181 research outputs found

    A risk forecasting process for nanostructured materials, and nanomanufacturing

    Get PDF
    International audienceNanomaterials exhibit novel properties that enable new applications ranging from molecular electronics to energy production. Proactive consideration of the potential impacts on human health and the environment resulting from nanomaterial production and use requires methods for forecasting risk associated with of these novel materials. However, the potential variety of nanomaterials is virtually infinite and a case-by-case analysis of the risks these materials may pose is not possible. The challenge of forecasting risk for a broad number of materials is further complicated by large degrees of uncertainty concerning production amounts, the characteristics and uses of these materials, exposure pathways, and a scarcity of data concerning the relationship between nanomaterial characteristics and their effects on organisms and ecosystems. A traditional risk assessment on nanomaterials is therefore not possible at this time. In its place, an evolving process is needed for analyzing the risks associated with emerging nanomaterials-related industries. In this communication, we propose that such a process should include the following six key features: 1) the ability to generate forecasts and associated levels of uncertainty for questions of immediate concern, 2) a consideration of all pertinent sources of nanomaterials, 3) an inclusive consideration of the impacts of activities stemming from nanomaterial use and production that extends beyond the boundaries of toxicology and include full life cycle impacts, 4) the ability to adapt and update risk forecasts as new information becomes available, 5) feedback to improve information gathering and, 6) feedback to improve nanomaterial design. Feature #6 implies that the potential risks of nanomaterials must ultimately be determined as a function of fundamental, quantifiable properties of nanomaterials, so that when these properties are observed in a new material, they can be recognized as indicators of risk. Thus, the required risk assessment process for nanomaterials addresses needs that span urgent, short-term questions dealing with nanomaterials currently in commerce, to longer-term issues that will require basic research and advances in theory. In the following sections we outline issues surrounding each of these six features ad discuss

    Evaluation of Ultrafiltration for Spacecraft Water Reuse

    Get PDF
    Ultrafiltration is examined for use as the first stage of a primary treatment process for spacecraft wastewater. It is hypothesized that ultrafiltration can effectively serve as pretreatment for a reverse osmosis system, removing the majority of organic material in a spacecraft wastewater. However, it is believed that the interaction between the membrane material and the surfactant found in the wastewater will have a significant impact on the fouling of the ultrafiltration membrane. In this study, five different ultrafiltration membrane materials are examined for the filtration of wastewater typical of that expected to be produced onboard the International Space Station. Membranes are used in an unstirred batch cell. Flux, organic carbon rejection, and recovery from fouling are measured. The results of this evaluation will be used to select the most promising membranes for further study

    Engineered Nanoparticles Interact with Nutrients to Intensify Eutrophication in a Wetland Ecosystem Experiment

    Get PDF
    Despite the rapid rise in diversity and quantities of engineered nanomaterials produced, the impacts of these emerging contaminants on the structure and function of ecosystems have received little attention from ecologists. Moreover, little is known about how manufactured nanomaterials may interact with nutrient pollution in altering ecosystem productivity, despite the recognition that eutrophication is the primary water quality issue in freshwater ecosystems worldwide. In this study, we asked two main questions: (1) To what extent do manufactured nanoparticles affect the biomass and productivity of primary producers in wetland ecosystems? (2) How are these impacts mediated by nutrient pollution? To address these questions, we examined the impacts of a citrate‐coated gold nanoparticle (AuNPs) and of a commercial pesticide containing Cu(OH)2 nanoparticles (CuNPs) on aquatic primary producers under both ambient and enriched nutrient conditions. Wetland mesocosms were exposed repeatedly with low concentrations of nanoparticles and nutrients over the course of a 9‐month experiment in an effort to replicate realistic field exposure scenarios. In the absence of nutrient enrichment, there were no persistent effects of AuNPs or CuNPs on primary producers or ecosystem productivity. However, when combined with nutrient enrichment, both NPs intensified eutrophication. When either of these NPs were added in combination with nutrients, algal blooms persisted for \u3e 50 d longer than in the nutrient‐only treatment. In the AuNP treatment, this shift from clear waters to turbid waters led to large declines in both macrophyte growth and rates of ecosystem gross primary productivity (average reduction of 52% ± 6% and 92% ± 5%, respectively) during the summer. Our results suggest that nutrient status greatly influences the ecosystem‐scale impact of two emerging contaminants and that synthetic chemicals may be playing an under‐appreciated role in the global trends of increasing eutrophication. We provide evidence here that chronic exposure to Au and Cu(OH)2 nanoparticles at low concentrations can intensify eutrophication of wetlands and promote the occurrence of algal blooms

    Disruption of PF4/H multimolecular complex formation with a minimally anticoagulant heparin (ODSH)

    Get PDF
    Recent studies have shown that ultra-large complexes (ULCs) of platelet factor 4 (PF4) and heparin (H) play an essential role in the pathogenesis of heparin-induced thrombocytopenia (HIT), an immune-mediated disorder caused by PF4/H antibodies. Because antigenic PF4/H ULCs assemble through non-specific electrostatic interactions, we reasoned that disruption of charge-based interactions can modulate the immune response to antigen. We tested a minimally anticoagulant compound (2-O, 3-O desulfated heparin, ODSH) with preserved charge to disrupt PF4/H complex formation and immunogenicity. We show that ODSH disrupts complexes when added to pre-formed PF4/H ULCs and prevents ULC formation when incubated simultaneously with PF4 and UFH. In other studies, we show that excess ODSH reduces HIT antibody (Ab) binding in immunoassays and that PF4/ODSH complexes do not cross-react with HIT Abs. When ODSH and unfractionated heparin (UFH) are mixed at equimolar concentrations, we show that there is a negligible effect on amount of protamine required for heparin neutralisation and reduced immunogenicity of PF4/UFH in the presence of ODSH. Taken together, these studies suggest that ODSH can be used concurrently with UFH to disrupt PF4/H charge interactions and provides a novel strategy to reduce antibody mediated complications in HIT

    Metadata stewardship in nanosafety research: learning from the past, preparing for an "on-the-fly" FAIR future

    Get PDF
    Introduction: Significant progress has been made in terms of best practice in research data management for nanosafety. Some of the underlying approaches to date are, however, overly focussed on the needs of specific research projects or aligned to a single data repository, and this “silo” approach is hampering their general adoption by the broader research community and individual labs. Methods: State-of-the-art data/knowledge collection, curation management FAIRification, and sharing solutions applied in the nanosafety field are reviewed focusing on unique features, which should be generalised and integrated into a functional FAIRification ecosystem that addresses the needs of both data generators and data (re)users. Results: The development of data capture templates has focussed on standardised single-endpoint Test Guidelines, which does not reflect the complexity of real laboratory processes, where multiple assays are interlinked into an overall study, and where non-standardised assays are developed to address novel research questions and probe mechanistic processes to generate the basis for read-across from one nanomaterial to another. By focussing on the needs of data providers and data users, we identify how existing tools and approaches can be re-framed to enable “on-the-fly” (meta) data definition, data capture, curation and FAIRification, that are sufficiently flexible to address the complexity in nanosafety research, yet harmonised enough to facilitate integration of datasets from different sources generated for different research purposes. By mapping the available tools for nanomaterials safety research (including nanomaterials characterisation, non-standard (mechanistic-focussed) methods, measurement principles and experimental setup, environmental fate and requirements from new research foci such as safe and sustainable by design), a strategy for integration and bridging between silos is presented. The NanoCommons KnowledgeBase has shown how data from different sources can be integrated into a one-stop shop for searching, browsing and accessing data (without copying), and thus how to break the boundaries between data silos. Discussion: The next steps are to generalise the approach by defining a process to build consensus (meta)data standards, develop solutions to make (meta)data more machine actionable (on the fly ontology development) and establish a distributed FAIR data ecosystem maintained by the community beyond specific projects. Since other multidisciplinary domains might also struggle with data silofication, the learnings presented here may be transferable to facilitate data sharing within other communities and support harmonization of approaches across disciplines to prepare the ground for cross-domain interoperability. Visit WorldFAIR online at http://worldfair-project.eu. WorldFAIR is funded by the EC HORIZON-WIDERA-2021-ERA-01-41 Coordination and Support Action under Grant Agreement No. 101058393

    Metadata stewardship in nanosafety research: learning from the past, preparing for an "on-the-fly" FAIR future

    Get PDF
    Introduction: Significant progress has been made in terms of best practice in research data management for nanosafety. Some of the underlying approaches to date are, however, overly focussed on the needs of specific research projects or aligned to a single data repository, and this "silo" approach is hampering their general adoption by the broader research community and individual labs.Methods: State-of-the-art data/knowledge collection, curation management FAIrification, and sharing solutions applied in the nanosafety field are reviewed focusing on unique features, which should be generalised and integrated into a functional FAIRification ecosystem that addresses the needs of both data generators and data (re)users.Results: The development of data capture templates has focussed on standardised single-endpoint Test Guidelines, which does not reflect the complexity of real laboratory processes, where multiple assays are interlinked into an overall study, and where non-standardised assays are developed to address novel research questions and probe mechanistic processes to generate the basis for read-across from one nanomaterial to another. By focussing on the needs of data providers and data users, we identify how existing tools and approaches can be re-framed to enable "on-the-fly" (meta) data definition, data capture, curation and FAIRification, that are sufficiently flexible to address the complexity in nanosafety research, yet harmonised enough to facilitate integration of datasets from different sources generated for different research purposes. By mapping the available tools for nanomaterials safety research (including nanomaterials characterisation, nonstandard (mechanistic-focussed) methods, measurement principles and experimental setup, environmental fate and requirements from new research foci such as safe and sustainable by design), a strategy for integration and bridging between silos is presented. The NanoCommons KnowledgeBase has shown how data from different sources can be integrated into a one-stop shop for searching, browsing and accessing data (without copying), and thus how to break the boundaries between data silos.Discussion: The next steps are to generalise the approach by defining a process to build consensus (meta)data standards, develop solutions to make (meta)data more machine actionable (on the fly ontology development) and establish a distributed FAIR data ecosystem maintained by the community beyond specific projects. Since other multidisciplinary domains might also struggle with data silofication, the learnings presented here may be transferrable to facilitate data sharing within other communities and support harmonization of approaches across disciplines to prepare the ground for cross-domain interoperability

    Toward Identifying the Next Generation of Superfund and Hazardous Waste Site Contaminants

    Get PDF
    Reproduced with permission from Environmental Health Perspectives."This commentary evolved from a workshop sponsored by the National Institute of Environmental Health Sciences titled "Superfund Contaminants: The Next Generation" held in Tucson, Arizona, in August 2009. All the authors were workshop participants." doi:10.1289/ehp.1002497Our aim was to initiate a dynamic, adaptable process for identifying contaminants of emerging concern (CECs) that are likely to be found in future hazardous waste sites, and to identify the gaps in primary research that cause uncertainty in determining future hazardous waste site contaminants. Superfund-relevant CECs can be characterized by specific attributes: they are persistent, bioaccumulative, toxic, occur in large quantities, and have localized accumulation with a likelihood of exposure. Although still under development and incompletely applied, methods to quantify these attributes can assist in winnowing down the list of candidates from the universe of potential CECs. Unfortunately, significant research gaps exist in detection and quantification, environmental fate and transport, health and risk assessment, and site exploration and remediation for CECs. Addressing these gaps is prerequisite to a preventive approach to generating and managing hazardous waste sites.Support for the workshop, from which this article evolved, was provided by the National Institute of Environmental Health Sciences Superfund Research Program (P42-ES04940)

    Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway

    Get PDF
    The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred - E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions. © 2013 Bhowmick et al

    Depressive symptom trajectories among girls in the juvenile justice system: 24-month outcomes of an RCT of Multidimensional Treatment Foster Care

    Get PDF
    Youth depression is a significant and growing international public health problem. Youth who engage in high levels of delinquency are at particularly high risk for developing problems with depression. The present study examined the impact of a behavioral intervention designed to reduce delinquency (Multidimensional Treatment Foster Care; MTFC) compared to a group care intervention (GC; i.e., services as usual) on trajectories of depressive symptoms among adolescent girls in the juvenile justice system. MTFC has documented effects on preventing girls' recidivism, but its effects on preventing the normative rise in girls' depressive symptoms across adolescence have not been examined. This indicated prevention sample included 166 girls (13-17 years at T1) who had at least one criminal referral in the past 12 months and who were mandated to out-of-home care; girls were randomized to MTFC or GC. Intent-to-treat analyses examined the main effects of MTFC on depression symptoms and clinical cut-offs, and whether benefits were greatest for girls most at risk. Depressive symptom trajectories were specified in hierarchical linear growth models over a 2 year period using five waves of data at 6 month intervals. Depression clinical cut-off scores were specified as nonlinear probability growth models. Results showed significantly greater rates of deceleration for girls in MTFC versus GC for depressive symptoms and for clinical cut-off scores. The MTFC intervention also showed greater benefits for girls with higher levels of initial depressive symptoms. Possible mechanisms of effect are discussed, given MTFC's effectiveness on targeted and nontargeted outcomes. © 2013 Society for Prevention Research
    corecore