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Spatial Fay-Herriot Models for Small Area

Estimation with Functional Covariates

Aaron T. Porter1, Scott H. Holan2, Christopher K. Wikle3, Noel Cressie2, 4

Abstract

The Fay-Herriot (FH) model is widely used in small area estimation and uses auxiliary
information to reduce estimation variance at undersampled locations. We extend the type of
covariate information used in the FH model to include functional covariates, such as social-
media search loads, or remote-sensing images (e.g., in crop-yield surveys). The inclusion of
these functional covariates is facilitated through a two-stage dimension reduction approach
that includes a Karhunen-Loéve expansion followed by stochastic search variable selection.
Additionally, the importance of modeling spatial autocorrelation has recently been recognized
in the FH model; our model utilizes the conditional autoregressive class of spatial models in
addition to functional covariates. We demonstrate the effectiveness of our approach through
simulation and through the analysis of American Community Survey data. We use Google
Trends search curves as functional covariates to analyze changes in rates of household Spanish
speaking in the eastern half of the United States.
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1 Introduction

The Fay-Herriot (FH) model (Fay and Herriot, 1979) is one of the primary tools used in

small area estimation (SAE) (e.g., Jiang et al., 2011, Roy, 2007, You and Zhou, 2011, among

others). Model-based estimates are widely used in SAE as they represent a way to borrow

strength across locations and thereby reduce the variance of the small area estimate (Rao,

2003). These models utilize scalar auxiliary information to obtain an “indirect” estimate of

the small-area variable of interest, rather than a direct survey estimate. Critically, the FH

model is structured in such a way as to guarantee model-based variance reduction in the

variable of interest relative to that of the direct survey estimate (Rao, 2003, Chapter 4).

As government budgets remain flat or decline, auxiliary information that is relatively

inexpensive and readily available, but still representative of the population under considera-

tion, is of substantial interest. Functional covariates based on internet sources, social media,

or other sources (e.g., remotely sensed image data) may augment or replace scalar auxiliary

information for a wide variety of surveys. The advantage of these types of covariates is that

they are often readily available and provide significant information related to a diverse set

of demographic and other survey outcomes. For instance, Twitter tweets or Google searches

can be associated with a precise location and searched for specific terms or hashtags. Alter-

natively, dimension-reduced representations of satellite imagery could be used as auxiliary

information in modeling outcomes from agricultural surveys.

Not surprisingly, many federal agencies (including Bureau of Labor Statistics among

others) have now realized the potential importance of harnessing these massive, readily

available data sources. Methodologies relying on “web-scraping” for the collection of data

and use of retail scanner and social-media data have emerged as avenues of particular interest

(e.g., see the article by Michael W. Horrigan in Amstat News, January 2013, pp. 25-27).

Consequently, it is extremely important that sound and effective statistical methodology be
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developed to accommodate this abundantly rich class of “Big Data” resources.

Functional data analysis (FDA) methodology allows for the use of curves, images, and

other “objects” as either independent or dependent variables in a statistical framework (e.g.,

Ramsay and Silverman, 2005, 2006). The use of FDA in a (generalized) linear statistical

modeling framework is well developed, with a substantial amount of research occurring over

the last decade. For example, James (2002) and Müller and Stadtmüller (2005) develop

generalized linear models with functional covariates. In addition, Yao et al. (2005) consider

such models in a longitudinal framework and Goldsmith et al. (2011) develop penalization

methods for regression-model selection with functional covariates. From a Bayesian perspec-

tive, Baladandayuthapani et al. (2008) work with spatially correlated functional data and

Crainiceanu et al. (2009) develop multilevel functional regression models.

Survey sampling followed by SAE is commonly implemented by official-statistics agencies,

but in this article we propose a shift from the usual FH model in two ways. We propose a

spatial FH model that uses functional and/or image covariates as auxiliary information. Ex-

amples of such covariates include Google Trends curves, Twitter hashtag counts, or remotely

sensed satellite imagery. The use of social media and other internet-based predictors is a

developing field (see, e.g., Signorini et al., 2011). However, statistical modeling of such data

in the context of SAE using functional covariates in spatial FH models remains undeveloped.

Our model proceeds from a Bayesian perspective and, thus, it allows a natural quan-

tification of uncertainty through the posterior distributions. Further, we demonstrate the

importance of accounting for spatial correlation often present in SAE. The Bayesian paradigm

provides a natural hierarchical framework for incorporating latent spatial random effects. In

particular, we propose a FH model that utilizes conditional autoregressive (CAR) random

effects. Finally, we use functional covariates that are curves generated from Google Trends

(Google, 2012), in a statistical model of state-level American Community Survey (ACS) data

(http://www.census.gov/acs).
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The ACS is an on-going survey performed by the United States Census Bureau that

provides single-year and multiyear estimates for a large number of demographic variables.

Publicly available data (known as “multiyear estimates”) provide one-year estimates for

areas with large populations, and three- and five-year period estimates for smaller areas,

such as census tracts. The public-use microdata samples (PUMS) are also available for a

diverse set of variables and can be used to model smaller geographies, known as public use

microdata areas (PUMAs) (see http://www.census.gov/acs/www/data_documentation/

public_use_microdata_sample/ for comprehensive details). The methodology we present

here could also be used to fit statistical models to PUMS.

Typically, one would perform SAE on smaller geographies than states, such as at the

county or census-tract level. Our reason for analyzing data using each state as a unit is

that currently the Google Trends data is available at the state level (although one can also

obtain search data for the ten largest cities in any state). For any particular problem, social

scientists may find Twitter data and other social-media data at smaller geographies than the

state level, to which our SAE methodology could be applied.

The structure of this paper is as follows. We first introduce the motivating data in

Section 2. We provide the methodological details of our approach in Section 3, and we

demonstrate the variance-reduction properties of our model via simulation in Section 4. An

analysis using these techniques in the context of ACS data on changes in household Spanish-

speaking is given in Section 5. We close with a discussion in Section 6.

2 Motivating Data: The American Community Survey

The rate of change of Spanish-speaking persons in the home in different areas of the country

may provide insight into immigration patterns as well as provide a marker for socio-economic

factors. The standard errors of the ACS estimates for language variables tend to be larger
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than most other variables in the survey, and this is even true at larger geographies, such as

the state level. To improve estimates, we incorporate Google Trends data (Google, 2012) as

auxiliary information in a framework that uses a spatial FH model with functional covariates.

Google Trends provide state-level weekly time series indicating scaled search loads in various

categories (e.g., see Figure 1).

By considering Google Trends searches that contain commonly used Spanish words, we

are able to develop a proxy measure for household Spanish-speaking. It is reasonable to as-

sume that individuals who speak Spanish at home are more likely to perform internet searches

in Spanish. The ubiquitous presence of Google, as well as many social-media services, make

these searches a readily available source of data.

When determining which Google Trends data should be used as a proxy for the pattern of

household Spanish speaking, our approach was to analyze the Google searches of relatively

common Spanish words. Several candidate words were selected, and we found relatively

high search volume for the words “y,” “el,” and “yo,” which mean “and,” “the,” and “I” in

English, respectively. These words rarely appeared in searches in other languages. We base

our simulation study (Section 4) and application (Section 5) on these search results.

Google Trends data present several issues that must be addressed prior to analysis. The

first issue is related to the way that Google Trends data are defined.5 Although they can be

scaled and normalized to a fixed time point by state, the raw data cannot be directly accessed

(Google, 2012). This means that the values of the Google Trends data cannot be compared

between states, and only within state comparisons are valid. To remedy this problem, we fix

the time frame of 2008− 2009 as our period of interest. We standardize each curve to have

5The Google Trends data used in this article were downloaded prior to October 2012. Subsequently,

Google changed the normalization applied to the data and, therefore, the Google Trends data, as presented

here, are no longer available for download; however, they are available upon request from the corresponding

author. Nevertheless, all of the results presented in this article are equally applicable to the currently

available Google Trends data.
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a within-curve mean of zero and a within-curve standard deviation of one. This results in

curves with the same scale from state to state, which facilitates extraction of curve features,

rather than spurious differences in magnitude.

Because we have considered search loads from 2008 − 2009, we need to perform some

standardization of the outcome. The outcome we consider for each state is defined as

% households speaking Spanish in 2009−% households speaking Spanish in 2008

% households speaking Spanish in 2008
. (1)

The western and eastern halves of the country may behave differently with regard to rates-

of-change of Spanish-speaking; so, for illustration, we restrict our analysis to 20 states and

the District of Columbia in the eastern half of the United States. This yields 21 locations

of interest, many of which have traditionally had a low number of native Spanish speakers.

As a consequence, relatively large changes may appear, but the margins of error (MOE) for

the ACS estimates of Spanish speaking tend to be larger in the eastern half of the country.

Considering small areas in the eastern half gives the FH model the potential to provide a

great deal of improvement when compared to the public-use ACS estimate.

Iowa, Mississippi, Arkansas, Virginia, West Virginia, Delaware, Rhode Island, Vermont,

New Hampshire, and Maine are excluded from our analysis. There were two reasons that

a state was excluded from consideration. The first is that the search load for more than

20% of the weeks under consideration did not meet the threshold that Google Trends uses

to indicate search loads. When the threshold was not met, Google Trends reports the value

to be zero. Removing states with 20% or more zeroes helped to mitigate Google Trends’

censoring of the data. The second reason a state was eliminated was because after January

1, 2010, Google Trends redefined, and presumably improved, their algorithm for tagging

searches to a location (Google, 2012). Certain states, such as Virginia, exhibited markedly

different behavior after that date, which casts doubt on the accuracy of the search loads

during the period 2008-2009 that we considerd. Thus, we excluded these states from our
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analysis. The final count of the small areas is n = 21, and they are listed in Table 1.

The approach presented here is certainly not unique to estimating rates of household

Spanish-speaking. Internet searches or social-media sources contain high-dimensional data

that, in principle, could be used in many applications of SAE, thus increasing the auxiliary

information that could be used to improve survey-based estimates.

3 Functional Covariates in the Fay-Herriot Model

The model we propose can be viewed as an extension of the traditional FH model. Specifi-

cally, we propose including functional covariates as a source of auxiliary information, along

with a random effect that captures spatial correlation. To model the spatial correlation, we

use a CAR structure.

For i = 1, . . . , n, the traditional FH model is given by

Yi = θi + εi, (2)

θi = β0 + x′iβx + ui, (3)

where εi ∼ N(0, σ2
i ) and ui ∼ N(0, σ2

u), with all error terms, {εi} and {ui}, independent.

Here, θi is the superpopulation mean of the parameter of interest for small area i, Yi is a

design-unbiased estimate of θi, and the variance of εi, σ
2
i , is estimated based on the survey

design and assumed known. The auxiliary information at small area i is a q-dimensional

vector of scalar covariates denoted by xi, with associated parameters βx and the intercept

is given by β0.

There is an alternate representation of (3): If we let [A|B] represent the conditional

distribution of a generic random quantity A given the generic random quantity B, then (3)

can be written as:

[Yi|θi, σ2
i ] = (2πσ2

i )
−1/2 exp

{
−1

2
(Yi − θi)/σ2

i

}
.
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We call the distribution [Yi|θi, σ2
i ] the “data model” following the hierarchical modeling

terminology in Cressie and Wikle (2011) in order to clarify that the data responses are

specified conditionally on the superpopulation mean and sampling error.

3.1 Dimension-Reduced Functional Covariates

Let zij(t) denote the j-th functional covariate defined over time domain T and associated with

the i-th small area. Note that one could also include spatially correlated functional covariates

(e.g., Baladandayuthapani et al., 2008) or image covariates (e.g., Holan et al., 2010, 2012) in

this framework. However, for illustration, we focus here on temporal functional covariates.

An extension of model (3), that includes J functional covariates, can be written as

θi = β0 +
J∑
j=1

∫
T
βj(t)zij(t) dt+ x′iβx + ui; i = 1, . . . , n, (4)

where {βj(t) : t ∈ T } is a square-integrable functional parameter associated with the j-th

functional covariate. Now, for each j, assume that {φjk(t) : k = 1, . . . ,∞} forms a complete

orthonormal basis in T . Then, we have the unique representation,

zij(t) =
∞∑
k=1

ξij(k)φjk(t), (5)

where {ξij(k) : k = 1, 2, . . .} are expansion coefficients of ξij(·), the j-th functional covariate

associated with the i-th small area. We also have the unique representation,

βj(t) =
∞∑
k=1

bj(k)φjk(t), (6)

where {bj(k) : k = 1, 2, . . .} are the expansion coefficients of βj(·), the j-th square-integrable

functional parameter. From the orthonormality property of the basis functions and upon

substitution of (5) and (6), (4) can be alternatively expressed as:

θi = β0 +
J∑
j=1

∞∑
k=1

bj(k)ξij(k) + x′iβx + ui. (7)
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In principle, any complete orthonormal basis set could be used to represent the func-

tional covariates. In our analysis, we utilize a Karhunen-Loéve (K-L) expansion; see Jolliffe

(2002, Chapter 12), Cressie and Wikle (2011, Chapters 4, 5), and the references therein.

Following Cressie and Wikle (2011, Chapter 5), assume {zij(·)} are stochastic processes with

E(zij(t)) = 0, and for t, t′ ∈ T , define the temporal covariance function for the j-th func-

tional covariate as C0,j(t, t
′) = E(Zij(t)Zij(t

′)), which is assumed to be invariant across small

areas (see Cressie and Wikle, 2011, p. 267, for an analogous definition of a spatial covariance

function that is invariant in time). Thus, the subscript “0” serves to remind us that this is

effectively a spatio-temporal covariance function for “lag 0” in space and is invariant over

all spatial small areas. Then, assuming this covariance is continuous and square-integrable,

we can write

C0,j(t, t
′) =

∞∑
k=1

λjkψjk(t)ψjk(t
′),

where λj1 ≥ λj2 ≥ · · · are the eigenvalues and {ψjk(·) : k = 1, 2, . . .} are the orthonormal

eigenfunctions that solve the Fredholm integral equation (e.g., Papoulis, 1965, p. 457-461),∫
T
C0,j(t, t

′)ψjk(t
′)dt′ = λjkψjk(t); k = 1, 2, . . . , t ∈ T . (8)

Because the eigenfunctions, {ψjk(·) : k = 1, 2, . . .}, form a complete orthonormal basis, zij(t)

can be written as,

zij(t) =
∞∑
k=1

ξij(k)ψjk(t), (9)

where {ξij(k) : k = 1, 2, . . .} are uncorrelated, mean-zero, variance {λjk : k = 1, 2, . . .}

random variables, respectively. Thus, one can see that the K-L temporal basis functions

{ψjk(t)} in (9) play the role of the general temporal basis functions {φjk(t)} in (5).

In practice, for T discrete times {t1, t2, . . . , tT}, the empirical temporal basis functions,

ψ̃jk ≡ (ψ̃jk(t1), ..., ψ̃jk(tT ))′, are obtained from a numerical solution of (8). For cases where
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the discrete times are equally spaced, this is equivalent to solving the spectral decomposi-

tion of the empirical temporal covariance matrix (e.g., Cressie and Wikle, 2011, Chapter

5): Ĉ0,j = Ψ̃jΛ̃jΨ̃
′
j, where Ψ̃j ≡ {ψ̃j1, . . . , ψ̃jT}, Λ̃j ≡ diag(λ̃j1, . . . , λ̃jT ), and Ĉ0,j ≡

(n − 1)−1
∑n

i=1(zij − µ̂j)(zij − µ̂j)′, for µ̂ij ≡ n−1
∑n

i=1 zij and zij ≡ (zij(t1), . . . , zij(tT ))′.

Note, in some applications, one may consider µ̂j ≡ µ̂·j1, where µ̂·j is the grand mean,

µ̂·j ≡ (nT )−1
∑n

i=1

∑T
t=1 zij(t). A comprehensive discussion of issues associated with the cal-

culation of empirical basis functions in the discrete K-L framework can be found in Cressie

and Wikle (2011, Chapter 5).

In practice, the summation in (7) must be truncated, such that

θi = β0 +
J∑
j=1

Kj∑
k=1

bj(k)ξij(k) + x′iβx + ui, (10)

where Kj < T . Then equations (2) and (10) together represent a FH model that includes

both scalar and functional covariates. Typically, Kj is chosen such that some predetermined

percentage (e.g., 95%) of variation in the function is retained. That is, Kj is the smallest

integer K ≤ T such that
∑K

k=1 λ̃jk/
∑T

k=1 λ̃jk ≥ 0.95. However, in our framework, this only

represents an initial phase of dimension-reduction. Subsequent dimension-reduction proceeds

by stochastic search variable selection (SSVS) (George and McCulloch, 1993, 1997).

Our Bayesian SSVS requires prior distributions for the components of bj ≡ (bj(1), . . . , bj(Kj))
′,

j = 1, . . . , J , and of βx in (10). In general, when interest resides in a substantial number of

submodels, as is the case in the examples we consider, SSVS algorithms provide an effective

means of model selection (e.g., see George, 2000, for a comprehensive overview). For exam-

ple, recall that βx = (β1, β2, . . . , βp)
′ consists of p (potential) covariates. Consider the prior

distribution,

β`|γ` ∼ γ`N(0, c`τ
2
` ) + (1− γ`)N(0, τ 2` ); ` = 1, . . . , p, (11)

where conditional independence of {β`} is assumed, and γ` are specified at the next level of

the hierarchy to have independent Bernoulli(π`) distributions, with parameter 0 < π` < 1,
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for ` = 1, . . . , p. In this context, π` represents the prior probability that β` should be

included in the model, and γ` = 1 indicates that the `-th variable (` = 1, . . . , p) is included

in the model. Now, typically, c`, τ`, and π` are taken as fixed hyperparameters; George and

McCulloch (1993, 1997) present several alternatives for their specification. Specifically, they

recommend taking τ` to be small so that when γ` = 0 it is sensible to specify an effective

prior for β` that is close to zero. Additionally, in general, it is advantageous to take c` to be

large (greater than 1) so that if γ` = 1, then the prior favors a non-zero β`. For j = 1, . . . , J ,

selection of the elements of bj proceeds in an identical manner to selection of the elements of

βx, with prior mutual independence between {bj} and βx assumed. For further discussion

surrounding SSVS as it relates to functional data modeling, see Holan et al. (2010, 2012)

and the references therein.

3.2 Spatial Random Effects

In extensions of the basic FH model, the vast majority of papers in the literature assume

independent Gaussian latent random effects for u = (u1, . . . , un)′. Instead, the model we

propose assumes spatially correlated random effects based on the CAR model. Other spatial

models, such as SAR models and geostatistical models have been used (see, e.g., Sengupta

and Cressie, 2013, for a review and comparison of these). CAR modeling for estimation in

small areas dates back to Besag et al. (1991); see also Leroux et al. (1999) and MacNab

(2003), who utilize such a model to estimate rates for non-rare diseases in small areas.

The CAR model has also been employed in the FH structure (e.g., Cressie, 1990, Gomez-

Rubio et al., 2010, You and Zhou, 2011). In addition, Torabi (2011) has implemented

the intrinsic CAR (ICAR) model to account for the spatial effects in a spatio-temporal

hierarchical Bayesian FH model. We utilize the same ICAR structure here, now in the

presence of functional covariates.
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The use of an ICAR prior allows the latent spatial characteristics of the data to be

modeled directly, which facilitates the borrowing of strength across spatial units. The ICAR

formulation is due to Besag et al. (1991). In this setting, define

ui|{uj 6=i} ∼ N

(∑
i∼j

uj
wi+

,
σ2
u

wi+

)
, (12)

where the notation “i ∼ j” denotes that small areas i and j are neighbors (e.g., they share

a border), and the term wi+ indicates the number of neighbors associated with small area

i. The ICAR model defined by (12) yields an Intrinsic Gaussian Markov Random Field

(IGMRF) (Rue and Held, 2005), which corresponds to an improper prior distribution in the

hierarchical model we propose. The precision matrix of this IGMRF has the form

Σ−1u = σ−2u (Dw −W),

where Dw is a diagonal matrix with element (i, i) equal to wi+, the number of neighbors

of small area i. Further, the (i, j)-th element of W equals one if small areas i and j are

neighbors, and zero otherwise. The diagonal of W is set to zero since small area i is not a

neighbor of itself.

The improper prior is due to a linear dependency in the columns of (Dw −W), which

can be seen by post-multiplying this matrix by a vector of ones and noting that it yields

a vector of zeroes. Despite its impropriety, the ICAR prior distribution is often used, as

it yields a proper posterior distribution for many commonly used data models, such as the

Gaussian, Poisson, and Binomial distributions. The ICAR prior implies a smoother spatial

process than can be obtained from a CAR prior, which facilitates more borrowing of strength

between spatial units. A “sum-to-zero” constraint,
∑n

i=1 ui = 0, is needed allow the intercept

term in the model to be estimable; if not enforced, the intercept and spatial latent effects

are linearly dependent. Fast algorithms for sampling u subject to
∑n

i=1 ui = 0 can be found

in Rue and Held (2005), which we will need in our analysis..
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In conjunction with a Gaussian data model, the ICAR prior yields a proper Gaussian

posterior distribution for {ui : i = 1, . . . , n}. This makes the ICAR (and CAR models

in general) convenient for modeling the spatial dependency in the FH framework, where

Gaussian data models are typically assumed. In a hierarchical modeling framework, of which

the FH model is a special case, the posterior distribution is often simulated using a Gibbs

sampler, made up of a sequence of Gibbs steps. When an ICAR or CAR prior is used with

a non-Gaussian data model, some of the Gibbs steps are more likely to involve Metropolis

sampling or numerical approximations.

4 Simulation Study

The simulation study we consider is designed to evaluate the performance of our model (2),

(10), (11), and (12) using simulated data that is calibrated to behave like our motivating

ACS example. In particular, we consider the effect of using functional covariate information

and spatial correlation, both within the FH framework. We assess performance in terms of

reduction of variance of the small area estimates.

Using the expansion coefficients from (10), based on the detrended time series (see Step

2, Appendix A), we generated 250 data sets according to the algorithm found in Appendix

A. For each data set we performed a FH-CAR-SSVS analysis and our MCMC algorithm

consisted of 100,000 iterations with the first 2,000 discarded for burn-in. As mentioned,

the FH model yields a guaranteed decrease in estimation variance, and the long chains are

required to achieve sufficiently low Monte Carlo error that these variance improvements can

be verified. In this setting, all of the full conditional distributions are of standard forms and

straightforward to derive. As such, Gibbs sampling was used for all model parameters. The

full conditional distributions of the parameters can be found in Appendix B. The model used
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for simulating the data {Ŷi} is

Ŷi = θ̂i + εi

θ̂i = β0 +
K∑
k=1

b(k)ξ̂i(k) + ui,

where ξ̂i(k) is derived from ẑi(t) − z, with ẑi(t) being time series simulated to behave like

the Google Trends curves for the search term “el” according to the algorithm in Appendix A

(i.e., see Step 5 of Appendix A). That is, the data are simulated using just one curve for each

small area. Finally, for this simulation, {ui} where assumed to follow the ICAR structure

specified in (12) with parameters detailed in Step 8 of Appendix A.

The estimated model for each of the 250 data sets consisted of (2), with the following

model for θi

θi = β0 +
13∑
k=1

b(k)ξi(k) + ui.

In this case, {ui : i = 1, . . . , n} follows the ICAR model given in (12), with σ2
u ∼

IG(.001, .001) and a “sum-to-zero” constraint imposed on the elements of u. Finally, we

assumed β0 ∼ N(0, σ2
β), with σ2

β ∼ IG(0.001, 0.001).

Our primary interest is the reduction in the variance associated the estimate of the survey

quantity of interest. To evaluate the variance reduction, we compute

σ2
i − var(θ̂i)

σ2
i

× 100%, (13)

for i = 1, . . . , n. For each of the 250 simulated data sets, three analyses were performed. The

first analysis was performed using the Spatial FH model with functional covariates described

in (10) (henceforth called the “SFFH” model). The second model was a FH model with

functional covariates and independent Gaussian spatial effects, as is typically done in the

FH framework (henceforth called the “FFH” model). The third model includes an ICAR

prior on the latent spatial effects, but ignores the functional predictors and contains no

13



auxiliary information (henceforth called the “Spatial Only” model). In general, one would

also include a nonspatial nonfunctional FH model that utilizes only scalar covariates, but

we choose not to since our simulated data does not include scalar covariates. Estimates of

the mean of the variance reductions can be found in Table 1.

As illustrated in Table 1, the spatial only model does not perform as well as the FH

models containing auxiliary information (i.e., the FFH and SFFH models). This is not

surprising, because the auxiliary information is key to the reduction of variance in the FH

model. However, note that spatial autocorrelation is important in this simulation study.

There was greater variance reduction in 18 of 21 locations when using the SFFH model

with functional covariates as compared to the FFH model. Two locations that did not

show improvement were the District of Columbia and Maryland. The District of Columbia

only borders Maryland (recall we removed Virginia from consideration), and Maryland has

only one other neighbor (Pennsylvania). The relationship between Washington D.C. and

Maryland is the likely explanation for these two locations performing worse in the case

where a spatial structure is included in the model. Minnesota is the third location, and

Minnesota has only a single neighbor, which leads to poor spatial fitting (e.g., large mean

squared error of the latent spatial effect). We conclude that, while the spatial structure

does not guarantee a reduction in variance at every location in the FH framework, an ICAR

model is an effective way to achieve a reduction in the average estimation variance when

spatial autocorrelation is present.

Additionally, our SSVS algorithm selects several eigenfunctions of the search term “el”

to be of interest. The primary eigenfunctions of interest are of higher order: the sixth,

ninth, and eleventh principal components are selected in 61%, 62%, and 65%, respectively,

of the 250 models fitted. Additionally, the fourth, tenth, twelfth, and thirteenth principal

components are selected in 55% to 60% of the 250 models fitted. This indicates that high-

frequency components in the models are important. The first three principle components
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are selected in fewer than 50% of the 250 models fitted, indicating that these low-frequency

components are selected less often relative to the high-frequency components and less often

than the prior would suggest. This provides further evidence towards the importance of

functional covariates and in particular their high-frequency components.

5 Google Trends Data to Improve ACS Estimates

Recall that we utilize a prior distribution for SSVS that consists of a mixture of normals to

distill the important features of the functional covariates of the searches for “y,” “el,” and

“yo” (Section 3.1). When employing the SSVS procedure, it is typically advantageous to

ensure that all of the covariates are on the same scale. Otherwise, certain components may

be selected based solely on their relative magnitude. Therefore, in addition to the standard-

ization discussed in Section 2, in our model, all 39 principle components under consideration

(i.e., the eigenvectors {ξjk : k = 1, . . . , Kj, j = 1, . . . , 3} in Section 3.1) were standardized by

subtracting the mean of the component and dividing by the standard deviation of the com-

ponent. This yielded functional principle components with a mean of zero and a standard

deviation of one.

The model we use here differs from the simulation study in that we utilize all three search

terms “y,” “el,” and “yo” as our functional information (see Figure 1). The model used then

becomes

Yi = θi + εi

θi = β0 +
3∑
j=1

Kj∑
k=1

bj(k)ξij(k) + x′iβx + ui.

For our purposes, π` in (11), the SSVS portion of the model, was fixed at 0.5 for all `,

as this yields equal contributions to the likelihood whether a variable is included or not,

and it can be considered non-informative in this sense. The terms c` and τ` were considered
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equal for all components, yielding two hyperparameters, c and τ , which were chosen via a

sensitivity analysis. Specifically, we allowed τ 2 to take values 10−3, 10−4,and 10−5, and c to

take values 10 and 100. A factorial (sensitivity) experiment was performed in order to select

the values of c and τ for our analysis. In this experiment, we chose the values of c and τ that

yielded the lowest mean posterior variance in a leave-one-out cross-validation scheme. For

each combination of c and τ , one small area at a time was removed for 40,000 iterations, and

the chain allowed to burn in for 2,000 iterations. The remaining 38,000 iterations for this

area was then used for inference. The MCMC algorithm was run separately for each small

area left out. The leave-one-out cross-validation scheme is designed to protect against model

overfitting. Our factorial design selected τ 2 = 10−5 and c = 10 as producing the lowest mean

posterior variance when averaged over all {θi}.

For c = 10 and τ 2 = 10−5, the MCMC algorithm was run for 100,000 iterations with

the first 2,000 being discarded for burn in. The functional principle components selected

by the SSVS algorithm in over 50 percent of models were the ninth principal component

of “y” (77% of models), the first principal component of “y” (55%), the tenth principal

component of “y” (55%), the seventh principal component of “el” (70%), the fifth principal

component of “el” (57%), and the tenth principal component of “yo” (59%). All other

principal components were selected with frequency smaller than the prior π=0.5 (ranging

from 36% to 48%), suggesting that the data selects against these other components. It is

worth noting that four of the six components selected in over fifty percent of the models are

high-frequency terms (i.e., the fifth principle component or higher). It would appear that

high-frequency features of the Google Trends data are the primary predictors of the rates

of change of household Spanish-speaking. These components may be detecting shocks in

the search load, indicating large search volumes resulting from instances when some of the

Spanish speaking community within a state searches for news or other stories of interest.

The variance reductions provided by this model can be found in Table 2, and the im-

16



provements are illustrated in Figure 2. Additionally, we report the results of an analysis

using the SSVS with independent random spatial effects and the time series of “y,” “el,”

and “yo” (labeled as the “FFH model”) as well as a model that only utilizes an intercept

and spatial random effects with an ICAR correlation structure (called the “Spatial Only”

model). Of note is the advantage of using the spatial structure in the FH model. The SFFH

outperforms both the FFH model and the Spatial Only model in 15 of 21 small areas, while

it performs worse than the other two models in only 3 of 21 small areas. These three small

areas are the District of Columbia, Maryland, and Connecticut. The issue of poorer estima-

tion in the District of Columbia and Maryland was previously discussed in the simulation

study. Based on our simulation study, the poorer estimation of Connecticut is likely due

to the particular data set rather than a systematic issue. This conclusion is derived from

the fact that in our simulation, for particular data realizations, states other than DC and

Minnesota were estimated more poorly using the SFFH model than the other two models

(FFH and Spatial Only). In short, when using a SFFH model, these states are estimated

better on average across all 250 realizations, though this is not guaranteed for any particular

realization. These results argue strongly for the use of spatially correlated latent random

effects and further demonstrate the utility of functional covariates in the FH framework.

6 Discussion

FH models have a celebrated history, owing to their versatility in small area estimation. To

increase the usefulness of this class of models, we have extended them to include functional

covariates along with spatial correlation. Importantly, we have demonstrated that functional

covariates can be effectively utilized to improve estimation in the public-use ACS data.

Further, we have emphasized the importance of the spatial relationships between small areas

in our model, and we have illustrated the importance of a spatial prior in the FH structure.
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The fully Bayesian procedure incorporating the dimension-reducing SSVS provides an

automated method for feature selection and selection among different candidate models. The

model selection is tuned to minimize the variances of {θi: i = 1, . . . , n}. However, it would

also be possible to consider other model properties, when selecting SSVS hyperparameters.

The issue of spatial autocorrelation has been addressed systematically, and we have

illustrated, via model-based simulation and through our motivating ACS data, that priors

inducing spatial autocorrelation yield greater reduction in estimation variance than non-

spatial priors. We have also found that the reduction in variance is not guaranteed to be

greater for every location. Even so, these results argue strongly for spatial priors to be used

in the FH framework.

Due to data limitations, we have applied our approach using Google Trends data that

are available at the state level, but not for smaller areas. Twitter data are another source

of functional covariates, and they are available at finer spatial resolutions. However, the

drawback of using Twitter data is that they are not as readily available. Finally, our model

is also generally applicable with image data, such as remotely sensed scenes of land-use/land-

cover, which may result in a key use of this technique in agricultural surveys.
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Appendix A: The Simulation Algorithm

The following algorithm was used to generate the functional covariates and the data for the

simulation study presented in Section 4.

Step 1: Consider the Google Trends time series for the search term “el” at location i.

Denote this quantity by zi = (zi(t1), ..., zi(tT ))′. Let Z = [z1, ..., zn] be a T × n matrix

containing the Google trends time series associated with the search term “el.”

Step 2: Subtract the time-dependent mean of the matrix Z, namely z̄ ≡ n−1(
∑n

i=1 zi), from

each column of Z to obtain Z∗, a matrix of detrended time series.

Step 3: Consider the T × T empirical covariance matrix S∗ ≡ Z∗Z∗
′
/(n − 1). Let S∗ =

Φ∗Λ∗Φ∗
′
be the usual spectral decomposition of S∗. Here, Φ∗ represents the discretized

eigenfunctions for the functional covariate “el.”

Step 4: Project the detrended time series onto these eigenfunctions: A = Φ∗
′
Z∗. Let the

scale of the eigenfunctions be denoted by τ ≡ diag(AA′/n).

Step 5: Generate a new set of functional curves, ẑi = z̄ + Φ∗ψi, where ψi ∼ MVN (0, τ ),

and define Ẑ ≡ [ẑ1, . . . , ẑn].

Step 6: Next we simulate a set of responses. First, obtain the weighted least squares

estimates b̂∗ from Y = Φ∗b∗ + ε, where b∗ denotes the vector of coefficients as-

sociated with the Google Trends functional time series for the search term “el,”

ε ∼ MVN (0, diag(σ2
1, . . . , σ

2
n)), and Y denotes the n-dimensional vector of observed

small-area responses from the ACS, namely (1).

Step 7: For the new functional covariate Ẑ, perform Steps 1 – 3 in order to obtain simulated

discretized eigenfunctions, Φ̂
∗
, for the simulated functional covariate.

19



Step 8: Generate simulated responses Ŷ according to Ŷ = Φ̂
∗
b̂∗ + u + ε, where u ∼

ICAR(σ2
u), σ

2
u ∼ IG(21/2, 0.004), and ε ∼MVN (0, diag(σ2

1, . . . , σ
2
n)). The generating

distribution for σ2
u was chosen to yield variances similar to those estimated from the

ACS data analyzed in Section 6.

Appendix B: Full Conditional Distributions

Here we provide the forms of the full conditional distributions for the SFFH model utilized

in Section 5. We define Υ as a diagonal matrix with Υ`` = cτ 2γ` + τ 2(1 − γ`) and Σε to

be diagonal matrix with Σε,ii = σ2
i . The term Ξ = [ξ1(1), . . . , ξJ(KJ)] denotes a matrix

with columns ξj(k) = (ξ1j(k), . . . , ξnj(k))′. The scalar n represents the number of locations

under consideration. For our analysis, the value is 21 and we let b = (b′1, . . . ,b
′
J)′ denote

the concatenated vector of {bj}. The scalar K =
∑

jKj represents the dimension of b and,

for our analysis, this value equals 39. The scalars a1 and a2 denote the shape and scale

parameters in the IG(a1, a2) prior for σ2
u and σ2

β. For our analysis we set a1 = a2 = 0.001.

Under this notation, the full conditional distributions have the following forms.

1. b ∼MVN(µb,Σb), where Σb = (Ξ′Σ−1ε Ξ + Υ−1)−1 and µb = ΣbΞ
′Σ−1ε (y− 1β0− u).

2. u ∼ MVN(µu,Ωu)I{∑n
i=1 ui=0}, where Ωu = (Σ−1ε + σ−1u {Dw − W})−1, µu =

ΩuΣ
−1
ε (y − 1β0 −Ξb), and I{·} denotes the indicator function.

3. For j = 1, . . . , J and ` = 1, . . . , pj,

γj` ∼ Bern

(
f(bj`|γj` = 1)

f(bj`|γj` = 1) + f(bj`|γj` = 0)

)
,

where f(·) is the pdf of the normal prior associated with bj`, and Bern(p) denotes

a Bernoulli distribution with probability p. For model identifiability, we require the

number of selected {bj`} be less than the number of locations (i.e.,
∑

j

∑
` γj` ≤ 20).
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In cases where the SSVS prior selected this number greater than 20, the set {γj`}

was re-sampled. Note, this occurred infrequently (i.e., in less than 10 percent of the

samples).

4. σ2
u ∼ IG(a1 + n/2, a2 + u′(Dw −W)u/2).

5. β0 ∼ N(µβ0 , σ̃
2
β0

), where σ̃2
β0

= (1′Σ−1ε 1 + σ2
β0

−1
)−1 and µβ0 = σ̃2

β0
1′Σ−1ε (y −Ξb− u).

6. σ2
β0
∼ IG(a1 + 1/2, a2 + β2

0/2).

Finally, the inclusion of scalar covariates is straightforward. That is, sampling βx in (4) using

an SSVS prior would proceed in a similar manner to sampling the functional covariates (see

Holan et al., 2012, for an example).

21



References

Baladandayuthapani, V., Mallick, B., Young Hong, M., Lupton, J., Turner, N., and Car-
roll, R. (2008). “Bayesian hierarchical spatially correlated functional data analysis with
application to colon carcinogenesis.” Biometrics , 64, 64–73.
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State SFFH FFH Spatial Only

Alabama 52.8 44.0 14.1

Connecticut 14.8 13.7 3.3

District of Columbia 65.7 75.1 38.9

Florida 1.4 1.4 0.3

Georgia 11.8 7.6 1.8

Illinois 5.3 3.2 0.7

Indiana 31.9 23.4 6.3

Kentucky 64.5 51.2 18.6

Maryland 19.7 21.1 6.0

Massachusetts 12.3 11.3 3.0

Michigan 20.6 13.9 4.0

Minnesota 2.41 29.6 9.4

Missouri 39.0 31.2 10.2

New Jersey 5.8 5.2 1.2

New York 2.8 1.9 0.4

North Carolina 11.2 8.6 1.9

Ohio 33.1 23.9 6.6

Pennsylvania 21.6 14.9 3.7

South Carolina 34.2 30.9 8.9

Tennessee 45.4 32.6 9.8

Wisconsin 28.1 22.7 6.1

Table 1: Mean relative percentage decrease in variance estimates for the 21 small areas based
on 250 simulated data sets for the spatial FH model with functional covariates (SFFH), the
standard FH model with functional covariates (FFH), and a FH model using only spatial ran-
dom effects (Spatial Only). Bolded values indicate the greatest variance reduction. Variance
reduction is computed by Equation (13)
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State SFFH FFH Spatial Only σ2

Alabama 34.3 30.8 26.7 2.014e-3

Connecticut 1.0 9.3 9.6 3.472e-4

District of Columbia 60.8 67.2 68.5 7.268e-3

Florida 1.8 2.0 0.1 3.000e-5

Georgia 11.8 7.2 5.9 1.819e-4

Illinois 4.6 3.1 2.5 7.204e-5

Indiana 24.5 19.4 18.6 6.883e-4

Kentucky 44.7 39.6 43.7 2.487e-3

Maryland 17.0 18.5 17.0 6.732e-4

Massachusetts 9.7 9.8 9.0 3.159e-4

Michigan 18.0 10.8 0.2 5.239e-4

Minnesota 19.4 22.2 26.2 1.086e-3

Missouri 32.2 27.9 24.5 1.224e-3

New Jersey 5.8 4.9 3.6 1.184e-4

New York 2.9 1.7 1.4 4.159e-5

North Carolina 9.6 8.2 5.3 2.030e-4

Ohio 31.2 23.9 19.1 7.320e-4

Pennsylvania 19.6 15.6 11.1 3.901e-4

South Carolina 24.7 21.4 21.9 1.093e-3

Tennessee 38.9 29.8 24.3 1.160e-3

Wisconsin 19.1 17.0 18.0 6.638e-4

Table 2: Relative percentage decrease in variance estimates for the 21 small areas for the
analysis of the ACS data for the spatial FH model with functional covariates (SFFH), the
standard FH model with functional covariates (FFH), and a FH model using only spatial
random effects (Spatial Only). Bolded values indicate the greatest variance reduction. Vari-
ance reduction is computed by Equation (13). The column with the heading σ2 gives the
known sampling variance of the relative change in percent household Spanish-speaking for
each state.
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Figure 1: Functional curves for the Google Trends search loads of “el,” “yo,” and “y” (see
Section 2). To avoid clutter, we show only the first five time series, in alphabetical order
(i.e., Alabama, Connecticut, District of Columbia, Florida, and Georgia), for each search
term.
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Figure 2: Relative percentage decreases in functional Fay-Herriot model variance versus
ACS variance for the SFFH (upper left), the FFH model (upper right), and the Spatial Only
model (lower left).
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