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Representing Spatial Dependence and Spatial Discontinuity in Ecological Epidemiology: a
Scale Mixture Approach

Peter Congdon, Queen Mary University of London, p.congdon@qmul.ac.uk

Abstract Variation in disease risk underlying observed disease counts is increasingly a fo-
cus for Bayesian spatial modelling, including applications in spatial data mining. Bayesian
analysis of spatial data, whether for disease or other types of event, often employs a con-
ditionally autoregressive prior, which can express spatial dependence commonly present in
underlying risks or rates. Such conditionally autoregressive priors typically assume a normal
density and uniform local smoothing for underlying risks. However, normality assumptions
may be a¤ected or distorted by heteroscedasticity or spatial outliers. It is also desirable that
spatial disease models represent variation that is not attributable to spatial dependence.
A spatial prior representing spatial heteroscedasticity within a model accommodating both
spatial and non-spatial variation is therefore proposed. Illustrative applications are to hu-
man TB incidence. A simulation example is based on mainland US states, while a real data
application considers TB incidence in 326 English local authorities.

Keywords. Spatial. Bayesian. Conditional autoregressive. Heteroscedasticity. Scale mix-
ture. Tuberculosis.

1 Introduction

Modelling variation in disease or other events underlying observed totals for geographic
areas is important for detecting elevated rates (Beale et al., 2008). In disease mapping, the
observations often consist of incidence totals for chronic or infectious disease. Such data are
subject to stochastic variations, and the underlying area speci�c incidence risks are often
the focus in data mining studies. In such studies, the objects include extraction of under-
lying spatial and spatiotemporal patterns, including detection of elevated risk (hotspots)
and spatial outliers (Shekhar et al, 2015). The particular focus of this paper is on ecological
epidemiology, in the sense of focusing on population aggregates (Morgenstern, 1995), namely
geographic areas, and on environmental and socio-economic risk factors for infectious dis-
ease (Ploubidis et al, 2012). The applications are to human infectious disease, namely TB
incidence.

Di¤erent forms of spatial correlation analysis or model have been proposed in disease applica-
tions (human and veterinary), environmental science, ecology, crime and other settings. For
example, Wikle (2003) reviews hierarchical spatial models applied in environmental science,
including irregular lattice data (such as geographic areas) and regular lattice data (such as
air pollution grids). Beale et al (2010) consider how regression �ndings for spatial ecology
data are a¤ected by the method used (if at all) to re�ect spatial dependence. To exemplify
hierarchical models for veterinary data, Pioz et al (2012) apply simultaneous autoregressive
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(SAR) models to investigate bluetongue spread in French municipalities, while Farnsworth
and Ward (2009) apply Bayesian conditional autoregressive (CAR) models to avian in�uenza
H5N1 outbreak data. In such applications, identifying elevated risk in particular areas, de-
tecting elevated risk clusters, or assessing signi�cant predictors of risk, is emphasized, in
methods recognizing the explicitly spatial structure of the data. However, the underlying as-
sumptions of such techniques should be assessed, and subject to modi�cation when indicated.

Hierarchical models involving spatial random e¤ects, both CAR and SAR forms, can be
estimated by classical methods (Alam et al, 2015; Horabik and Nahorski, 2010) or Bayesian
methods (Waller and Carlin, 2010; Lesage, 1997). CAR spatial priors imply local smoothing
of outcome rates, that is smoothing towards the local rather than global average (Gelman,
1996; Waller and Carlin, 2010). Such local discontinuity is demonstrated in the England TB
application considered below. Marked variability in risks has been detected in other area
studies of infectious disease (Duarte-Cunha et al, 2015; Varga et al, 2015; Ploubidis et al,
2012), whereas spatial variability in relative risks of chronic diseases (cancer, diabetes, etc)
is generally less pronounced. When there are spatial discontinuities in risk, it is preferable to
allow di¤ering strengths of association between neighbouring areas, as opposed to uniform
local smoothing under CAR priors (Gelman, 1996; Smith et al, 2015).

Bayesian applications in disease mapping and ecological epidemiology commonly employ
a CAR prior (Lee, 2011) to express spatial clustering in underlying risks (Besag et al., 1991;
Best, 1999), including human TB incidence (Nunes, 2007; Maciel et al, 2010). Most ap-
plications of CAR priors assume a normal density for the underlying risks combined with
uniform local smoothing. However, normality assumptions may be vitiated by heteroscedas-
ticity linked to spatial outliers or to marked discrepancies in risk between neighbouring areas.
It is also desirable that spatial disease models represent variation in area disease risks that
is not attributable to spatial dependence (i.e. heterogeneity as against clustering). Some
spatial priors may represent this feature by using more than one set of random e¤ects, but
at the cost of identi�ability.

This paper considers modi�cation of the local smoothing principle when there are spatial
discontinuities, namely discrepant levels of outcome rates (e.g. disease or crime incidence)
between neighbouring areas. In particular, we consider modi�cations of the normality as-
sumption for area random e¤ects based on a scale mixture version of the Leroux et al (1999)
model, allowing for heterogeneity and clustering in a single set of random e¤ects, but with
the scale mixture providing adaptivity to local discontinuity and spatial outliers. The rele-
vance of such an approach is illustrated with simulated data on TB incidence in 49 mainland
US states, and an application to observed TB incidence in 326 English local authorities.

2 De�ning Conditional Spatial Priors

As discussed by Besag and Kooperberg (1995), one may use properties of the multivari-
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ate normal to obtain the univariate conditional autoregressive prior from a joint spatial
prior and vice versa. Thus consider a joint multivariate normal density for the spatial risk
e¤ects s = (s1; ::; sn) for n areas, with mean zero and covariance �s;
p(s) = 1

(2�)n=2
j�sj�0:5 exp(�0:5s0��1s s): (1)

Denote Q = [qij] = ��1s as the precision matrix, and s[i] = (s1; :::; si�1; si+1; :; sn) as the
totality of e¤ects omitting the ith e¤ect. The conditional distributions for each si take a
univariate normal form (Rue and Held, 2005, p. 22), namely
sijs[i] � N(

P
j 6=i
[� qij

qii
]sj;

1
qii
): (2)

Following Besag and Kooperberg (1995, p 734) de�ne hii = 0; and set
hij = �qij=qii (i 6= j):

Also set qii = ai=� with variance parameter �; so that
hij = �qij�=ai: (3)

The density (2) is then in the conditional autoregressive form speci�ed by Besag (1974),
namely
sijs[i] � N(

P
j 6=i
hijsj; �=ai):

To obtain the joint density from the conditional one, symmetry of Q means �qij = �qji, so
that from (3) the constraint
hijai = hjiaj (4)

applies.

3 Conditional Autoregressive Spatial Priors

Various schemes for de�ning the hij and ai can be used. A measure of spatial dependence
0 � ! � 1 is included by setting
hij = !

wijP
k 6=i

wik
; ai =

P
k 6=i
wik;

where wij represent spatial interactions between areas i and j. If the interactions are spec-
i�ed as symmetric with wij = wji; and also with wii = 0; the symmetry constraint (4) is
ensured, with hijai = !wij = hjiaj.

A common approach sets wij = 1 for adjacent areas and wij = 0 otherwise, with ai =P
k 6=i
wik = di then equal to the number, di, of areas adjacent to area i. Equivalently di is the

number of areas in the locality Ni of area i (the areas surrounding area i, and excluding area
i itself). This provides the conditionally autoregressive CAR(!) prior, with

sijs[i] � N(!
�
Ai;

�
di
); (5)

where
�
Ai is the average of the sj in locality Ni, i.e.

�
Ai =

P
j2Ni

sj

di
:

Lower values of ! imply lesser degrees of spatial dependence between the si, though the
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limiting case when ! = 0 has the disadvantage that the variance is not constant but depends
on the number of neighbours di. The CAR(1) prior (Besag et al, 1991) speci�es relative
risks entirely determined by spatial dependence, with
sijs[i] � N(

P
j2Ni

sj=di;
�
di
):

In any set of area disease rates, some spatial correlation is typically detected, and this
motivates spatial priors which imply borrowing of strength from nearby areas. However,
there may also be particular local variations in illness risks unrelated to those in surrounding
areas, namely unstructured variation without spatial dependence. In principle, the CAR(!)
prior (also called the proper CAR prior) can represent various levels of spatial dependence
through the ! parameter, but this parameter does not calibrate well with marginal measures
of spatial correlation, such as Moran�s I (Banerjee et al, 2004; Rodrigues and Assunção,
2012). Values of ! exceeding 0.99 are needed to achieve modest values of I.

In practice, to represent a mix between spatial dependence and simple unstructured vari-
ation, called clustering and heterogeneity respectively by Clayton et al (1993), a common
strategy is the so-called convolution prior (Ugarte et al, 2005; Waller and Carlin, 2010). This
represents the unknown area relative risk as a sum of a pure spatial e¤ect following a CAR(1)
prior, combined with an iid (or unstructured) random e¤ect. Thus denote observed disease
counts as yi,expected counts as Ei (expected disease counts in the demographic sense) and
known area risk variables (predictors) as Xi: Then one might specify
yi � Po(�iEi);
log(�i) = Xi� + si + hi; (6:1)
sijs[i] � N(

P
j2Ni

sj=di;
�
di
); (6:2)

hi � N(0; �); (6:3)
where �i denotes an area speci�c relative risk, and � is a variance term for iid unstructured
e¤ects hi. A drawback with this scheme is that identi�ability may be impeded by the pres-
ence of two sets for random e¤ects representing one underlying aspect of the data, namely
variation in area illness risks.

4 The Leroux et al Spatial Prior

A scheme for area e¤ects, incorporating both clustering and heterogeneity, involves scale
adjustments
ai = (1� �) + �

P
j 6=i
wij;

with the parameter 0 � � � 1 providing a measure of spatial dependence (Leroux et al,
1999). This scheme, which may be represented as the LLB prior by virtue of its authors,
has the bene�t that only one set of random e¤ects is involved in representing the pattern
of area illness risks. This provides improved identi�ability as compared to the convolution
prior (Lee, 2011). The case � = 0 corresponds to a lack of spatial interdependence (and i.i.d
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or unstructured errors si), with the advantage that the conditional variance is then simply
�; independent of

P
j 6=i
wij . By contrast, � = 1 leads to an CAR(1) model, with purely spa-

tial interdependence. In typical datasets � will be intermediate between these extreme values.

The symmetry condition hijai = hjiaj is maintained by setting
hij =

�wij
(1��)+�

P
j 6=i
wij
;

since hijai = �wij = �wji = hjiaj: So the conditional prior is
sijs[i] � N( �

1��+�
P
j 6=i
wij

P
j 6=i
wijsj;

�
1��+�

P
j 6=i
wij
); (7)

with � a scale parameter. When � = 0 one obtains normal iid e¤ects si � N(0; �): If the wij
are de�ned by contiguity one obtains (Leroux et al, 1999, p 181)
sijs[i] � N( �

1��+�di

P
j2Ni

sj;
�

1��+�di ): (8)

5 Adaptiveness to non-normality and spatial discontinuities

Proposals to modify spatial priors to achieve greater robustness have been made, includ-
ing the presence of heteroscedasticity and heavier tails (excess kurtosis) than under the
normal. Thus Yan (2007), Brewer and Nolan (2007), and Reich and Hodges (2008) propose
modi�ed CAR priors to accommodate heteroscedasticity. Other forms of modi�ed spatial
prior are considered by Nathoo and Ghosh (2013) and Lawson and Clark (2002). These
schemes are all modi�cations of the CAR prior, or of the convolution prior, as considered in
section 3. Modi�cations of the pure spatial CAR(1) prior, without allowance for spatially
unstructured variation, may be appropriate for particular applications, such as dental decay
as in Reich and Hodges (2008), but for area illness data an allowance for heterogeneity is
generally needed. Modi�cation of the proper CAR(!) prior are left with the problem that
its ! parameter does not calibrate well with marginal measures of spatial correlation. Stud-
ies such as Yan (2007) and Lawson and Clark (2002) modify the convolution prior, with
potential identi�ability problems due to multiple sets of random e¤ects. Thus Yan (2007)
allows for heteroscedasticity in spatial e¤ects via a double implementation of the CAR(1)
prior, namely
yi � Po(�iEi);
log(�i) = Xi� + si + hi;
sijs[i] � N(

P
j2Ni

sj=di;
�s
di
);

hi � N(0; �i);
log(�i) = �h + ri;
rijr[i] � N(

P
j2Ni

rj=di;
�r
di
):

Here we modify the constant scale assumption of the LLB prior in (7) and (8) using a
scale mixture, with the bene�t of providing an indicator of potential outlier status for each
area. To implement a scale mixture, de�ne �i � Ga(0:5�; 0:5�) where � is a hyperparameter.
The proposed model reduces to the scale mixture version of the Student t when � = 0 (Boris
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Choy and Chan, 2008). The �i have average 1 with small values of �i (under 1) acting as in-
dicators of outlier status (West, 1984). Under this scale mixture modi�cation, the symmetry
condition (4) is maintained by setting
ai = �i[(1� �) + �

P
j 6=i
wij];

hij =
�wij�j

[1��+�
P
j 6=i
wij ]
;

since hijai = �wij�j�i = �wji�i�j = hjiaj.

Then the model for incidence counts becomes
yi � Po(�i);
�i = �iEi;
log(�i) = Xi� + si;

where conditional prior when the wij are binary indicators of adjacency is
sijs[i] � N( �

1��+�di

P
j2Ni

�jsj;
�

�i[1��+�di]): (9)

This prior reduces to an unstructured i.i.d scale mixture Student-t density
si � N(0; �=�i);

when � = 0:

From (9) it can be seen that small �j values indicate areas discrepant in risk from their
neighbours (i.e. they indicate outliers in spatial terms), and reduce the amount of spatial
borrowing of strength. Equivalently stated, a clustering of small �j values can be taken as
indicators of spatial volatility, namely discrepant illness risks in a set of adjacent areas. In
regression applications, small �j values will also indicate where the regression predictions in
the neighbourhood of area i, and their implied neighbourhood relative risk

P
j2Ni

�j=
P
j2Ni

Ej,

are discrepant from the modelled relative risk in area i itself �i=Ei.

Let � = 1=�; and let I(i � j) = I(j � i) denote that areas i and j are neighbours un-
der binary adjacency. Then the precision matrix in the multivariate normal (1) has diagonal
terms
Qii = �ai = ��i[(1� �) + �

P
j 6=i
wij];

and o¤ diagonal terms
Qij = ��aihij = ����i�jI(i � j):

A scale mixture approach to spatial dependence can be set within a broader literature on
heavy tailed priors (e.g. student t, double exponential) that can be represented as two level
hierarchical models (Yi and Xu, 2008). One application of such priors is to predictor selec-
tion in high dimensional regression, with a likelihood penalty function that is a normal scale
mixture (e.g. Polson et al, 2014). Besag et al (1991) propose a double exponential prior
for spatial e¤ects as a robust alternative to the normal conditional autoregressive, with an
application provided by Manda (2013).
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Identi�cation of random e¤ects in spatial disease models is often problematic (e.g. MacNab,
2014; Nathoo and Ghosh, 2013), especially for models including multiple random e¤ects, or
when disease counts are relatively small. In the case of the model just discussed, identi�-
cation of outliers (e.g. in terms of signi�cantly low �i), as well as identi�cation of elevated
risks si; will be improved for larger disease counts and/or longer observation periods. Iden-
ti�cation of hyperparameters may also be problematic, especially with small samples. For
example, in student t binary regression with data augmentation, Gelman et al (2004, p 447)
recommend a robust analysis with � not estimated but preset at 4.

6 Simulation Example

A simulation example of the heteroscedastic LLB prior involves TB incidence with a spatial
framework provided by the n = 49 mainland states (including the District of Columbia).
Expected TB incidence counts Ei are obtained by applying actual US-wide age speci�c rates
for TB in 2013 to state population estimates for 2013, taken from the US National Cancer
Institute SEER site (http://seer.cancer.gov/popdata/). TB incidence rates are from the
CDC National Tuberculosis Surveillance System, with just over 9500 incident cases in 2013,
and an all ages rate of 3 per 100,000. Highest rates (over 6 per 100 thousand) are for the
75-84 and 85+ age groups.

We simulate TB incidence counts using these expected counts as o¤sets. The LLB hy-
perparameters (guide values) are set as � = 0:7; � = 3, and with � taking values 3,10, and
25. Although the student t is de�ned for degrees of freedom of 2 or less, it has in�nite
variance, and Gelman et al (2003) mention that �t�s with one or two degrees of freedom have
in�nite variance and are not usually realistic in the far tails�. One hundred sets of random
e¤ects are generated from the multivariate normal s1:n � N(0; Q�1): Simulated TB inci-
dence counts then obtained via a Poisson simulation yi � Po(Ei�i); with log(�i) = �0 + si;
where �0 = �0:1 and �i is the simulated disease risk in state i. The R code used is set
out in Appendix 1. Note that each of the 100 simulations involves a separate sample of
�i � Ga(0:5�; 0:5�):

Analyses to estimate the parameters from the 100 sets of simulated data fy; Eg (with E
as in the simulations) are carried out using the WINBUGS package (Lunn et al, 2009). An
exponential prior with mean 10 is adopted for � (Fernandez and Steele, 1998; Geweke, 1993),
a gamma prior with shape 1 and index 0.01 assumed for the inverse variance parameter � ,
a normal prior with mean zero and precision 0.001 assumed for the �xed e¤ect �0, and a
uniform U(0; 1) prior assumed on �. Estimates are based on the last 5,000 iterations from
two chain runs of 10,000 iterations, with convergence assessed using Brooks�Gelman�Rubin
diagnostics (Brooks and Gelman, 1998).

The focus is on the posterior means for the main parameters of the LLB prior and risk
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regression over the 100 samples, namely �; �; �0, and the variance of the spatial e¤ects
(which depends on both � and the sampled �i). The posterior densities for � tend to be
positively skew, so Table 1 also includes results for the posterior summary of log(�). Because
each simulation involves a distinct set of �i; the actual variance of the si will vary between
simulations. This variance Vt of spatial e¤ects for simulation t is recorded in the vector var.s[]
in the code in Appendix 1. Table 1 sets out the percentiles (20th, 50th, 80th) of the 100
posterior means for �; log(�); �; and �0;and also the proportion of simulated datasets where
the 95% credible interval for a parameter includes the guide value. Thus for the setting
� = 10; 50 out of the 100 samples have posterior means for � below 10.4, and 50 samples
have posterior means above 10.4.

The expected Ei are relatively large, so the Poisson simulations may be subject to some
excess dispersion, which to some extent attenuates the spatial structure present in the sim-
ulated data. Nevertheless, the recovered parameters e¤ectively reproduce those used in
generating the data. This feature is also apparent in a correlation between the actual and
estimated Vt over the 100 samples of 0.97. Figure 1 plots the two series of Vt for the � = 10
option, including 95% credible intervals for the estimated Vt. Of substantive relevance in
interpreting the parameters of the LLB model, there is a 0.72 correlation between the 100
posterior means for �; and the corresponding posterior means for Moran�s I, which are es-
timated from the si in each dataset. To further illustrate variation over the simulations,
Figure 2 shows, for each simulated dataset, the posterior mean (and 95% interval) of log(�)
under the � = 3 option.

One also wishes to reproduce the patterns of outlier status (areas with signi�cantly low
�i): This involves, for the setting � = 10 (and other hyperparameters as above), simulating
100 sets of y based on a single set of �i values (the "actual" �i), sampled from a gamma
density, �i � Ga(5; 5): The expected incidence counts are multiplied by 10 to increase the
amount of information provided by the data. Re-estimation of �i from the simulated datasets
shows a shrinkage e¤ect, with posterior mean re-estimated �i closer to 1 than the actual �i
(see Figure 3). However, the re-estimation does identify as outliers the states with unusually
low actual �i: For the �ve states with the lowest actual �i; four have 95% credible intervals
on the re-estimated �i that are entirely below 1, and no other states have re-estimated �i
with credible intervals entirely below 1.

7 Application: TB Incidence for England Local Authorities

An application involves TB incidence data y for 326 English local authorities between 2011
and 2013. Two analyses are undertaken, one without predictors and one with two predic-
tors: an index of multiple socio-economic deprivation (X1) and population density (X2).
The impact of poverty on TB incidence is well documented (Lopez de Fede et al, 2008) and
population density is associated with infectious disease risk as "the likelihood that a suscep-
tible person will be exposed to an infectious tuberculosis patient increases with population
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density" (Rieder, 1999). The two predictors are centred and divided by 100. Thus with
predictors Xi = (1; X1i; X2i), under the scale mixture model we have
yi � Po(�i);
�i = �iEi;
log(�i) = Xi� + si;
sijs[i] � N( �

[1��+�di]
P
j2Ni

�jsj;
�

�i[1��+�di]);

�i � Ga(0:5�; 0:5�):
For the original Leroux et al (1999) scheme, the conditional prior for si is as in (8).

Prior settings are as in section 6, and inferences are from the last 5,000 iterations from
two chain runs of 10,000 iterations, with convergence assessed using Brooks�Gelman�Rubin
diagnostics. Table 2 contains parameter summaries and comparison of measures of �t be-
tween the original LLB model (section 4) and the heteroscedastic Leroux (section 5). Fit
is assessed using the posterior predictive loss (PPL) criterion (Gelfand and Ghosh, 1998).
Consider replicate observations yrep sampled from the posterior predictive density p(yrepjy).
The PPL involves de�ning t(z) = z log z � z, and �i = t(yi;rep): Letting �i and 'i denote
posterior means for yi;rep and �i; the PPL is
2
X
i

f'i � t(�i)g+ 2(k + 1)
X
i

f t(�i)+kt(yi)
k+1

� t(�i+kyi
k+1

)g:

where the left term is a penalty complexity, and di¤erent k values put di¤erent stress on �t
and parsimony. In Table 2, two values of k are used, k = 0:5 and k = 5, with the latter
putting more stress on goodness of �t.

Also presented are predictive checks based on replicate observations. Posterior predictive
probabilities Pr(yi;rep � yijy) in extreme tails (e.g. values under 0.1 or over 0.9) indicate
poorly �tted cases. The mixed predictive scheme (Marshall and Spiegelhalter, 2003), pro-
viding checks that are close to leave-one-out cross validation (Green et al, 2009), was also
applied. This involves sampling new random e¤ects si;rep, and then sampling replicate data
yi;rep;mixed conditional on these new e¤ects.

Table 2 shows that �t is generally improved under the heteroscedastic option, and pre-
dictive checks are also improved. The estimates for � suggest that spatial dependence is not
overly pronounced, and hence illustrate the broader principle that a spatial prior represent
unstructured as well as structured variation: estimates of � are all under 0.8. Figure 4
demonstrates disjunction between high risk and adjacent low risk areas. Table 2 also shows
positive e¤ects for both predictors but less precise e¤ects under the scale mixture approach,
in line with a general principle that neglecting heteroscedasticity may lead to mis-stated
regression coe¢ cient standard errors.

Table 3 contains a more detailed assessment of predictive discrepancies between the two
approaches for the regression without predictors. As mentioned above, the �i e¤ects will
act to identify spatial outliers, with illness levels discrepant from their neighbours, and so
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Table 3 contains the 20 areas with the lowest posterior mean �i under the scale mixture
approach. One may assess spatial outlier status to some extent from the observed data. The
�rst two columns of Table 3 contain maximum likelihood (ML) relative risks in each area
Ri = yi=Ei, and relative risks in the neighbourhoods Ni of each area, with ML estimates
Li =

P
j2Ni

yj=
P
j2Ni

Ej:

Table 3 shows two types of outlier. One consists of major urban centres with high risk
themselves, but a low risk hinterland (e.g areas 1,2,3, and 8 in the Table). For example,
Figure 5 shows estimated relative risk patterns around area 2 (Leicester). These areas are
underpredicted under the constant scale model, with mixed predictive Pr(yi;rep;mixed � yijy)
p-values under 0.025. Under the scale mixture model they have higher means �i, closer
to the observed yi, as there is less local borrowing of strength. The other type of outlier
(e.g. areas 5 and 6 in the Table) are low risk areas with much higher risk neighbourhoods.
These are overpredicted under the constant scale model, with Pr(yrep > yjy) = 0:91 and
Pr(yi;rep;mixed � yijy) = 1 for area 6. Under the scale mixture model, modelled means are
reduced closer to the observed yi . For all 20 areas, 19 have mixed predictive p-values under
0.05 or over 0.95 under a constant scale model, whereas under the scale mixture, this is
reduced to 12 out of 20.

Table 4 contains the 10 areas with the lowest posterior mean �i under the scale mixture
approach when the two covariates are included. These areas illustrate when modelled rel-
ative risk in area i itself �i=Ei are discrepant from implied relative risk

P
j2Ni

�j=
P
j2Ni

Ej in

the locality of area i. These discrepancies may be related to covariate patterns. Under
a scale mixture approach, local borrowing of strength is lessened, and Table 4 shows that
the predicted TB counts �i are closer to the actual counts than under the constant scale LLB.

8 Conclusion

Di¤erent forms of spatial correlation analysis or modelling have been proposed in disease ap-
plications, ecological epidemiology, environmental science and other settings. Both Bayesian
and frequentist estimation have been used. Common themes include identifying elevated risk
areas or clusters of areas, and �nding predictors of risk, while recognizing the explicitly spa-
tial structure of the observations. For example, in a review of regression �ndings from spatial
species abundance data, Dorfmann (2007) shows that ignoring spatial dependence (e.g. in
regression residuals) leads to possible bias in parameter estimates and optimistic standard
errors. However, while it is important to incorporate spatial dependence in models for area
data, the assumptions of such techniques should be assessed, and subject to modi�cation
when the data so indicate. In particular, spatial discontinuities suggest a modi�cation to
the principle of uniform local smoothing.

In particular, Bayesian analyses of spatially arranged data often employ a conditionally
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autoregressive prior, which can express spatial clustering commonly present in the underly-
ing risks, but typically assume a normal density for risks and uniform conditional association.
However, a more sensitive parameterisation with utility in detecting outliers and locally ir-
regular risk patterns may be obtained by allowing for non-normality. Commonly applied
conditionally autoregressive priors such as the proper CAR prior and the convolution prior
also have potential de�cits when the observations contain a mixture of spatial dependence
and unstructured heterogeneity. The present paper has proposed a scale mixture version of
the Leroux et al (1999) spatial prior, combining the bene�t of adaptability when risks are
discrepant in adjacent areas, and also a less problematic approach to representing a mixture
of clustering and heterogeneity.

The analyses here show improved �t to infectious disease data, which may often show pro-
nounced risk variability between areas. In England, high risk areas are often major urban
centres, whereas the neighbouring suburban or rural hinterlands of such centres may be low
risk. In such situations some modi�cation of the uniform local borrowing of strength princi-
ple may be bene�cial.

Appendix 1

The R code for simulating data for 49 mainland US states is as follows:
# 49 by 49 binary adjacency matrix
W <- read.table("adj_state.txt")
# numbers of neighbours
d=c(4,5,6,3,7,3,3,2,2,5,6,5,4,6,4,7,3,1,5,5,3,4,4,8,4,6,5,3,3,5,5,4,3,5,6,4,6,2,2,6,8,4,6,3,6,2,5,4,6)
# expected events (TB incidence)
E <- c(147,199.5,89.6,1144.7,157.6,111.2,28.5,20.2,621.5,293.7,47.4,389.3,
197.3,94.5,86.5,133.4,138.4,42.4,180.1,207.7,302.4,164.4,89.1,184.3,31.4,56,
83.8,41.3,272.8,62.7,606.1,297.6,22,354.4,115.3,121.5,399.6,
32.8,145.3,25.5,197.4,765.3,79.8,19.7,250.2,211.6,58.4,175.8,17.5)
# parameter and data de�nitions
N <- 49; Tau <- 3; lam=0.7; T <- 100; nu <- 10; nu.2 <- nu/2
kap <- Qdiag <- numeric(N); var.s <- numeric(T)
y <- matrix(,N,T); Q <- C <- matrix(,N,N)
library(mvtnorm)
# simulation
for (t in 1:T) {for(i in 1:N) { # scale mixture e¤ects
kap[i] <- rgamma(1,nu.2,nu.2);
Qdiag[i] <- Tau*kap[i]*(1-lam+lam*d[i])}
for(i in 1:N) { for (j in 1:N) {
Q[i,j] <- (i==j)*Qdiag[i]-(1-(i==j))*Tau*lam*W[i,j]*kap[i]*kap[j]}}
C <- solve(Q)
s <- rmvnorm(1, mean = rep(0, nrow(C)), sigma=C, method=c("svd"))
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eta <- log(E)-0.1+s
mu <- exp(eta)
var.s[t] <- var(s[1:N])
for (i in 1:N){y[i,t] <- rpois(1,mu[i])}}
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Samples with 95% credible 
interval containing guide value

Parameter 20th 50th 80th Percent
λ 0.44 0.59 0.67 99
ν 2.4 4.5 8.4 95
log(ν) 0.76 1.29 1.88 95
β0 -0.26 -0.12 0.04 88

Samples with 95% credible 
interval containing guide value

Parameter 20th 50th 80th Percent
λ 0.52 0.65 0.72 99
ν 7.8 10.4 12.5 100
log(ν) 1.68 2.09 2.36 97
β0 -0.26 -0.14 0.01 91

Samples with 95% credible 
interval containing guide value

Parameter 20th 50th 80th Percent
λ 0.53 0.65 0.73 100
ν 16.1 23.4 31.0 99
log(ν) 2.22 2.65 3.03 99
β0 -0.28 -0.15 -0.02 84

(c) ν set to 25

 Percentiles of posterior means

Table 1 Recovered Parameter Estimates from 100 Simulated Datasets

 Percentiles of posterior means

(b) ν set to 10

(a) ν set to 3

 Percentiles of posterior means



LLB constant scale Scale Mixture LLB

Fit Measures PPL (k=0.5) 645.8 630.6

PPL (k=5) 677.4 661.9

Total observations overpredicted, with Pr(yi,rep>yi|y) > 0.9 5 0

Total observations underpredicted, with Pr(yi,rep>yi|y) < 0.1 0 0

Total observations overpredicted, with Pr(yi,rep,mixed>yi|y) > 0.9 30 25

Total observations underpredicted, with Pr(yi,rep,mixed>yi|y) < 0.1 38 33

LLB constant scale Scale Mixture LLB

Fit Measures PPL (k=0.5) 622.2 616.3

PPL (k=5) 666.6 660.2

Total observations overpredicted, with Pr(yi,rep>yi|y) > 0.9 5 3

Total observations underpredicted, with Pr(yi,rep>yi|y) < 0.1 0 0

Total observations overpredicted, with Pr(yi,rep,mixed>yi|y) > 0.9 31 27

Total observations underpredicted, with Pr(yi,rep,mixed>yi|y) < 0.1 31 25

LLB constant scale Scale Mixture LLB

 Spatial dependence  0.59 (0.37,0.89) 0.57 (0.37,0.86)

 Scale mixing parameter 8.1 (4.2,15.9)

LLB constant scale Scale Mixture LLB

 Spatial dependence  0.76 (0.49,0.98) 0.75 (0.51,0.98)

 Scale mixing parameter 10.42 (4.19,27.31)

 Effect of deprivation 4.98 (4.01,6.11) 4.96 (3.71,6.23)

 Effect of population density 1.34 (0.98,1.7) 1.25 (0.75,1.81)

Model with predictors

Table 2 Goodness of fit and Parameter Summaries, Models without and including predictors

Model without predictors

Model with predictors

Model without predictors

Model Fit and Checks

Parameter Summaries (posterior mean, 95% credible intervals)

Predictive 

Checks

Predictive 

Checks



Num-
ber

Name Events
Relative Risk 

(MLE)

Spatial lag 
relative risk 

(MLE)
κ μ Pr(yrep>y|y)

Pr(yrep,mixed>y|
y)

μ Pr(yrep>y|y)
Pr(yrep,mixed>y|

y)

1 Peterborough 170 2.12 0.33 0.48 167.6 0.48 0.03 166.3 0.40 0.01
2 Leicester 528 3.57 0.44 0.48 526.2 0.49 0.03 524.7 0.46 0.00
3 Blackburn-Darwen 157 2.55 0.79 0.49 154.1 0.39 0.03 152.7 0.39 0.00
4 Preston 106 1.66 0.30 0.55 103.9 0.40 0.05 103.4 0.41 0.02
5 Tandridge 3 0.09 1.12 0.56 5.7 0.78 0.98 6.6 0.87 1.00
6 Bromsgrove 2 0.05 1.59 0.57 5.0 0.79 0.98 5.9 0.91 1.00
7 Rushmoor 81 1.86 0.35 0.58 78.9 0.42 0.04 78.2 0.40 0.02
8 Luton 257 2.74 0.29 0.60 255.3 0.44 0.05 255.0 0.45 0.02
9 Crawley 75 1.47 0.40 0.60 72.9 0.42 0.06 72.2 0.39 0.03

10 Reading 159 2.02 0.37 0.63 156.9 0.44 0.06 156.7 0.44 0.02
11 Slough 248 3.91 1.71 0.64 246.2 0.44 0.07 245.6 0.45 0.02
12 Sheffield 279 1.04 0.32 0.64 276.6 0.45 0.07 276.4 0.45 0.04
13 Birmingham 1238 2.54 1.20 0.64 1234.0 0.43 0.04 1233.0 0.45 0.00
14 Southampton 130 1.07 0.17 0.65 128.3 0.42 0.06 127.7 0.43 0.04
15 South Staffordshire 4 0.09 0.85 0.65 7.1 0.78 0.97 7.4 0.83 0.98
16 Newcastle upon Tyne 122 0.84 0.19 0.66 119.9 0.44 0.07 119.8 0.43 0.04
17 Redditch 46 1.31 0.24 0.69 44.2 0.40 0.07 44.0 0.39 0.04
18 Woking 57 1.34 0.37 0.70 55.2 0.43 0.08 55.1 0.41 0.06
19 Rossendale 6 0.20 1.13 0.71 8.5 0.71 0.95 8.8 0.74 0.98
20 Halton 2 0.04 0.36 0.71 4.2 0.77 0.96 4.5 0.82 0.98

Table 3 Areas Ranked by Outlier Status, No Predictors
Heteroscedastic LLB Constant scale LLB



Name Events  i

Model RR 

(i/Ei)

Model 

neighbour‐

hood RR

i

Brent 896 0.57 892.9 7.22 2.41 889.7
Peterborough 170 0.60 166.3 2.06 0.35 165.1
Barnsley 20 0.60 23.7 0.24 0.85 24.8
Swale 8 0.62 11.1 0.20 0.50 11.7
Woking 57 0.67 54.2 1.26 0.39 53.7
North Lincolnshire 47 0.68 43.5 0.61 0.27 43.0
Kirklees 287 0.69 283.1 1.53 1.00 281.9
Newham 1072 0.71 1068.0 9.34 2.99 1068.0
Tandridge 3 0.71 6.8 0.21 1.10 7.5
Rushmoor 81 0.72 78.0 1.79 0.36 77.6

Table 4 Areas Ranked by Outlier Status, Regression with Predictors

Scale mixture LLB Constant scale LLB



 

Figure 1a Simulated and Estimated Spatial Effect Variances: US Mainland States (1st 50 Samples) 

 

Figure 1b Simulated and Estimated Spatial Effect Variances: US Mainland States (2nd 50 Samples) 
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Figure 2. Posterior Intervals, re-estimated log(ν), 100 Simulated Datasets with Setting ν=3
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Figure 3 Pre-simulated and Posterior Mean Re-Estimated κi. Simulated Data (100 
Datasets) with Preset κi.



 

 

  Figure 4 Modelled Relative Risks of TB Incidence, Scale Mixture Model 



          Figure 5 Modelled Relative Risks of TB Incidence around Leicester, Scale Mixture Model 

 


