8 research outputs found

    Full humanization of the glycolytic pathway in Saccharomyces cerevisiae

    Get PDF
    Although transplantation of single genes in yeast plays a key role in elucidating gene functionality in metazoans, technical challenges hamper humanization of full pathways and processes. Empowered by advances in synthetic biology, this study demonstrates the feasibility and implementation of full humanization of glycolysis in yeast. Single gene and full pathway transplantation revealed the remarkable conservation of glycolytic and moonlighting functions and, combined with evolutionary strategies, brought to light context-dependent responses. Human hexokinase 1 and 2, but not 4, required mutations in their catalytic or allosteric sites for functionality in yeast, whereas hexokinase 3 was unable to complement its yeast ortholog. Comparison with human tissues cultures showed preservation of turnover numbers of human glycolytic enzymes in yeast and human cell cultures. This demonstration of transplantation of an entire essential pathway paves the way for establishment of species-, tissue-, and disease-specific metazoan models

    FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae

    No full text
    Cpf1 is a new class II family of CRISPR-Cas RNA-programmable endonucleases with unique features that make it a very attractive alternative or complement to Cas9 for genome engineering. Using constitutively expressed Cpf1 from Francisella novicida, the present study demonstrates that FnCpf1 can mediate RNA-guided DNA cleavage at targeted genomic loci in the popular model and industrial yeast Saccharomyces cerevisiae. FnCpf1 very efficiently and precisely promoted repair DNA recombination with efficiencies up to 100%. Furthermore, FnCpf1 was shown to introduce point mutations with high fidelity. While editing multiple loci with Cas9 is hampered by the need for multiple or complex expression constructs, processing itself a customized CRISPR array FnCpf1 was able to edit four genes simultaneously in yeast with a 100% efficiency. A remarkable observation was the unexpected, strong preference of FnCpf1 to cleave DNA at target sites harbouring 5'-TTTV-3' PAM sequences, a motif reported to be favoured by Cpf1 homologs of Acidaminococcus and Lachnospiraceae. The present study supplies several experimentally tested guidelines for crRNA design, as well as plasmids for FnCpf1 expression and easy construction of crRNA expression cassettes in S. cerevisiae. FnCpf1 proves to be a powerful addition to S. cerevisiae CRISPR toolbox

    FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae

    No full text
    Cpf1 is a new class II family of CRISPR-Cas RNA-programmable endonucleases with unique features that make it a very attractive alternative or complement to Cas9 for genome engineering. Using constitutively expressed Cpf1 from Francisella novicida, the present study demonstrates that FnCpf1 can mediate RNA-guided DNA cleavage at targeted genomic loci in the popular model and industrial yeast Saccharomyces cerevisiae. FnCpf1 very efficiently and precisely promoted repair DNA recombination with efficiencies up to 100%. Furthermore, FnCpf1 was shown to introduce point mutations with high fidelity. While editing multiple loci with Cas9 is hampered by the need for multiple or complex expression constructs, processing itself a customized CRISPR array FnCpf1 was able to edit four genes simultaneously in yeast with a 100% efficiency. A remarkable observation was the unexpected, strong preference of FnCpf1 to cleave DNA at target sites harbouring 5'-TTTV-3' PAM sequences, a motif reported to be favoured by Cpf1 homologs of Acidaminococcus and Lachnospiraceae. The present study supplies several experimentally tested guidelines for crRNA design, as well as plasmids for FnCpf1 expression and easy

    A toolkit for rapid CRISPR-SpCas9 assisted construction of hexose-transport-deficient saccharomyces cerevisiae strains

    No full text
    Hexose transporter-deficient yeast strains are valuable testbeds for the study of sugar transport by native and heterologous transporters. In the popular Saccharomyces cerevisiae strain EBY.VW4000, deletion of 21 transporters completely abolished hexose transport. However, repeated use of the LoxP/Cre system in successive deletion rounds also resulted in major chromosomal rearrangements, gene loss and phenotypic changes. In the present study, CRISPR/SpCas9 was used to delete the 21 hexose transporters in an S. cerevisiae strain from the CEN.PK family in only three deletion rounds, using 11 unique guide RNAs. Even upon prolonged cultivation, the resulting strain IMX1812 (CRISPR-Hxt(0)) was unable to consume glucose, while its growth rate on maltose was the same as that of a strain equipped with a full set of hexose transporters. Karyotyping and whole-genome sequencing of the CRISPR-Hxt(0) strain with Illumina and Oxford Nanopore technologies did not reveal chromosomal rearrangements or other unintended mutations besides a few SNPs. This study provides a new, genetically unaltered' hexose transporter-deficient strain and supplies a CRISPR toolkit for removing all hexose transporter genes from most S. cerevisiae laboratory strains in only three transformation rounds. This study supplies a CRISPR-based toolkit enabling the simple, fast and precise deletion of 21 hexose-transporter genes in Saccharomyces cerevisiae laboratory strains and thereby the construction of hexose-transport deficient strains191This project was funded by the AdLibYeast ERC consolidator 648141 grant awarded to PD

    Multipoint Approximations of Identity-by-Descent Probabilities for Accurate Linkage Analysis of Distantly Related Individuals

    Get PDF
    We propose an analytical approximation method for the estimation of multipoint identity by descent (IBD) probabilities in pedigrees containing a moderate number of distantly related individuals. We show that in large pedigrees where cases are related through untyped ancestors only, it is possible to formulate the hidden Markov model of the Lander-Green algorithm in terms of the IBD configurations of the cases. We use a first-order Markov approximation to model the changes in this IBD-configuration variable along the chromosome. In simulated and real data sets, we demonstrate that estimates of parametric and nonparametric linkage statistics based on the first-order Markov approximation are accurate. The computation time is exponential in the number of cases instead of in the number of meioses separating the cases. We have implemented our approach in the computer program ALADIN (accurate linkage analysis of distantly related individuals). ALADIN can be applied to general pedigrees and marker types and has the ability to model marker-marker linkage disequilibrium with a clustered-markers approach. Using ALADIN is straightforward: It requires no parameters to be specified and accepts standard input files
    corecore