El Nino-Southern Oscillation (ENSO) based on a
particular noise sampling technique applied to the reduced model obtained by fit-
ting a quadratic model to the ENSO data through a multilevel linear regression.
We note that such an approach reduces to the classical FDT framework in the limit
of taking infinitely many sample paths of the suggested noise ‘snippets’, provided
that the reduced ad hoc quadratic model does not yield unphysical solutions with a
finite-time blow-up (see [89] and (4) below). The authors in [14] seem to be unaware
of this connection to earlier work [1, 88, 82, 31] yet they empirically take this limit.

(3) Blended Dynamic Subspace techniques for UQ in turbulent(3) Blended Dynamic Subspace techniques for UQ in turbulent(3) Blended Dynamic Subspace techniques for UQ in turbulent
systemssystemssystems

Development of computationally efficient and accurate methods for propagation
of uncertainty in turbulent systems is difficult since the complex intermittent inter-
actions between the resolved and unresolved processes are important across a wide
range of spatial and temporal scales with nontrivial energy transfer on the attractor.
Due to this strong, time-dependent, two-way coupling between the mean dynamics
and stochasticity, most attempts aimed at reducing the underlying complexity of
the problem by separating the mean evolution from the dominant dimensionality
of the uncertain subspace associated with the most energetic uncertain unresolved
processes usually end in failure.

Contrary to the truncated Polynomial Chaos Expansions which retain a finite di-
mensional ‘uncertain subspace’ spanned by a fixed basis set, the methods exploiting
dynamically orthogonal (DO) field equations applied to spatially extended systems
with uncertainty attempt to capture the evolution of the most energetic stochastic
modes in a dynamically consistent fashion [109, 110]. Nevertheless, this improved
method suffers from deterioration of UQ skill in time for turbulent dynamical sys-
tems and even non-normal linear systems [112]. New recently developed methods by
T. Sapsis and one of the authors, which combine the DO framework with an approx-
imate but statistically consistent mechanism for turbulent energy transfer between
the reduced uncertain subspace and the under-resolved complementary dynamics
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offers a very promising way forward. However, this work is reported elsewhere
[112, 111, 113].

(4) Physics Constrained Data-Driven Statistical-Stochastic Models(4) Physics Constrained Data-Driven Statistical-Stochastic Models(4) Physics Constrained Data-Driven Statistical-Stochastic Models
Development of data-driven reduced stochastic-statistical models of turbulent dy-

namical systems for uncertainty quantification and long range forecasting is an ex-
tremely important issue. Standard linear regression models can have some skill but
they suffer from inherent mathematical limitations and intrinsic barriers in skill [82].
Ad-hoc nonlinear regression models can exhibit improved skill in a training time
series (see references in [89]) but can suffer unphysical finite-time blow-up of statisti-
cal solutions, as well as unphysical pathology in their invariant measure [89]. There
are rigorous proofs [126] that physics-constrained stochastic mode reduction models
which are Markovian have the physically correct asymptotic behavior for their in-
variant measure for low-frequency variability; however, further generalizations are
required to include non-Markovian memory effects which are crucial in many appli-
cations. There is a recent new approach to designing such methods [83]. There is
a wide array of data-driven clustering algorithms [77, 46, 47, 44, 23, 24, 45, 48] to
develop multiple regime Markov models for use in prediction. Giannakis and one
of the authors [37, 38, 39] apply empirical information theory to assess the skill of
coarse-grained partitions of phase space and reduced Markov models for long-range
prediction. The methods of Horenko [46, 47, 44, 45, 48, 39] are especially promising
in this context but need further physical constraints to be more useful for long range
forecasting. This is an exciting area for future interdisciplinary research.
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Appendix A. Linear Gaussian models. The linear Gaussian framework for UQ
was discussed in details in §3. Here, we provide more details on various derivations
from that section and discuss some generalizations of the previously discussed re-
sults.

A.1. Path-wise solutions and statistics of the 2×2 linear systems. The
solutions of the linear system (18) can be easily found in the form(
x(t, t0)

y(t, t0)

)
= eL̂(t−t0)

(
x0

y0

)
+

∫ t

t0

eL̂(t−s)
(
F (s)

0

)
ds+ σ

∫ t

t0

eL̂(t−s)
(

0

1

)
dW (s),

(87)
where the Wiener process, W (s), W (0) = 0, is defined on the whole real line, and

the operator eL̂t is given by

eL̂t =
1

λ1 − λ2

 (λ1 − a)eλ2t − (λ2 − a)eλ1t eλ1t − eλ2t

q
(
eλ1t − eλ2t

)
(λ1 − a)eλ1t − (λ2 − a)eλ2t

 ,

(88)
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and the eigenvalues of L̂ are given by

λ1,2 =
1

2

(
a+A±

√
(a−A)2 + 4q

)
. (89)

Clearly, the conditions (20) imply that the eigenvalues (89) have negative real parts
and the system converges to a statistical attractor (see, e.g. [4, 87], for a detailed
definition of the attractor in the general nonautonomous case).

The mean dynamics for the linear Gaussian system (18) can be easily found by
taking the ensemble average of (87) which leads to(

x̄(t, t0)

ȳ(t, t0)

)
= eL̂(t−t0)

(
x̄0

ȳ0

)
+

∫ t

t0

eL̂(t−s)
(
F (s)

0

)
ds, (90)

where x̄0, ȳ0 denote the mean initial conditions at t0. The mean on the attractor
can be obtained by taking the limit t0 → −∞ in (90) which exists for any bounded
forcing F (t) provided that the stability conditions (20) hold. It can be easily seen
with the help of (88) that for time-periodic forcing F (t) = f0 + f1 sinωωωt the time
averaged mean on the attractor is given by

a) x̄Tatt ≡ lim
t0→−∞

1

T

∫ t0+T

t0

x̄(t, t0)dt = − Af0

aA− q ,

b) ȳTatt ≡ lim
t0→−∞

1

T

∫ t0+T

t0

ȳ(t, t0)dt =
qf0

aA− q ,
(91)

where T = 2π/ω in the time-periodic case (f1 6= 0); for constant forcing taking an
arbitrary non-zero T reduces (91) to (21) in §3.

The covariance matrix of the process xxx(t, t0) satisfying (18) is given by

R(t, t0) = eL̂(t−t0)R0 e
L̂T (t−t0) +

∫ t

t0

eL̂(t−s)
(

0 0

0 σ2

)
eL̂

T (t−s). (92)

so that, using (92) and (88), the the covariance Σ on attractor is

Σ ≡ lim
t0→−∞

R(t, t0) =

(
1 −a
−a aA− q + a2

)
σ2

−2(a+A)(aA− q) . (93)

and the autocovariance on the attractor is given by

Catt(τ, t)= lim
t0→−∞

〈(
x(t, t0)−〈x(t, t0)〉
y(t, t0)−〈y(t, t0)〉

)(
x(t+ τ, t0)−〈x(t+ τ, t0)〉
y(t+ τ, t0)−〈y(t+ τ, t0)〉

)T〉
= Σ eL̂

T τ .

(94)
Note that in this linear Gaussian framework the autocovariance on the attractor is
independent of the forcing F (t).

A.2. Path-wise solutions and statistics of the MSm model. The solutions
satisfying the Mean Stochastic Model (24) are given by the Ornstein-Uhlenbeck
process with sample paths

xmsm(t, t0) = e−γmsm(t−t0)xmsm0 +

∫ t

t0

e−γmsm(t−s)Fmsm(s)ds+σmsm

∫ t

t0

e−γmsm(t−s) dW (s),

(95)
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where x0
msm is the initial condition at t = t0. Consequently, the statistics of this

Gaussian process is fully determined by

x̄msm(t, t0) = e−γmsm(t−t0)x̄msm0 +

∫ t

t0

e−γmsm(t−s)Fmsm(s)ds, (96)

Rmsm(t, t0) ≡ V ar (xmsm(t, t0)) =e−2γmsm(t−t0)V ar (xmsm0 ) +
σ2
msm

2γmsm

(
1−e−2γmsm(t−t0)

)
,

(97)

so that for γmsm > 0 the statistics on the attractor in the general nonautonomous
case (see, e.g., [87, 4]) is

x̄msmatt (t) = lim
t0→−∞

∫ t

t0

e−γmsm(t−s)Fmsm(s)ds, (98)

Cmsmatt (τ) = lim
t0→−∞

〈
(xmsm(t, t0)−x̄msm(t, t0))(xmsm(t+τ, t0)−x̄msm(t+τ, t0))

〉
=
σ2
msme

−γmsmτ

2γmsm
. (99)

so that the variance on the attractor becomes Ratt ≡ Cmsmatt (τ = 0) = σ2
msm/2γmsm.

Note that xMS(t) cannot reproduce the marginal autocovariance (94) for x(t)
since the necessary condition

e−γmsmτ =
λ1e

λ2τ − λ2e
λ1τ

λ1 − λ2
, (100)

cannot be satisfied for all lags τ except for the degenerate case λ1 = λ2. A particular
choice of γmsm which guarantees correct decorrelation time for xmsm(t) is∫ ∞

0

e−γmsmτdτ =

∫ ∞
0

λ1e
λ2τ − λ2e

λ1τ

λ1 − λ2
dτ, (101)

and leads to

γmsm = −aA− q
a+A

. (102)

A.3. Families of imperfect models with correct marginal equilibrium sta-
tistics. The existence of families of imperfect models the linear system (18) with
correct marginal two-point equilibrium statistics or climatology was discussed in
§3.2.1. Here, we obtain the formulas for the coefficients in the imperfect models
within a given family. These relationships are used in §3.4 in order to construct
the suite of imperfect models. Inline with the propositions introduced in §3.2.1,
we focus mainly on systems with constant forcing; remarks concerning extensions
to the nonautonomous case with time-periodic statistics on the attractor (see, e.g.,
[87, 4] for detailed definitions) are included in the relevant places.
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A.3.1. Distinct families of 2× 2 systems.

(I) Constant forcing; models with the same marginal two-point statis-
tics at equilibrium. Consider a linear stochastic model (18) with coefficients
(a, q, A, σ) and constant forcing F = f0. According to Prop. 1, any 2×2 linear
model (18) with the coefficients (am, qm, Am, σm, f

0
m) satisfying

am +Am = a+A, amAm − qm = aA− q, σm = σ, Amf
0
m = Af0, (103)

has the same equilibrium marginal statistics for x(t). Thus, there is a one-
parameter family of models with structure (18) with the same marginal statis-
tics for x(t) and xm(t) provided that the coefficients of the imperfect models
satisfy

am = w, Am = a+A− w, qm = q − aA+ w(a+A− w),

f0
m =

f0A

a+A− w, (104)

where w is a free parameter; for w = a this system coincides with (18).
Remark. For time-periodic forcing F = f0 + f1s sinωt + f1c cosωt in the
perfect system (18) the four-parameter family of 2×2 models with correct
time-averaged two-point marginal statistics on the attractor and coefficients
is given by (104) with three additional free parameters f1s

m , f1c
m , ωm.

(II) Constant forcing; identical marginal climatology. Consider the linear
model (18) with coefficients (a, q, A, σ) and forcing F = f0. According to
Prop. 2, there is a three-parameter family of models with structure (18) and
coefficients (am, qm, Am, σm, f

0
m), with the same marginal climatology for x(t)

and xm(t) provided that the coefficients of the imperfect models satisfy:

am = w1, qm = w2, Am = w3, σm = σ
(w1 + w3)(w1w3 − w2)

(a+A)(aA− q) ,

f0
m = f0A(w1w3 − w2)

w3(aA− q) , (105)

where {w1, w2, w3} are the free parameters.
Remark. For time-periodic forcing F = f0 + f1s sinωt + f1c cosωt in the
perfect system (18) the six-parameter family of 2×2 models with correct time-
averaged marginal climatology for xm has coefficients satisfying (104) with
three additional free parameters f1s

m , f1c
m , ωm.

A.3.2. Families of MSMs with the same marginal climatology. As stated in Propo-
sition (3), the MSm (24) does not have sufficient number of degrees of freedom to
match the marginal two-point statistics on the attractor for x(t) satisfying (18).
MSm’s with the same climatology can be described as follows.

(III) Constant forcing; correct marginal climatology for xmsm(t). Consider
the linear model (18) with coefficients (a, q, A, σ) and constant forcing F = f0.
According to Proposition (3), there exists a one-parameter family of MSm’s
(24) with coefficients (γmsm, σmsm, Fmsm) and the same marginal climatology
for xmsm and x; these coefficients satisfy

γmsm = w, σ2
msm = −w σ2

(a+A)(aA− q) , Fmsm = −w Af0

aA− q , (106)
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where w is a free parameter. The MSm with correct marginal climatology and
correct decorrelation time for xmsm is the one with w = −(aA − q)/(a + A)
consistent with (102).

Remark. For time-periodic forcing F = f0 + f1s sinωt + f1c cosωt in the
perfect system (18) the four-parameter family of MSm models with correct
time-averaged marginal climatology for xmsm has coefficients given by by (106)
with three additional free parameters f1s

msm, f
1c
msm, ωmsm.

Appendix B. White noise limit for elementary systems with intermit-
tency. Construction of imperfect models by considering special white noise limits
was discsussed in §4.1.1. Here, we consider the limiting dynamics of the quadratic
complex scalar system (38) assuming that the stochastic fluctuations of the damping
γ(t) and the forcing fluctuations b(t) decorrelate infinitely fast. Similar procedure
for the turbulent tracer is discussed in §7 and Appendix D.3 in order to unam-
biguously illustrate some numerical artifacts in long time numerical integrations of
stochastic systems.

Consider the dynamics of the system (38) in the following limit

dγ →∞, σγ →∞, σ̃γ ≡ σγ/dγ = const > 0. (107)

db →∞, σb →∞, σ̃b ≡ σb/db = const > 0. (108)

so that the absolute value of the autocovariance of γ(t) and b(t) formally approach
the Dirac delta distributions, i.e,

lim
dγ ,t→∞

σγ/dγ=const

|〈γ(t+ τ)γ(t)〉| = σ̃γ
2
δ0(τ), lim

db→∞
σb/db=const

|〈b(t+ τ)b(t)〉| = σ̃b
2
δ0(τ),

(109)
and the processes γ(t), b(t) in (38) approach the white noise processes

dγ(t)→ σ̃γdWγ(t), db(t)→ σ̃bdWb(t), (110)

where Wγ(t),Wb(t) are two independent Wiener processes defined for all time, as
in (38). As usual in physics and engineering, the white noise limit of colored noise
leads to the Stratonovich integral (e.g., [28]). This fact is a consequence of requiring
non-vanishing correlations 〈u(t)γ(t)〉, 〈u(t)b(t)〉 before the limit and after the limit.
The limiting process leads to the Stratonovitch SDE for the complex scalar u(t),

du(t) =
[(
−γ̂+iω̂(t)

)
u(t)+F (t)

]
dt−σ̃γu(t)◦dWγ(t)+σ̃bdWb(t)+σudWu(t), (111)

where Wγ and the components of Wb and Wu are all independent Wiener processes.
We rewrite (111) in the Ito form as

du(t) =
[(
−α+iω̂(t)

)
u(t)+F (t)

]
dt−σ̃γu(t)dWγ(t)+σ̃bdWb(t)+σudWu(t), (112)

where α = γ̂ − 1
2 σ̃

2
γ is the damping term in the white noise limit.
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B.1. Invariant measure. Here, we illustrate the procedure for deriving the in-
variant measure associated with (112) in a simplified case when F ≡ 0. First, it
is convenient to rewrite (112) by means of the orthogonal transformation ũ(t) =

e
−i

∫ t
t0
ω̂(s)ds

u(t) which leads to

dũ(t) = −αũ(t)dt− σ̃γ ũ(t)dWγ(t) + σ̃be
−i

∫ t
t0
ω̂(s)ds

dWb(t) + σue
−i

∫ t
t0
ω̂(s)ds

dWu(t),
(113)

followed by a subseqeuent transformation to the polar coordinates using

µ+ iφ = ln ũ, (114)

where φ is the polar angle and µ ≡ ln %. Standard manipulations using (113), (114)
and the Ito calculus lead to the following system with the same statistics as (113)
and (112)

a) d% =

[
−α%+

σ̃2
u

2%

]
dt− σ̃γ%dWγ + σ̃bdW

%
b + σ̃udW %

u ,

b) dφ =
1

%
(σ̃udWφ

u + σ̃bdW
φ
b ),

(115)

where σ̃u ≡ σu/
√

2 the new noise terms are defined via the orthogonal transforma-
tions [

dW %
u,b(t)

dWφ
u,b(t)

]
=

(
cos(φ+ Ω) sin(φ+ Ω)

− sin(φ+ Ω) cos(φ+ Ω)

)[
dW 1

u,b(t)

dW 2
u,b(t)

]
, (116)

where W 1
u,b ≡ <e[Wu,b], W

2
u,b ≡ =m[Wu,b] and Ω(t) ≡

∫
ω̂(s)ds.

The Fokker-Planck equation for the probability density p associated with the
process satisfying (115) is given, in polar coordinates, by

∂tp(%, φ, t)=−∂%
[(
−(γ̂− 1

2 σ̃
2
γ)%+

σ̃2
u

2%

)
p− 1

2
∂%
[(
σ̃2
γ%

2+σ̃2
b+σ̃2

u

)
p
]]

+
σ̃2
u + σ̃2

b

2%2
∂2
φ p,

(117)
The stationary solutions of the Fokker-Planck equation satisfying the detailed bal-
ance conditions (see e.g. [28]) lead to the following two equations

a)

(
−(γ̂− 1

2 σ̃
2
γ)%+

σ̃2
u

2%

)
p− 1

2
∂%
[(
σ̃2
γ%

2 + σ̃2
b + σ̃2

u

)
p
]

= 0, b)
σ2
u + σ̃2

b

2%2
∂φp = 0.

(118)
Equation (118b) implies that peq = peq(%) which implies that (118a) is solved by

peq(%) =
N0%

(σ̃2
γ%

2 + σ̃2
b + σ̃2

u)δ
, δ = 3

2 +
γ̂ − 1

2 σ̃
2
γ

σ̃2
γ

. (119)

Finally, the marginal probability distributions for u1 ≡ <e[u] is given by

peq(u1) = N0

∫ ∞
−∞

dξ

(ξ2 + σ̃2
γu

2
1 + σ̃2

b + σ̃2
u)δ

. (120)

For an arbitrary δ > 0 the integral in (120) can be expressed through the Hyperge-
ometric function whose properties can be used to simplify the above expression

peq(u1) =
N0

(σ̃2
γu

2
1 + σ̃2

u)κ
, κ =

1

2
+
γ̂ − 1

2 σ̃
2
γ

σ̃2
γ

. (121)
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However, a simpler although incomplete justification of the above fact can be ob-
tained by evaluating the integral in (120) at γ̂ = mσ̃2

γ , m a positive integer, so that
δ = 1 +m and standard solutions apply.

Appendix C. Truncated polynomial chaos expansions. Here, we augment
the discussion of the truncated Polynomial Chaos Expansions (PCE) in §64 with a
few additional technical details; all of the information below is well known in the
PCE literature.

The following result, often referred to as the Cameron-Martin theorem, forms
the foundation of Wiener Chaos theory

Theorem 1 (Cameron-Martin [13]) Assume that for fixed x and s 6 t, u(x, s)
is a functional of the Wiener process W on the interval [0, s] with 〈|u(x, s)|2〉 <∞,
then u(x, s) has the following Fourier-Hermite expansion:

u(x, s) =
∑
α∈J

uα(x, s)Tα, uα(x, s) = 〈u(x, s)Tα〉, (122)

where Tα are the Wick polynomials defined via the Hermite polynomials Hαi , αi ∈ N
by

Tα(ξξξ) =

∞∏
i=1

Hαi(ξi). (123)

The multiindex α in (123) with a finite number of nonzero components is defined
as

J =
{
α = (αi, i > 1 | αi ∈ {0, 1, 2, . . . }, |α| =

∞∑
i=1

αi <∞)
}
, (124)

so that the product in the right hand side of (123) has a finite number of factors
and it is well defined. Wick polynomials are defined over a in infinite dimensional
space with variables ξξξ = (ξ1, ξ2, . . . ), where 〈ξi〉 = 0, 〈ξiξj〉 = δij , and they form
a complete orthonormal basis in L2 on the probability space with respect to the
Gaussian measure generated by ξξξ. In particular

〈TαTβ〉 = δαβ , 〈T0〉 = 1, 〈Tα〉 = 0 when α 6= 0. (125)

The order of the Wick polynomial Tα is defined as |α| =
∑
αi. Furthermore, the

first two statistical moments of u(x, s) are given by:

〈u(x, s)〉 = u0(x, s), (126)

and

〈u2(x, s)〉 =
∑
α∈J
|uα(x, s)|2. (127)

The following theorem due to [95] is very useful for our analysis since it allows
for exact treatment of nonlinearities

Theorem 2. Suppose u, γ have Wiener Chaos expansions

u =
∑
α∈J

uαTα(ξ), γ =
∑
β∈J

γαTβ(ξ). (128)
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If 〈|uv|2〉 <∞, then the product uv has the Wiener Chaos expansion

uv =
∑
θ∈J

∑
p∈J

∑
06β6θ

C(θ, β, p)uθ−β+pγβ+p

Tθ(ξ), (129)

where

C(θ, β, p) =

[(
θ
β

)(
β + p
p

)(
θ − β + p

p

)] 1
2

. (130)

The operations on multi-indices are defined as

α = β ⇔ αi = βi ∀ i, (131)

α 6 β ⇔ αi 6 βi ∀ i, (132)

and
α! =

∏
i

αi! (133)

The doubly infinite expansion (122) is useless in applications unless a suitable
truncation is introduced through the truncated index set

JK,N =
{
α = (αi, i > 1 | αi ∈ {0, 1, 2, . . . ,K}, |α| =

K∑
i=1

αi 6 N)
}
, (134)

so that the truncated PCE in (122) becomes

uK,N (x, t, ξ) =
∑

α∈JK,N
uα(x, t)Tα =

∑
|α|6N

uα(x, t)

K∏
i=1

Hαi(ξi). (135)

The resulting approximation has altogether
∑N
n=0

(
K + n− 1

n

)
terms. Various

sparse truncation methods have been proposed in this context [49, 114, 25]; such
methods are problematic in systems with intermittency [10].

C.1. Spectral representation of the white noise. when considering systems
driven by white noise a suitable spectral representation of the associated Wiener
process is required in the PCE approximations. Here, we follow here the approach
of [69, 70] and [49].

Consider any T > 0 and orthonormal basis {mi(s), i = 1, 2, . . . } in L2([0, T ]), for
example trigonometric functions

m1(s) =
1√
T
, and mi(s) =

√
2

T
cos

(i− 1)πs

T
, for i = 2, 3, . . . . (136)

It is easy to see that the random variables defined by

ξi =

∫ T

0

mi(s)dW (s), i = 1, 2, . . . , (137)

are i.i.d. standard Gaussian random variables, ξi ∼ N (0, 1), so that the Wiener
process can be represented by the following Fourier-Hermite expansion [49, 69, 70]

W (s) =

∞∑
i=1

ξi

∫ s

0

mi(τ)dW (τ). (138)
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The expansion (138) converges in the mean-square sense〈[
W (s)−

N∑
i=1

ξi

∫ s

0

mi(τ)dW (τ)

]2〉
→

N→∞
0. (139)

Appendix D. Analytical formulas for the statistics of the turbulent tracer
models. Two new classes of non-Gaussian statistically exactly solvable test models
for the turbulent diffusion of a tracer were introduced and discussed in §6. Below, we
present the analytical formulas for the second-order statistics in these two systems.

First, the statistics of the turbulent velocity field with transient instabilities in
the shear waves is derived; this velocity field drives both models (82) and (83) in §6.
Next, the statistics of the tracer driven by the turbulent velocity field is derived.
The general formulas for the non-Gaussian reactive tracer statistics are derived
first and the statistics for the passive tracer are obtained by neglecting the binary
reaction term in the general expressions.

D.1. Statistics for the the velocity field in with intermittent transient
instability. The dynamics of the two-dimensional turbulent velocity field (U(t),
v(x, t)) with intermittent transient instabilities driving the two turbulent tracer
models is given by (82b-e) or (83c-f). The second-order statistics is derived system-
atically below.

Path-wise solutions for the cross-sweep U(t)Path-wise solutions for the cross-sweep U(t)Path-wise solutions for the cross-sweep U(t)

The path-wise solutions for the cross sweep U(t) = Ū(t) +U ′(t) in (82b) and (83c)
are given by

Ū(t) =

∫ t

t0

GU (s, t)fU (s)ds, (140)

U ′(t) = GU (t0, t)U0 + σU

∫ t

t0

GU (s, t)dWU (s), (141)

where we use the short-hand notation for the initial condition U0 ≡ U(t = t0) and
for the Green’s function associated with U(t)

GU (s, t) = e−γU (t−s). (142)

The initial conditions U0 in the zonal jet are assumed Gaussian so that U(t) is
Gaussian.

Path-wise solutions for the shear v(x, t)Path-wise solutions for the shear v(x, t)Path-wise solutions for the shear v(x, t)

The solution for each Fourier mode of the shear flow in the general case in (82) and
(83) (correlated U(t) and vk(t), in the presence of transient instabilities) has the
form

vk(t) = Gvk(t0, t)vk,0 +

∫ t

t0

Gvk(s, t)(bvk(s) + fvk(s))ds+ σvk

∫ t

t0

Gvk(s, t)dWvk(s),

(143)
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where vk,0 ≡ vk(t = t0) and the Greens function associated with vk is given by

Gvk(s, t) = e−dvk (t−s)−Ik(s,t)+iJk(s,t), (144)

Ik(s, t) =

∫ t

s

γvk(s′)ds′, Jk(s, t) =

∫ t

s

ωvk(s′)ds′. (145)

where dvk denotes the time-independent, deterministic part of the damping in (82c)
and (83d).

The solutions for the damping fluctuations γvk and the forcing fluctuations bvk
in the shear velocity (82c) and (83d) are given by (Gaussian) Ornsteein Uhlenbeck
processes and can be written in the same format as the solutions for the turbulent
zonal jet U (see (140), (141)) but with the Greens functions

Gbvk (s, t) = e(−dbvk+iωbvk
)(t−s), (146)

Gγvk (s, t) = e−dγvk (t−s). (147)

These solutions are needed for rewriting (145) in a way that simplifies the compu-
tations of the second-order statistics discussed below:

Ik(s, t) =

∫ t

s

γvk(s′)ds′ = M0,k(s, t)γvk,0 +MW,k(s, t), (148)

M0,k(s, t) = − 1

dγvk

(
Gγvk (t0, t)−Gγvk (t0, s)

)
, (149)

MW,k(s, t) = σγvk

∫ t

s

∫ s′

t0

Gγvk (r′, s′)dWγvk
(r′)ds′, (150)

Jk(s, t) =

∫ t

s

ωvk(s′)ds′ = akL(s, t) + bk(t− s), (151)

L(s, t) =

∫ t

t0

U(s′)ds′ = L0(s, t)U0 + Lf (s, t) + LW (s, t), (152)

L0(s, t) = − 1

γU
(GU (t0, t)−GU (t0, s)) , (153)

Lf (s, t) =

∫ t

s

∫ s′

t0

GU (r′, s′)fU (r′)dr′ds′, (154)

LW (s, t) = σU

∫ t

s

∫ s′

t0

GU (r′, s′)dWU (r′)ds′. (155)

Second order statistics of the velocity fieldSecond order statistics of the velocity fieldSecond order statistics of the velocity field

The statistics of the Gaussian cross-sweep U(t) can be easily found from the path-
wise solutions (140)-(141) and it is given by

〈U(t)〉 = GU (t0, t)〈U0〉+

∫ t

t0

GU (s, t)fU (s)ds, (156)

V ar(U(t)) = G2
U (t0, t)V ar(U0) +

σ2
U

2γU

(
1−G2

U (t0, t)
)
. (157)
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The statistics of the damping fluctuations and the additive bias correction are easily
obtained as

〈γvk(t)〉 = Gγvk (t0, t)〈γvk,0〉, (158)

〈bvk(t)〉 = Gbvk (t0, t)〈γbk,0〉, (159)

V ar(γvk(t)) = G2
γvk

(t0, t)V ar(γvk,0) +
σ2
γvk

2dγvk

(
1−G2

γvk
(t0, t)

)
, (160)

V ar(bvk(t)) = |Gbvk (t0, t)|2V ar(bvk,0) +
σ2
bvk

2dbvk

(
1− |Gbvk (t0, t)|2

)
, (161)

Cov(bvk(t), bvj (t)) = Gbvk (t0, t)G
∗
bvj

(t0, t)Cov(bvk,0, bvj ,0), (162)

Cov(bvk(t), b∗vj (t)) = Gbvk (t0, t)Gbvj (t0, t)Cov(bvk,0, b
∗
vj ,0), (163)

Cov(bvk(t), γvj (t)) = Gbvk (t0, t)Gγvj (t0, t)Cov(bvk,0, γvj ,0) (164)

Cov(bvk(t), U(t)) = Gbvk (t0, t)GU (t0, t)Cov(bvk,0, U0). (165)

The mean shear 〈vk(t)〉 can be expressed as

〈vk(t)〉 = 〈Gvk(t0, t)vk,0〉+

∫ t

t0

〈Gvk(s, t)bvk(s)〉ds+

∫ t

t0

〈Gvk(s, t)〉fvk(s)ds. (166)

In order to evaluate the terms in (166), we use the fact that for any two complex
Gaussian variables z and ξ the following identity holds

〈zeξ〉 = (〈z〉+ Cov(z, ξ∗)) e〈ξ〉+
1
2Cov(ξ,ξ∗), (167)

where Cov(z, ξ) = 〈z ξ∗〉 − 〈z〉〈ξ∗〉 and Cov(z, ξ∗) = 〈z ξ〉 − 〈z〉〈ξ〉. Using (167), we
obtain the following (for s 6 t)

〈Gvk(s, t)〉 = e−dvk (t−s)−〈Ivk (s,t)〉+i〈Jvk (s,t)〉×
× e 1

2V ar(Ivk (s,t))− 1
2V ar(Jvk (s,t))−iCov(Ivk (s,t),Jvk (s,t)) (168)

〈Gvk(t0, t)vk,0〉 =
(
〈vk,0〉 − Cov(vk,0, Ivk(t0, t))

+ iCov(vk,0, Jvk(t0, t))
)
〈Gvk(t0, t)〉 (169)

〈Gvk(s, t)bvk(s)〉=
(
〈bvk(s)〉−Cov(bvk(s), Ivk(s, t))

+iCov(bvk(s), Jvk(s, t))
)
〈Gvk(s, t)〉 (170)

〈Ivk(s, t)〉 = M0,k(s, t)〈γvk,0〉, (171)

V ar(Ivk(s, t)) = M2
0,k(s, t)V ar(γvk,0) + V ar(MW,k(s, t)) (172)

V ar(MW,k(s, t)) =
k2σ2

γvk

d3
γvk

(
dγvk (t− s) + e−dγvk (t−s) +Gγvk (2t0, s+ t)

− 1− 1
2

(
G2
γvk

(t0, t) +G2
γvk

(t0, s)
))

(173)
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〈Jvk(s, t)〉 = ak〈L(s, t)〉+ bk(t− s) (174)

V ar(Jvk(s, t)) = a2
kV ar(L(s, t)) (175)

〈L(s, t)〉 = Lf (s, t) + L0(s, t)〈U0〉 (176)

V ar(L(s, t)) = L2
0(s, t)V ar(U0) + V ar(LW (s, t)) (177)

V ar(LW (s, t)) =
σ2
U

γ3
U

(
γU (t− s) + e−γU (t−s) +GU (2t0, s+ t)

− 1− 1
2

(
G2
U (t0, t) +G2

U (t0, s)
) )

(178)

Cov(Ivk(s, t), Jvj (r, t)) = M0,k(s, t)L0(r, t)Cov(γvk,0, U0) (179)

Cov(Ivk(s, t), Ivj (r, t)) = M0,k(s, t)M0,j(r, t)Cov(γvk,0, γvj ,0) + δkjδsrV ar(MW,k(s, t))
(180)

Cov(Jvk(s, t), Jvj (r, t)) = akaj

(
L0(s, t)L0(r, t)V ar(U0) + δjkδsrV ar(LW (s, t))

)
(181)

Cov(bvj (r), Ivk(s, t)) =
1

dγvk

(
e−dγvk (s−t0) − e−dγvk (t−t0)

)
×

× e(−dbvj +iωbvj
)(r−t0)

Cov(bvj ,0, γvk,0) (182)

Cov(bvj (r), Jvk(s, t)) =
ak
dU

(
e−dU (s−t0) − e−dU (t−t0)

)
×

× e(−dbvj +iωbvj
)(r−t0)

Cov(bvj ,0, U0) (183)

The remaining correlations can be computed as follows:

V ar(vk)V ar(vk)V ar(vk) = Cov(vk, vk) = 〈|vk(t)|2〉 − |〈vk(t)〉|2

We rewrite 〈|vk(t)|2〉 as

〈|vk(t)|2〉 = 〈|A|2〉+ 〈|B|2〉+ 〈|C|2〉+ <e[〈A∗B〉] (184)

where

〈|A|2〉 = 〈|Gvk(t0, t)|2|vk,0|2〉 (185)

〈|B|2〉 =

∫ t

t0

∫ t

t0

〈Gvk(s, t)G∗vk(r, t)
(
bvk(s) + fvk(s)

)(
b∗vk(r) + f∗vk(r)

)
〉dsdr (186)

〈|C|2〉 = σ2
vk

∫ t

t0

〈|Gvk(s, t)|2〉ds (187)
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〈A∗B〉 = 2

∫ t

t0

〈Gvk(s, t)G∗vk(t0, t)
(
bvk(s) + fvk(s)

)
v∗k,0〉ds (188)

The above formulas can be evaluated based on the following identity which holds
for any Gaussian variables z, w and ξ

〈zweξ〉 =
(
〈z〉〈w〉+ Cov(z, w∗) + 〈z〉Cov(w, ξ∗)

+ 〈w〉Cov(z, ξ∗) + Cov(z, ξ∗)Cov(w, ξ∗)
)
e〈ξ〉+

1
2Cov(ξ,ξ∗). (189)

where Cov(x, y) = 〈x y∗〉− 〈x〉〈y∗〉 and Cov(x, y∗) = 〈x y〉− 〈x〉〈y〉. Using (189) we
compute

〈Gvk(s, t)Gvj (r, t)〉 = e−dvk (t−s)−dvj (t−r)−〈Ivk (s,t)〉−〈Ivj (r,t)〉+i〈Jvk (s,t)〉+i〈Jvj (r,t)〉×
× e 1

2V ar(Ivk (s,t))− 1
2V ar(Jvk (s,t))−iCov(Ik(s,t),Jk(s,t))

× e 1
2V ar(Ivj (r,t))− 1

2V ar(Jvj (r,t))−iCov(Ij(r,t),Jj(r,t))

× eCov(Ivk (s,t),Ivj (r,t))−Cov(Jvk (s,t),Jvj (r,t))

× e−iCov(Ivk (s,t),Jvj (r,t))−iCov(Jvk (s,t),Ivj (r,t)) (190)

〈Gvk(s, t)G∗vj (r, t)〉 = e−dvk (t−s)−dvj (t−r)−〈Ivk (s,t)〉−〈Ivj (r,t)〉+i〈Jvk (s,t)〉−i〈Jvj (r,t)〉×
× e 1

2V ar(Ivk (s,t))− 1
2V ar(Jvk (s,t))−iCov(Ik(s,t),Jk(s,t))

× e 1
2V ar(Ivj (r,t))− 1

2V ar(Jvj (r,t))+iCov(Ij(r,t),Jj(r,t))

× eCov(Ivk (s,t),Ivj (r,t))+Cov(Jvk (s,t),Jvj (r,t))

× eiCov(Ivk (s,t),Jvj (r,t))−iCov(Jvk (s,t),Ivj (r,t)) (191)

so that 〈|A|2〉, 〈|B|2〉, 〈A∗B〉 in (184) can be expressed as

〈|A|2〉 = 〈|Gvk(t0, t)|2〉
[
|〈vk,0〉|2 + V ar(vk,0)

− 4<e
[
〈vk,0〉Cov(v∗k,0, Ik(t0, t))

]
+ 4|Cov(vk,0, Ik(t0, t))|2

]
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〈|B|2〉 =

∫ t

t0

∫ t

t0

〈Gvk(s, t)G∗vk(r, t)〉Gbvk (t0, s)G
∗
bvk

(t0, r)

[
|〈bvk,0〉|2 + V ar[bvk,0]

− 〈b∗vk,0〉
{(
Cov(bvk,0, Ik(s, t)) + Cov(bvk,0, Ik(r, t))

)
− i
(
Cov(bvk,0, Jk(s, t))− Cov(bvk,0, Jk(r, t))

)}
− 〈bvk,0〉

{(
Cov(b∗vk,0, Ik(s, t)) + Cov(b∗vk,0, Ik(r, t))

)
− i
(
Cov(b∗vk,0, Jk(s, t))− Cov(b∗vk,0, Jk(r, t))

)}
+
(
Cov[bvk,0, Ik(s, t)] + Cov[bvk,0, Ik(r, t)]− i(Cov[bvk,0, Jk(s, t)]− Cov[bvk,0, Jk(r, t)])

)
×

×
(
Cov[b∗vk,0, Ik(s, t)] + Cov[b∗vk,0, Ik(r, t)]− i(Cov[b∗vk,0, Jk(s, t)]− Cov[b∗vk,0, Jk(r, t)])

)]
dsdr

+

∫ t

t0

∫ t

t0

〈Gvk(s, t)G∗vk(r, t)〉G∗bvk (t0, r)fvk(s)

[
〈b∗vk,0〉

−
(
Cov(b∗vk,0, Ik(s, t)) + Cov(b∗vk,0, Ik(r, t))

)
+ i
(
Cov(b∗vk,0, Jk(s, t))− Cov(b∗vk,0, Jk(r, t))

)]
dsdr

+

∫ t

t0

∫ t

t0

〈Gvk(s, t)G∗vk(r, t)〉Gbvk (t0, s)f
∗
vk

(r)

[
〈bvk,0〉

−
(
Cov(bvk,0, Ik(s, t)) + Cov(bvk,0, Ik(r, t))

)
+ i
(
Cov(bvk,0, Jk(s, t))− Cov(bvk,0, Jk(r, t))

)]
dsdr

+

∫ t

t0

∫ t

t0

〈Gvk(s, t)G∗vk(r, t)〉fvk(s)f∗vk(r)dsdr

〈A∗B〉 = 2

∫ t

t0

〈Gvk(s, t)G∗vk(t0, t)〉Gbvk (t0, s)

[
〈bvk,0〉〈v∗k0〉+ Cov[bvk,0, vk,0]

− 〈v∗k,0〉
{(
Cov[bvk,0, Ik(s, t)] + Cov[bvk,0, Ik(t0, t]

)
− i
(
Cov[bvk,0, Jk(s, t)]− Cov[bvk,0, Jk(t0, t)]

)}
− 〈bvk,0〉

{(
Cov[v∗k,0, Ik(s, t)] + Cov[v∗k,0, Ik(t0, t)]

)
− i
(
Cov[v∗k,0, Jk(s, t)]− Cov[v∗k,0, Jk(t0, t)]

)}
+
(
Cov[bvk,0, Ik(s, t)] + Cov[bvk,0, Ik(t0, t)]− i(Cov[bvk,0, Jk(s, t)]− Cov[bvk,0, Jk(t0, t)])

)
×

×
(
Cov[v∗k,0, Ik(s, t)] + Cov[v∗k,0, Ik(t0, t)]− i(Cov[v∗k,0, Jk(s, t)]− Cov[v∗k,0, Jk(t0, t)])

)]
ds

+ 2

∫ t

t0

〈Gvk(s, t)G∗vk(t0, t)〉fvk(s)

[
〈v∗k,0〉

−
(
Cov[v∗k,0, Ik(s, t)] + Cov[v∗k,0, Ik(t0, t)]

)
+ i
(
Cov[v∗k,0, Jk(s, t)]− Cov[v∗k,0, Jk(t0, t)]

)]
ds
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Cov(vk(t), vj(t))Cov(vk(t), vj(t))Cov(vk(t), vj(t)) = 〈vk(t)v∗j (t)〉 − 〈vk(t)〉〈v∗j (t)〉

We rewrite 〈vk(t)v∗j (t)〉 as

〈vk(t)v∗j (t)〉 = 〈A2〉+ 〈B2〉+ 〈AB〉, (192)

where

〈A2〉 = 〈Gvk(t0, t)G
∗
vj (t0, t)vk,0v

∗
j,0〉 (193)

〈B2〉 =

∫ t

t0

∫ t

t0

〈Gvk(s, t)G∗vj (r, t)
(
bvk(s) + fvk(s)

)(
b∗vj (r) + f∗vj (r)

)
〉dsdr (194)

〈AB〉 =

∫ t

t0

〈Gvk(t0, t)G
∗
vj (s, t)

(
b∗vj (s) + f∗vj (s)

)
vk,0〉ds

+

∫ t

t0

〈G∗vj (t0, t)Gvk(s, t)
(
bvk(s) + fvk(s)

)
v∗j,0〉ds (195)
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The above formulas can be computed using (189).

〈A2〉 = 〈Gvk(t0, t)G
∗
vj (t0, t)〉

[
〈vk,0〉〈v∗j,0〉+ Cov[vk,0, vj,0]

− 〈vk,0〉
{(
Cov[v∗j,0, Ik(t0, t)] + Cov[v∗j,0, Ij(t0, t)]

)
− i
(
Cov[v∗j,0, Jk(t0, t)]− Cov[v∗j,0, Jj(t0, t)]

)}
− 〈v∗j,0〉

{(
Cov[vk,0, Ik(t0, t)] + Cov[vk,0, Ij(t0, t)]

)
− i
(
Cov[vk,0, Jk(t0, t)]− Cov[vk,0, Jj(t0, t)]

)}
+
{(
Cov[v∗j,0, Ik(t0, t)] + Cov[v∗j,0, Ij(t0, t)]

)
− i
(
Cov[v∗j,0, Jk(t0, t)]− Cov[v∗j,0, Jj(t0, t)]

)}
×

×
{(
Cov[vk,0, Ik(t0, t)] + Cov[vk,0, Ij(t0, t)]

)
− i
(
Cov[vk,0, Jk(t0, t)]− Cov[vk,0, Jj(t0, t)]

)}]

〈B2〉 =

∫ t

t0

∫ t

t0

〈Gvk(s, t)G∗vj (r, t)〉Gbvk (t0, s)G
∗
bvj

(t0, r)

[
〈bvk,0〉〈b∗vj ,0〉+ Cov[bvk,0, bvj ,0]

− 〈bvk,0〉
{(
Cov[b∗vj ,0, Ik(s, t)] + Cov[b∗vj ,0, Ij(r, t)]

)
− i
(
Cov[b∗vj ,0, Jk(s, t)]− Cov[b∗vj ,0, Jj(r, t)]

)}
− 〈b∗vj ,0〉

{(
Cov[bvk,0, Ik(s, t)] + Cov[bvk,0, Ij(r, t)]

)
− i
(
Cov[bvk,0, Jk(s, t)]− Cov[bvk,0, Jj(r, t)]

)}
+
{(
Cov[b∗vj ,0, Ik(s, t)] + Cov[b∗vj ,0, Ij(r, t)]

)
− i
(
Cov[b∗vj ,0, Jk(s, t)]− Cov[b∗vj ,0, Jj(r, t)]

)}
×

×
{(
Cov[bvk,0, Ik(s, t)] + Cov[bvk,0, Ij(r, t)]

)
− i
(
Cov[bvk,0, Jk(s, t)]− Cov[bvk,0, Jj(r, t)]

)}]
dsdr

+

∫ t

t0

∫ t

t0

〈Gvk(s, t)G∗vj (r, t)〉G∗bvj (t0, r)fvk(s)
[
〈b∗vj ,0〉

−
(
Cov(b∗vj ,0, Ik(s, t)) + Cov(b∗vj ,0, Ij(r, t))

)
+ i
(
Cov(b∗vj ,0, Jk(s, t))− Cov(b∗vj ,0, Jj(r, t))

)]
dsdr

+

∫ t

t0

∫ t

t0

〈Gvk(s, t)G∗vj (r, t)〉Gbvk (t0, s)f
∗
vj (r)

[
〈bvk,0〉

−
(
Cov(bvk,0, Ik(s, t)) + Cov(bvk,0, Ij(r, t))

)
+ i
(
Cov(bvk,0, Jk(s, t))− Cov(bvk,0, Jj(r, t))

)]
dsdr

+

∫ t

t0

∫ t

t0

〈Gvk(s, t)G∗vj (r, t)〉fvk(s)f∗vj (r)dsdr
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〈AB〉 =

∫ t

t0

〈Gvk(t0, t)G
∗
vj (s, t)〉G∗bvj (t0, s)

[
〈b∗vj ,0〉〈vk,0〉+ Cov[vk,0, bvj ,0]

− 〈vk,0〉
{(
Cov[b∗vj ,0, Ij(s, t)] + Cov[b∗vj ,0, Ik(t0, t)]

)
+ i
(
Cov[b∗vj ,0, Jj(s, t)]− Cov[b∗vj ,0, Jk(t0, t)]

)}
− 〈b∗vj ,0〉

{(
Cov[vk,0, Ij(s, t)] + Cov[vk,0, Ik(t0, t)]

)
+ i
(
Cov[vk,0, Jj(s, t)]− Cov[vk,0, Jk(t0, t)]

)}
+
{(
Cov[b∗vj ,0, Ij(s, t)] + Cov[b∗vj ,0, Ik(t0, t)]

)
+ i
(
Cov[b∗vj ,0, Jj(s, t)]− Cov[b∗vj ,0, Jk(t0, t)]

)}
×

×
{(
Cov[vk,0, Ij(s, t)] + Cov[vk,0, Ik(t0, t)]

)
+ i
(
Cov[vk,0, Jj(s, t)]− Cov[vk,0, Jk(t0, t)]

)}]
ds

+

∫ t

t0

〈Gvk(t0, t)G
∗
vj (s, t)〉f∗vj (s)

[
〈vk,0〉

−
(
Cov(vk,0, Ij(s, t)) + Cov(vk,0, Ik(t0, t)

)
− i
(
Cov(vk,0, Jj(s, t))− Cov(vk,0, Jk(t0, t)

)]
ds

+

∫ t

t0

〈G∗vj (t0, t)Gvk(s, t)〉Gbvk (t0, s)
[
〈bvk,0〉〈vj,0〉+ Cov[bvk,0, vj,0]

− 〈v∗j,0〉
{(
Cov[bvk,0, Ik(s, t)] + Cov[bvk,0, Ij(t0, t)]

)
− i
(
Cov[bvk,0, Jk(s, t)]− Cov[bvk,0, Jj(t0, t)]

)}
− 〈bvk,0〉

{(
Cov[vj,0, Ik(s, t)] + Cov[vj,0, Ij(t0, t)]

)
− i
(
Cov[vj,0, Jk(s, t)]− Cov[vj,0, Jj(t0, t)]

)}
+
{(
Cov[bvk,0, Ik(s, t)] + Cov[bvk,0, Ij(t0, t)]

)
− i
(
Cov[bvk,0, Jk(s, t)]− Cov[bvk,0, Jj(t0, t)]

)}
×

×
{(
Cov[vj,0, Ik(s, t)] + Cov[vj,0, Ij(t0, t)]

)
− i
(
Cov[vj,0, Jk(s, t)]− Cov[vj,0, Jj(t0, t)]

)}]
ds

+

∫ t

t0

〈G∗vj (t0, t)Gvk(s, t)〉fvk(s)
[
〈v∗j,0〉

−
(
Cov(v∗j,0, Ik(s, t)) + Cov(v∗j,0, Ij(t0, t)

)
+ i
(
Cov(v∗j,0, Jk(s, t))− Cov(v∗j,0, Jj(t0, t)

)]
ds
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Cov(vk(t), v∗k(t))Cov(vk(t), v∗k(t))Cov(vk(t), v∗k(t)) = 〈v2
k(t)〉 − 〈vk(t)〉2

We find that

〈v2
k(t)〉 = 〈A2〉+ 〈B2〉+ 〈AB〉 (196)

where

〈A2〉 = 〈G2
vk

(t0, t)v
2
k,0〉 (197)

〈B2〉 =

∫ t

t0

∫ t

t0

〈Gvk(s, t)Gvk(r, t)
(
bvk(s) + fvk(s)

)(
bvk(r) + fvk(r)

)
〉dsdr (198)

〈AB〉 = 2

∫ t

t0

〈Gvk(t0, t)Gvk(s, t)
(
bvk(s) + fvk(s)

)
vk,0〉ds (199)

The above formulas can be computed using (189).

〈A2〉 = 〈G2
vk

(t0, t)〉
[
〈vk,0〉2 + Cov[vk,0, v

∗
k,0]

− 4〈vk,0〉
(
Cov[vk,0, Ik(t0, t)]− iCov[vk,0, Jk(t0, t)]

)
+ 4
(
Cov[vk,0, Ik(t0, t)]− iCov[vk,0, Jk(t0, t)]

)2
]

〈B2〉 =

∫ t

t0

∫ t

t0

〈Gvk(s, t)Gvk(r, t)〉Gbvk (t0, s)Gbvk (t0, r)

[
〈bvk,0〉2 + Cov[bvk,0, b

∗
vk,0

]

− 2〈bvk,0〉
{(
Cov[bvk,0, Ik(s, t)] + Cov[bvk,0, Ik(r, t)]

)
− i
(
Cov[bvk,0, Jk(s, t)] + Cov[bvk,0, Jk(r, t)]

)}
+
{(
Cov[bvk,0, Ik(s, t)] + Cov[bvk,0, Ik(r, t)]

)
− i
(
Cov[bvk,0, Jk(s, t)] + Cov[bvk,0, Jk(r, t)]

)}2
]

dsdr

+ 2

∫ t

t0

∫ t

t0

〈Gvk(s, t)Gvk(r, t)〉Gbvk (t0, r)fvk(s)

[
〈bvk,0〉

−
(
Cov(bvk,0, Ik(s, t)) + Cov(bvk,0, Ik(r, t))

)
+ i
(
Cov(bvk,0, Jk(s, t)) + Cov(bvk,0, Jk(r, t))

)]
dsdr

+

∫ t

t0

∫ t

t0

〈Gvk(s, t)Gvk(r, t)〉fvk(s)fvk(r)dsdr
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〈AB〉 = 2

∫ t

t0

〈Gvk(t0, t)Gvk(s, t)〉Gbvk (t0, s)
[
〈bvk,0〉〈vk0〉+ Cov[bvk,0, v

∗
k,0]

− 〈vk,0〉
{(
Cov[bvk,0, Ik(s, t)] + Cov[bvk,0, Ik(t0, t)]

)
− i
(
Cov[bvk,0, Jk(s, t)] + Cov[bvk,0, Jk(t0, t)]

)}
− 〈bvk,0〉

{(
Cov[vk,0, Ik(s, t)] + Cov[vk,0, Ik(t0, t)]

)
− i
(
Cov[vk,0, Jk(s, t)] + Cov[vk,0, Jk(t0, t)]

)}
+
{(
Cov[bvk,0, Ik(s, t)] + Cov[bvk,0, Ik(t0, t)]

)
− i
(
Cov[bvk,0, Jk(s, t)] + Cov[bvk,0, Jk(t0, t)]

)}
×

×
{(
Cov[vk,0, Ik(s, t)] + Cov[vk,0, Ik(t0, t)]

)
− i
(
Cov[vk,0, Jk(s, t)] + Cov[vk,0, Jk(t0, t)]

)}]
ds

+ 2

∫ t

t0

〈Gvk(t0, t)Gvk(s, t)〉fvk(s)

[
〈vk,0〉

−
(
Cov(vk,0, Ik(s, t)) + Cov(vk,0, Ik(t0, t)

)
+ i
(
Cov(vk,0, Jk(s, t)) + Cov(vk,0, Jk(t0, t)

)]
ds

(200)

Cov(vk(t), v∗j (t))Cov(vk(t), v∗j (t))Cov(vk(t), v∗j (t)) = 〈vk(t)vj(t)〉 − 〈vk(t)〉〈vj(t)〉

We rewrite 〈vk(t)vj(t)〉 as

〈vk(t)vj(t)〉 = 〈A2〉+ 〈B2〉+ 〈AB〉, (201)

where

〈A2〉 = 〈Gvk(t0, t)Gvj (t0, t)vk,0vj,0〉 (202)

〈B2〉 =

∫ t

t0

∫ t

t0

〈Gvk(s, t)Gvj (r, t)
(
bvk(s) + fvk(s)

)(
bvj (r) + fvj (r)

)
〉dsdr (203)

〈AB〉 =

∫ t

t0

〈Gvk(t0, t)Gvj (s, t)
(
bvj (s) + fvj (s)

)
vk,0〉ds

+

∫ t

t0

〈Gvj (t0, t)Gvk(s, t)
(
bvk(s) + fvk(s)

)
vj,0〉ds (204)

The above formulas can be computed using (189).

〈A2〉 = 〈Gvk(t0, t)Gvj (t0, t)〉
[
〈vk,0〉〈vj,0〉+ Cov[vk,0, v

∗
j,0]

− 〈vk,0〉
{(
Cov[vj,0, Ik(t0, t)] + Cov[vj,0, Ij(t0, t)]

)
− i
(
Cov[vj,0, Jk(t0, t)] + Cov[vj,0, Jj(t0, t)]

)}
− 〈vj,0〉

{(
Cov[vk,0, Ik(t0, t)] + Cov[vk,0, Ij(t0, t)]

)
− i
(
Cov[vk,0, Jk(t0, t)] + Cov[vk,0, Jj(t0, t)]

)}
+
{(
Cov[vj,0, Ik(t0, t)] + Cov[vj,0, Ij(t0, t)]

)
− i
(
Cov[vj,0, Jk(t0, t)] + Cov[vj,0, Jj(t0, t)]

)}
×

×
{(
Cov[vk,0, Ik(t0, t)] + Cov[vk,0, Ij(t0, t)]

)
− i
(
Cov[vk,0, Jk(t0, t)] + Cov[vk,0, Jj(t0, t)]

)}]
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〈B2〉 =

∫ t

t0

∫ t

t0

〈Gvk(s, t)Gvj (r, t)〉Gbvk (t0, s)Gbvj (t0, r)

[
〈bvk,0〉〈bvj ,0〉+ Cov[bvk,0, b

∗
vj ,0]

− 〈bvk,0〉
{(
Cov[bvj ,0, Ik(s, t)] + Cov[bvj ,0, Ij(r, t)]

)
− i
(
Cov[bvj ,0, Jk(s, t)] + Cov[bvj ,0, Jj(r, t)]

)}
− 〈bvj ,0〉

{(
Cov[bvk,0, Ik(s, t)] + Cov[bvk,0, Ij(r, t)]

)
− i
(
Cov[bvk,0, Jk(s, t)] + Cov[bvk,0, Jj(r, t)]

)}
+
{(
Cov[bvj ,0, Ik(s, t)] + Cov[bvj ,0, Ij(r, t)]

)
− i
(
Cov[bvj ,0, Jk(s, t)] + Cov[bvj ,0, Jj(r, t)]

)}
×

×
{(
Cov[bvk,0, Ik(s, t)] + Cov[bvk,0, Ij(r, t)]

)
− i
(
Cov[bvk,0, Jk(s, t)] + Cov[bvk,0, Jj(r, t)]

)}]
dsdr

+

∫ t

t0

∫ t

t0

〈Gvk(s, t)Gvj (r, t)〉Gbvj (t0, r)fvk(s)

[
〈bvj ,0〉

−
(
Cov(bvj ,0, Ik(s, t)) + Cov(bvj ,0, Ij(r, t))

)
+ i
(
Cov(bvj ,0, Jk(s, t)) + Cov(bvj ,0, Jj(r, t))

)]
dsdr

+

∫ t

t0

∫ t

t0

〈Gvk(s, t)Gvj (r, t)〉Gbvk (t0, s)fvj (r)

[
〈bvk,0〉

−
(
Cov(bvk,0, Ik(s, t)) + Cov(bvk,0, Ij(r, t))

)
+ i
(
Cov(bvk,0, Jk(s, t)) + Cov(bvk,0, Jj(r, t))

)]
dsdr

+

∫ t

t0

∫ t

t0

〈Gvk(s, t)Gvj (r, t)〉fvk(s)fvj (r)dsdr
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〈AB〉 =

∫ t

t0

〈Gvk(t0, t)Gvj (s, t)〉Gbvj (t0, s)
[
〈bvj ,0〉〈vk,0〉+ Cov[bvj ,0, v

∗
k,0]

− 〈vk,0〉
{(
Cov[bvj ,0, Ij(s, t)] + Cov[bvj ,0, Ik(t0, t)]

)
− i
(
Cov[bvj ,0, Jj(s, t)] + Cov[bvj ,0, Jk(t0, t)]

)}
− 〈bvj ,0〉

{(
Cov[vk,0, Ij(s, t)] + Cov[vk,0, Ik(t0, t)]

)
− i
(
Cov[vk,0, Jj(s, t)] + Cov[vk,0, Jk(t0, t)]

)}
+
{(
Cov[bvj ,0, Ij(s, t)] + Cov[bvj ,0, Ik(t0, t)]

)
− i
(
Cov[bvj ,0, Jj(s, t)] + Cov[bvj ,0, Jk(t0, t)]

)}
×

×
{(
Cov[vk,0, Ij(s, t)] + Cov[vk,0, Ik(t0, t)]

)
− i
(
Cov[vk,0, Jj(s, t)] + Cov[vk,0, Jk(t0, t)]

)}]
ds

+

∫ t

t0

〈Gvk(t0, t)Gvj (s, t)〉fvj (s)
[
〈vk,0〉

−
(
Cov(vk,0, Ij(s, t)) + Cov(vk,0, Ik(t0, t)

)
+ i
(
Cov(vk,0, Jj(s, t)) + Cov(vk,0, Jk(t0, t)

)]
ds

+

∫ t

t0

〈Gvj (t0, t)Gvk(s, t)〉Gbvk (t0, s)
[
〈bvk,0〉〈vj,0〉+ Cov[bvk,0, v

∗
j,0]

− 〈vj,0〉
{(
Cov[bvk,0, Ik(s, t)] + Cov[bvk,0, Ij(t0, t)]

)
− i
(
Cov[bvk,0, Jk(s, t)] + Cov[bvk,0, Jj(t0, t)]

)}
− 〈bvk,0〉

{(
Cov[vj,0, Ik(s, t)] + Cov[vj,0, Ij(t0, t)]

)
− i
(
Cov[vj,0, Jk(s, t)] + Cov[vj,0, Jj(t0, t)]

)}
+
{(
Cov[bvk,0, Ik(s, t)] + Cov[bvk,0, Ij(t0, t)]

)
− i
(
Cov[bvk,0, Jk(s, t)] + Cov[bvk,0, Jj(t0, t)]

)}
×

×
{(
Cov[vj,0, Ik(s, t)] + Cov[vj,0, Ij(t0, t)]

)
− i
(
Cov[vj,0, Jk(s, t)] + Cov[vj,0, Jj(t0, t)]

)}]
ds

+

∫ t

t0

〈Gvj (t0, t)Gvk(s, t)〉fvk(s)
[
〈vj,0〉

−
(
Cov(vj,0, Ik(s, t)) + Cov(vj,0, Ij(t0, t)

)
+ i
(
Cov(vj,0, Jk(s, t)) + Cov(vj,0, Jj(t0, t)

)]
ds
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Cov(vk(t), b∗vk(t))Cov(vk(t), b∗vk(t))Cov(vk(t), b∗vk(t)) = 〈vkbvk〉 − 〈vk〉〈bk〉,

where

〈vk(t)bvk(t)〉 = Gbvk (t0, t)〈Gvk(t0, t)vk,0bvk,0〉

+

∫ t

t0

〈Gvk(s, t)(bvk(s) + fvk(s))bvk(t)〉ds

= 〈Gvk(t0, t)〉Gbvk(t0, t)

[
〈vk,0〉〈bvk,0〉+ Cov[vk,0, b

∗
vk,0

]

− 〈bvk,0〉
(
Cov[vk,0, Ik(t0, t)]− iCov[vk,0, Jk(t0, t)]

)
− 〈vk,0〉

(
Cov[bvk,0, Ik(t0, t)]− iCov[bvk,0, Jk(t0, t)]

)
+
(
Cov[vk,0, Ik(t0, t)]− iCov[vk,0, Jk(t0, t)]

)
×

×
(
Cov[bvk,0, Ik(t0, t)]− iCov[bvk,0, Jk(t0, t)]

)]

+

∫ t

t0

〈Gvk(s, t)〉Gbvk(t0, t)Gbvk(t0, s)
[
〈bvk,0〉2 + Cov[bvk,0, b

∗
vk,0

]

− 2〈bvk,0〉
(
Cov[bvk,0, Ik(s, t)]− iCov[bvk,0, Jk(s, t)]

)
+
(
Cov[bvk,0, Ik(s, t)]− iCov[bvk,0, Jk(s, t)]

)2]
ds

+

∫ t

t0

〈Gvk(s, t)〉Gbvk(t0, t)fvk(s)
[
〈bvk,0〉

− Cov[bvk,0, Ik(s, t)] + iCov[bvk,0, Jk(s, t)]
]
ds
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Cov(vk(t), b∗vj (t))Cov(vk(t), b∗vj (t))Cov(vk(t), b∗vj (t)) = 〈vkbvj 〉 − 〈vk〉〈bvj 〉

where

〈vk(t)bvj (t)〉 = Gbvj (t0, t)〈Gvk(t0, t)vk,0bvj ,0〉

+

∫ t

t0

〈Gvk(s, t)(bvk(s) + fvk(s))bvj (t)〉ds

= 〈Gvk(t0, t)〉Gbvj (t0, t)

[
〈vk,0〉〈bvj ,0〉+ Cov[vk,0, b

∗
vj,0 ]

− 〈bvj ,0〉
(
Cov[vk,0, Ik(t0, t)]− iCov[vk,0, Jk(t0, t)]

)
− 〈vk,0〉

(
Cov[bvj ,0, Ik(t0, t)]− iCov[bvj ,0, Jk(t0, t)]

)
+
(
Cov[bvj ,0, Ik(t0, t)]− iCov[bvj ,0, Jk(t0, t)]

)
×

×
(
Cov[vk,0, Ik(t0, t)]− iCov[vk,0, Jk(t0, t)]

)]

+

∫ t

t0

〈Gvk(s, t)〉Gbvj (t0, t)Gbvk(t0, s)
[
〈bvk,0〉〈bvj ,0〉+ Cov[bvk,0, b

∗
vj ,0]

− 〈bvk,0〉
(
Cov[bvj ,0, Ik(s, t)]− iCov[bvj ,0, Jk(s, t)]

)
− 〈bvj ,0〉

(
Cov[bvk,0, Ik(s, t)]− iCov[bvk,0, Jk(s, t)]

)
+
(
Cov[bvk,0, Ik(s, t)]− iCov[bvk,0, Jk(s, t)]

)
×

×
(
Cov[bvj ,0, Ik(s, t)]− iCov[bvj ,0, Jk(s, t)]

)]
ds

+

∫ t

t0

〈Gvk(s, t)〉Gbvj (t0, t)fvk(s)
[
〈bvj ,0〉

− Cov[bvj ,0, Ik(s, t)] + iCov[bvj ,0, Jk(s, t)]
]
ds
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Cov(vk(t), bvk(t))Cov(vk(t), bvk(t))Cov(vk(t), bvk(t)) = 〈vkb∗vk〉 − 〈vk〉〈b∗vk〉

where

〈vk(t)b∗vk(t)〉 =〈Gvk(t0, t)G
∗
bvk

(t0, t)vk,0b
∗
vk,0
〉

+

∫ t

t0

〈Gvk(s, t)(bvk(s) + fvk(s))b∗vk(t)〉ds

= G∗bvk(t0, t)〈Gvk(t0, t)〉
[
〈vk,0〉〈b∗vk,0〉+ Cov[vk,0, bvk,0]

− 〈b∗vk,0〉
(
Cov[vk,0, Ik(t0, t)]− iCov[vk,0, Jk(t0, t)]

)
− 〈vk,0〉

(
Cov[b∗vk,0, Ik(t0, t)]− iCov[b∗vk,0, Jk(t0, t)]

)
+
(
Cov[vk,0, Ik(t0, t)]− iCov[vk,0, Jk(t0, t)]

)
×

×
(
Cov[b∗vk,0, Ik(t0, t)]− iCov[b∗vk,0, Jk(t0, t)]

)]

+

∫ t

t0

〈Gvk(s, t)〉G∗bvk(t0, t)Gbvk(t0, s)
[
|〈bvk,0〉|2 + V ar(bvk,0)

− 〈b∗vk,0〉
(
Cov[bvk,0, Ik(s, t)]− iCov[bvk,0, Jk(s, t)]

)
− 〈bvk,0〉

(
Cov[b∗vk,0, Ik(s, t)]− iCov[b∗vk,0, Jk(s, t)]

)
+
(
Cov[bvk,0, Ik(s, t)]− iCov[bvk,0, Jk(s, t)]

)
×

×
(
Cov[b∗vk,0, Ik(s, t)]− iCov[b∗vk,0, Jk(s, t)]

)]
ds

+

∫ t

t0

〈Gvk(s, t)〉G∗bvk(t0, t)fvk(s)
[
〈b∗vk,0〉

− Cov[b∗vk,0, Ik(s, t)] + iCov[b∗vk,0, Jk(s, t)]
]
ds
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Cov(vk(t), bvj (t))Cov(vk(t), bvj (t))Cov(vk(t), bvj (t)) = 〈vkb∗vj 〉 − 〈vk〉〈b∗vj 〉

where

〈vk(t)b∗vj (t)〉 =〈Gvk(t0, t)G
∗
bvj

(t0, t)vk,0b
∗
vj ,0〉

+

∫ t

t0

〈Gvk(s, t)(bvk(s) + fvk(s))b∗vj (t)〉ds

= G∗bvj (t0, t)〈Gvk(t0, t)〉
[
〈vk,0〉〈b∗vj ,0〉+ Cov[vk,0, bvj ,0]

− 〈b∗vj ,0〉
(
Cov[vk,0, Ik(t0, t)]− iCov[vk,0, Jk(t0, t)]

)
− 〈vk,0〉

(
Cov[b∗vj ,0, Ik(t0, t)]− iCov[b∗vj ,0, Jk(t0, t)]

)
+
(
Cov[vk,0, Ik(t0, t)]− iCov[vk,0, Jk(t0, t)]

)
×

×
(
Cov[b∗vj ,0, Ik(t0, t)]− iCov[b∗vj ,0, Jk(t0, t)]

)]

+

∫ t

t0

〈Gvk(s, t)〉G∗bvj (t0, t)Gbvk (t0, s)
[
〈bvk,0〉〈b∗vj ,0〉+ Cov(bvk,0, bvj ,0)

− 〈b∗vj ,0〉
(
Cov[bvk,0, Ik(s, t)]− iCov[bvk,0, Jk(s, t)]

)
− 〈bvk,0〉

(
Cov[b∗vj ,0, Ik(s, t)]− iCov[b∗vj ,0, Jk(s, t)]

)
+
(
Cov[bvk,0, Ik(s, t)]− iCov[bvk,0, Jk(s, t)]

)
×

×
(
Cov[b∗vj ,0, Ik(s, t)]− iCov[b∗vj ,0, Jk(s, t)]

)]
ds

+

∫ t

t0

〈Gvk(s, t)〉G∗bvj (t0, t)fvk(s)
[
〈b∗vj ,0〉

− Cov[b∗vj ,0, Ik(s, t)] + iCov[b∗vj ,0, Jk(s, t)]
]
ds



92 ANDREW J. MAJDA AND MICHAL BRANICKI

Cov(vk(t), γvk(t))Cov(vk(t), γvk(t))Cov(vk(t), γvk(t)) = 〈vkγvk〉 − 〈vk〉〈γvk〉,
where

〈vk(t)γvk(t)〉 = Gγvk (t0, t)〈Gvk(t0, t)vk,0γvk,0〉+

∫ t

t0

〈Gvk(s, t)(bvk(s) + fvk(s))γvk(t)〉ds

= Gγvk(t0, t)〈Gvk(t0, t)〉
[
〈vk,0〉〈γvk,0〉+ Cov[vk,0, γvk,0]

− 〈γvk,0〉
(
Cov[vk,0, Ik(t0, t)]− iCov[vk,0, Jk(t0, t)]

)
− 〈vk,0〉

(
Cov[γvk,0, Ik(t0, t)]− iCov[γvk,0, Jk(t0, t)]

)
+
(
Cov[γvk,0, Ik(t0, t)]− iCov[γvk,0, Jk(t0, t)]

)
×
(
Cov[vk,0, Ik(t0, t)]− iCov[vk,0, Jk(t0, t)]

)]
+

∫ t

t0

〈Gvk(s, t)〉Gbvk(t0, s)Gγvk (t0, t)
[
〈bvk,0〉〈γvk,0〉+ Cov[bvk,0, γvk,0]

− 〈bvk,0〉
(
Cov[γvk,0, Ik(s, t)]− iCov[γvk,0, Jk(s, t)]

)
− 〈γvk,0〉

(
Cov[bvk,0, Ik(s, t)]− iCov[bvk,0, Jk(s, t)]

)
+
(
Cov[bvk,0, Ik(s, t)]− iCov[bvk,0, Jk(s, t)]

)
×
(
Cov[γvk,0, Ik(s, t)]− iCov[γvk,0, Jk(s, t)]

)]
ds

+

∫ t

t0

〈Gvk(s, t)〉Gγvk(t0, t)fvk(s)
[
〈γvk,0〉 − Cov[γvk,0, Ik(s, t)] + iCov[γvk,0, Jk(s, t)]

]
ds

Cov(vk(t), γvj (t))Cov(vk(t), γvj (t))Cov(vk(t), γvj (t)) = 〈vkγvj 〉 − 〈vk〉〈γvj 〉,
where

〈vk(t)γvj (t)〉 = Gγvj (t0, t)〈Gvk(t0, t)vk,0γvj ,0〉+

∫ t

t0

〈Gvk(s, t)(bvk(s) + fvk(s))γvj (t)〉ds

= Gγvj (t0, t)〈Gvk(t0, t)〉
[
〈vk,0〉〈γvj ,0〉+ Cov[vk,0, γvj ,0]

− 〈γvj ,0〉
(
Cov[vk,0, Ik(t0, t)]− iCov[vk,0, Jk(t0, t)]

)
− 〈vk,0〉

(
Cov[γvj ,0, Ik(t0, t)]− iCov[γvj ,0, Jk(t0, t)]

)
+
(
Cov[γvj ,0, Ik(t0, t)]− iCov[γvj ,0, Jk(t0, t)]

)
×
(
Cov[vk,0, Ik(t0, t)]− iCov[vk,0, Jk(t0, t)]

)]

+

∫ t

t0

〈Gvk(s, t)〉Gbvk(t0, s)Gγvj (t0, t)
[
〈bvk,0〉〈γvj ,0〉+ Cov[bvk,0, γvj ,0]

− 〈bvk,0〉
(
Cov[γvj ,0, Ik(s, t)]− iCov[γvj ,0, Jk(s, t)]

)
− 〈γvj ,0〉

(
Cov[bvk,0, Ik(s, t)]− iCov[bvk,0, Jk(s, t)]

)
+
(
Cov[bvk,0, Ik(s, t)]− iCov[bvk,0, Jk(s, t)]

)
×
(
Cov[γvj ,0, Ik(s, t)]− iCov[γvj ,0, Jk(s, t)]

)]
ds

+

∫ t

t0

〈Gvk(s, t)〉Gγvj (t0, t)fvk(s)
[
〈γvj ,0〉 − Cov[γvj ,0, Ik(s, t)] + iCov[γvj ,0, Jk(s, t)]

]
ds
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Cov(vk(t), U(t)) = 〈vkU〉 − 〈vk〉〈U〉,

where

〈vkU〉 = GU (t0, t)〈Gvk(t0, t)vk,0U0〉+

∫ t

t0

GU (t0, t)〈Gvk(bvk(s) + fvk(s))U0〉ds

= GU (t0, t)〈Gvk(t0, t)〉
[
〈vk,0〉〈U0〉+ Cov[vk,0, U0]

− 〈U0〉Cov[vk,0, Ik(t0, t)] + i〈U0〉Cov[vk,0, Jk(t0, t)]

− 〈vk,0〉Cov[U0, Ik(t0, t)] + i〈vk,0〉Cov[U0, Jk(t0, t)]

+
(
Cov[U0, Ik(t0, t)]− iCov[U0, Jk(t0, t)]

)
×

×
(
Cov[vk,0, Ik(t0, t)]− iCov[vk,0, Jk(t0, t)]

)]
+

∫ t

t0

〈Gvk(s, t)〉GU (t0, t)Gbvk(t0, s)
[
〈bvk,0〉〈U0〉+ Cov[bvk,0, U0]

− 〈bvk,0〉Cov[U0, Ik(s, t)] + i〈bvk,0〉Cov[U0, Jk(s, t)]

− 〈U0〉Cov[bvk,0, Ik(s, t)] + i〈U0〉Cov[bvk,0, Jk(s, t)]

+
(
Cov[bvk,0, Ik(s, t)]− iCov[bvk,0, Jk(s, t)]

)
×

×
(
Cov[U0, Ik(s, t)]− iCov[U0, Jk(s, t)]

)]
ds

+

∫ t

t0

〈Gvk(s, t)〉GU (t0, t)fvk(s)
[
〈U0〉

− Cov[U0, Ik(s, t)] + iCov[U0, Jk(s, t)]
]
ds

D.2. Statistics for the passive tracer fluctuations in the mean gradient
driven by a turbulent velocity field. As already mentioned earlier, we derive
here the tracer statistics for the reactive tracer in model (83); the statistics for the
passive tracer is obtained from the general formulas by setting the reaction rate
r = 0.

The path-wise solutions for the k-th tracer mode in (83a) are given by

Tk(t) = GTk(t0, t)Tk,0 − α
∫ t

t0

GTk(s, t)vk(s)ds, (205)

where Tk,0 = Tk(t = t0) and the Green’s function associated with (83a) is given by

GTk(s, t) = e−dTk (t−s)−ikLU (s,t), (206)

LU (s, t) =

∫ t

s

U(s′)ds′. (207)

The second-order statistics for the velocity field was derived in the previous section.
Here, we show how to compute the remaining statistics including the tracer modes.
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The mean for the tracer is given by

〈Tk(t)〉 = 〈GTk(t0, t)Tk,0〉 − α
∫ t

t0

〈GTk(s, t)Gvk(t0, s)vk,0〉ds

− α
∫ t

t0

∫ s

t0

〈GTk(s, t)Gvk(r, s)(bvk(r) + fvk(r))〉drds (208)

where 〈GTk(s, t)Gvk(r, s)〉 is a characteristic function of a Gaussian and can be
computed in a similar way to Gvk leading to

〈GTk(s, t)Gvk(r, s)〉 = e−d̃k(r,s,t)−〈Ivk (r,s)〉−i〈J̃k(r,s,t)〉×
× e 1

2V ar[Ivk (r,s)]− 1
2V ar[J̃k(r,s,t)]−iCov[Ivk (r,s),J̃k(r,s,t)] (209)

where

d̃k(r, s, t) = dTk(t− s) + dvk(s− r), (210)

J̃k(r, s, t) = kLU (s, t)− Jvk(r, s). (211)

Cov[Tk(t), Tj(t)]

Using (205) we find

Cov[Tk(t), Tj(t)] = 〈GTk(t0, t)G
∗
Tj (t0, t)Tk,0T

∗
j,0〉−〈GTk(t0, t)Tk,0〉〈G∗Tj (t0, t)T ∗j,0〉

+ α2

∫ t

t0

∫ t

t0

(
〈GTk(s, t)G∗Tj (r, t)vk(s)v∗j (r)〉−〈GTk(s, t)vk(s)〉〈G∗Tj (r, t)v∗j (r)〉

)
dsdr

− α
∫ t

t0

(
〈GTk(t0, t)G

∗
Tj (r, t)Tk,0v

∗
j (r)〉 − 〈GTk(t0, t)Tk,0〉〈G∗Tj (r, t)v∗j (r)〉

)
dr

− α
∫ t

t0

(
〈G∗Tj (t0, t)GTk(r, t)T ∗j,0vk(r)〉 − 〈G∗Tj (t0, t)T ∗j,0〉〈GTk(r, t)vk(r)〉

)
dr (212)

Note that all terms in (212) have the form 〈zeξ〉 or 〈zweξ〉 where z, w, ξ are Gaussian
variables; consequently, all terms in (212) can be evaluated using the identities (167)
and (189).

In the statistically steady state, the mean of the tracer becomes

〈Tk(t)〉 = −α
∫ t

−∞

∫ s

−∞
〈GTk(s, t)Gvk(r, s)〉fvk(r)drds (213)

and the tracer spectrum can be obtained from

Cov(Tj(t), Tk(t)) = α2

∫ t

−∞

∫ t

−∞

(
〈GTj (s, t)G∗Tk(s′, t)vj(s)v

∗
k(s′)〉

− 〈GTj (s, t)vj(s)〉〈GTk(s′, t)vk(s′)〉∗
)

dsds′ (214)
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where

〈GTj (s, t)G∗Tk(s′, t)vj(s)v
∗
k(s′)〉 =∫ s

−∞

∫ s′

−∞

〈
Gvj (r, s)G

∗
vk

(r′, s′)GTj (s, t)G
∗
Tk

(s′, t)
〉
fvj (r)f

∗
vk

(r′)drdr′

+ σ2
vk
δjk

∫ min(s,s′)

−∞

〈
GTk(s, t)G∗Tk(s′, t)Gvk(r, s)G∗vk(r, s′)

〉
dr′ (215)

Cov(Tk(t), U(t))

We find that

Cov(Tk(t), U(t)) =GU (t0, t)
(
〈GTk(t0, t)Tk,0U0〉 − 〈GTk(t0, t)Tk,0〉〈U0〉

)
− αGU (t0, t)

∫ t

t0

(
〈GTk(s, t)vk(s)U0〉 − 〈GTk(s, t)vk(s)〉〈U0〉

)
ds

(216)

Cov(Tk(t), vj(t))

Cov(Tk(t), vj(t)) = 〈GTk(t0, t)G
∗
vj (t0, t)Tk,0v

∗
j,0〉 − 〈GTk(t0, t)Tk,0〉〈G∗vj (t0, t)v∗j,0〉

− α
∫ t

t0

∫ t

t0

(
〈GTk(s, t)G∗vj (r, t)vk(s)(b∗vj (r) + f∗vj (r))〉−〈GTk(s, t)vk(s)〉〈G∗vj (r, t)(b∗vj (r) + f∗vj (r))〉

)
dsdr

+

∫ t

t0

(
〈GTk(t0, t)G

∗
vj (r, t)(b

∗
vj (r) + f∗vj (r))Tk,0〉 − 〈GTk(t0, t)Tk,0〉〈G∗vj (r, t)(b∗vj (r) + f∗vj (r))〉

)
dr

− α
∫ t

t0

(
〈GTk(s, t)G∗vj (t0, t)vk(s)v∗j,0〉 − 〈GTk(s, t)vk(s)〉〈G∗vj (t0, t)v∗j,0〉

)
dr (217)

Cov(Tk(t), v∗j (t))

Cov(Tk(t), v∗j (t)) = 〈GTk(t0, t)Gvj (t0, t)Tk,0vj,0〉 − 〈GTk(t0, t)Tk,0〉〈Gvj (t0, t)vj,0〉

− α
∫ t

t0

∫ t

t0

(
〈GTk(s, t)Gvj (r, t)vk(s)(bvj (r) + fvj (r))〉−〈GTk(s, t)vk(s)〉〈Gvj (r, t)(bvj (r) + fvj (r))〉

)
dsdr

+

∫ t

t0

(
〈GTk(t0, t)Gvj (r, t)(bvj (r) + fvj (r))Tk,0〉 − 〈GTk(t0, t)Tk,0〉〈Gvj (r, t)(bvj (r) + fvj (r))〉

)
dr

− α
∫ t

t0

(
〈GTk(s, t)Gvj (t0, t)vk(s)vj,0〉 − 〈GTk(s, t)vk(s)〉〈Gvj (t0, t)vj,0〉

)
dr (218)

Cov(Tk(t), γvj (t))
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Cov(Tk(t), γvj (t)) = Gγvj (t0, t)
(
〈GTk(t0, t)Tk,0γvj ,0〉 − 〈GTk(t0, t)Tk,0〉〈γvj ,0〉

)
−αGγvj (t0, t)

∫ t

t0

(
〈GTk(s, t)vk(s)γvj ,0〉 − 〈GTk(s, t)vk(s)〉〈γvj ,0〉

)
ds

(219)

Cov(Tk(t), bvj (t))

Cov(Tk(t), bvj (t)) = G∗bvj (t0, t)
(
〈GTk(t0, t)Tk,0b

∗
vj ,0〉 − 〈GTk(t0, t)Tk,0〉〈b∗vj ,0〉

)
−αG∗bvj (t0, t)

∫ t

t0

(
〈GTk(s, t)vk(s)b∗vj ,0〉 − 〈GTk(s, t)vk(s)〉〈b∗vj ,0〉

)
ds

(220)

Cov(Tk(t), b∗vj (t))

Cov(Tk(t), bvj (t)) = Gbvj (t0, t)
(
〈GTk(t0, t)Tk,0bvj ,0〉 − 〈GTk(t0, t)Tk,0〉〈bvj ,0〉

)
(221)

−αGbvj (t0, t)

∫ t

t0

(
〈GTk(s, t)vk(s)bvj ,0〉 − 〈GTk(s, t)vk(s)〉〈bvj ,0〉

)
ds

(222)

As already mentioned earlier all the terms in the above equations can be evaluated
using (189).

D.3. White noise limits of the turbulent Rossby waves in the turbulent
tracer dynamics. Here, we consider the dynamics of the turbulent tracer discussed
in §6 in the limit of rapidly decorrelating shear waves; this procedure is similar to
that discussed in [92] and in Appendix B.2. The limiting dynamics, described by
(230), was used in §7 to illustrate possible numerical facts in long time integrations
of stochastic systems.

Consider the simplified model (82) with bvk ≡ 0 for turbulent diffusion of a
passive tracer with mean gradient

a) Ṫ ′k(t) = (−dTk + iωTk(t))T ′k(t)− αvk(t),

b) dU(t) =
[
− dUU(t) + fU (t)

]
dt+ σUdWU (t),

c) dvk(t) =
[
(−dvk − γvk(t) + iωvk(t))vk(t) + fvk(t)

]
dt+ σvkdWvk(t),

d) dγvk(t) = −dγvk γvk(t)dt+ σγvkdWγvk
(t),

(223)

where ωTk = −U(t)k and ωvk = akU(t) + bk as discussed in §6. Here, we consider
a limiting dynamics of (223) when the waves vk decorrelate very fast and can be
effectively considered as white noise.
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First, decompose the waves into two parts

vk(t) = v̄k|(U,γvk )(t) + v′k|(U,γvk )(t), (224)

where v̄k|(U,γvk ) is a conditional mean of the shear flow for given realization of the

cross-sweep and the damping fluctuations. The second part, v′k|(U,γvk ), in (224)

denotes fluctuations of the shear around the conditional mean. From (223) the
dynamics of the conditional mean is given by

dv̄k|(U,γvk )

dt
= (−d̂vk − γvk(t) + iωvk(t))v̄k|(U,γvk ) + fvk(t), (225)

and the fluctuations around the mean satisfy the following Ito SDE

dv̄′k|(U,γvk ) = (−d̂vk − γvk(t) + iωvk(t))v′k|(U,γvk ) + σvkdWvk(t). (226)

Following the analogous procedure to that presented in Appendix B.2 and [92], in
the limit when

dvk →∞, σvk →∞, ηvk = σvk/dvk = const.,

the fluctuations v′k|(U,γvk ) approach white noise

dv′k|(U,γvk )(t)→ ηvkdWvk(t). (227)

In order to determine the mean v̄k|(U,γvk ) in the white noise limit, suppose that

the forcing fvk grows as the mean dissipation d̂vk in the white noise limit, i.e.
fvk = dvk f̄vk , where f̄k is independent of dvk . Then, using the general solution

v̄k|(U,γvk ) = Gvk(t0, t)vk|(U,γvk )(t0) +

∫ t

t0

Gvk(s, t)fvk(s)ds (228)

we find that v̄k|(U,γvk ) → f̄vk(t) for dvk → ∞. Consequently, the shear velocity

(224) in the white noise limit of rapidly decorrelating fluctuations can be written
as

vk(t) = f̄vk(t) + ηvkẆvk(t), (229)

so that the model for the turbulent tracer becomes

a) dT ′k(t) =
[
(−dTk + iωTk(t))T ′k(t)− αf̄vk(t)

]
dt− αηvkdWvk(t),

b) dU(t) =
[
− dUU(t) + fU (t)

]
dt+ σUdWU (t).

(230)

where ωTk(t) = −kU(t), α is the large scale tracer gradient and f̄vk is a known
deterministic function.

The system (230) with the turbulent finitely correlated zonal jet and additive
white noise is exactly solvable and the second-order statistics for the system (230)
can be found in a similar way to that for the full system (83) by utilizing the
identities for 〈zweξ〉 with Gaussian variables z, w, ξ.

Invariant measures for the system (230)Invariant measures for the system (230)Invariant measures for the system (230)

It is important to note that the system (230) has a Gaussian invariant measure even
for the turbulent Gaussian zonal jet U(t). This can be deduced by applying the
following transformation to (230)

T ′k = e
i
∫ t
t0
ωTk (r)dr

T̃k + α

∫ t

t0

e−dTk (t−s)+i
∫ t
s
ωTk (r)drf̄vk(s)ds, (231)
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which after applying the rules of Ito calculus leads to

dT̃k(t) = −dTk T̃k(t)dt− αηvkdW̃vk(t), (232)

which has complex Gaussian solutions (for Gaussian initial data) with independent

components since W̃vk(t) = 1
2

(
W̃R
vk

(t) + iW̃ I
vk

(t)
)

has independent components. It

is easy to see that T ′k is also Gaussian for arbitrary σU provided that either α = 0
or f̄vk = 0.
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