100 research outputs found

    The role of deliberate practice informed simulation training in developing expert performance in surgery and barriers to its implementation : a mixed methods study

    Get PDF
    Background The training of surgeons is undergoing a paradigm shift. Traditional apprenticeship models, rooted in time-based exposure and opportunistic learning, are increasingly viewed as insufficient for ensuring competence and expertise in a field where errors can have life-altering consequences. Deliberate Practice (DP), a pedagogical framework grounded in educational psychology, offers a compelling alternative by emphasising structured, feedback-driven, and goal-oriented practice. The application of DP principles in surgical education, however, particularly within simulation-based training, remains limited and poorly understood. Aim This study explores the role of DP in developing Expert Performance in surgery and investigates the barriers to its implementation in surgical training programs. Methods The first phase involved a systematic review of the literature assessing the extent to which Simulation-Based Surgical Training (SBST) interventions adhered to key DP principles—namely, learner motivation, structured task design, timely feedback, and repetition—and evaluating their outcomes. A scoring rubric was developed to assess DP adherence across studies. The mixed-methods phase included self-administered questionnaires and semi-structured interviews with surgical trainees and trainers to explore their perceptions of DP and identify practical, cultural, and systemic barriers to its implementation. Data were analysed using thematic analysis and integrated with quantitative findings to understand the current landscape comprehensively. Results The systematic reviews identified multiple papers on open and laparoscopic surgery, most of which reported positive outcomes associated with simulation-based interventions. Only a minority of studies, however, fully incorporated all core elements of DP. Interventions with higher DP adherence scores demonstrated more consistent improvements in skill acquisition, retention, and transferability. Most studies assessed outcomes at Kirkpatrick levels 1 and 2, with limited evidence of behavioural or patient-level impact. The qualitative phase involved self-administered questionnaires and 20 semi-structured interviews with surgical trainees and trainers. Thematic analysis revealed four major themes: (1) Value of Structured Practice, (2) Feedback and Faculty Engagement, (3) Institutional Constraints, and (4) Educational Culture. Trainees reported that while simulation was widely appreciated, access to structured, deliberate practice opportunities was inconsistent and often self-directed. Trainers expressed willingness to engage in DP-aligned instruction but cited lack of time, inadequate institutional recognition, and limited pedagogical training as key barriers. Both groups identified a misalignment between educational aspirations and clinical service demands. The lack of protected time for practice, the absence of standardised curricula incorporating DP principles, and insufficient assessment tools to measure progression were cited as systemic barriers to meaningful implementation. Despite these challenges, there was strong consensus on the transformative potential of DP when applied effectively within simulation-based surgical training environments. Qualitative findings also revealed widespread awareness of the benefits of structured, repetitive practice and expert feedback among both trainees and trainers. Barriers to DP implementation included a lack of protected time, limited faculty availability, underdeveloped curricula, and institutional emphasis on service delivery over education. Participants also highlighted the absence of clear performance benchmarks and insufficient training in feedback provision as additional obstacles. Conclusion DP offers a powerful model for optimising surgical education. While evidence supports its effectiveness in simulation-based contexts, current implementation is limited by structural and pedagogical barriers. This study highlights the need for a deliberate and theory-informed redesign of surgical training that prioritises competence, safety, and the pursuit of expert performance

    Correlation of three dimensional anorectal manometry and three dimensional endoanal ultrasound findings in primi gravida: a cross sectional study

    Get PDF
    BACKGROUND: 3-dimensional anorectal manometry (3DARM) and 3-dimensional endoanal ultrasound (3DEAUS) have not been used to assess the anal sphincter complex (ASC) in primi gravida. This study was conducted to identify any correlation that may exist between 3DARM and 3DEAUS. METHODS: We analyzed 3DARM and 3DEAUS data of 101 consecutive primi mothers assessed in the late second trimester or early 3rd trimester. 3DARM was performed using the Given Imaging(®) Manoscan system and 3DEAUS was performed with the Olympus(®) RU 12M-R1 probe and EU-ME1 ultrasound system. RESULTS: The mean age was 24.7 (SD—5.1) years. All patients had a normal Cleveland Clinic Incontinence Score. The mean resting pressure (RP) was 87.02 (SD—18.43) mmHg and the maximum squeeze pressure (SP) was 179.21 (SD—52.96) mmHg. The mean length of the high pressure zone was 3.67 (SD—0.52) cm. On 3DEAUS, there were three characteristic segments of the ASC that were identified; upper, middle and lower. Mean thicknesses for both internal anal sphincter (IAS) and external anal sphincter (EAS) were identified for primi gravida. IAS was thicker anteriorly and at 9 o’ clock positions and EAS was thicker posteriorly. There was good correlation in the length of the ASC at each quadrant between 3DARM and 3DEAUS. There was no correlation between either RP or SP thickness of IAS or EAS at each level and quadrant. CONCLUSION: Correlation is seen only in the length of ASC at each quadrant. No correlation exist between RP or SP and thickness of IAS and EAS

    Types and Patterns of Colonic Polyps Encountered at a Tertiary Care Center in a Developing Country in South Asia

    Get PDF
    Purpose. To identify the prevalence, types, and patterns of colonic polyps in a cohort of patients presenting to a tertiary care referral center in Sri Lanka. Methods. Endoscopy and pathology reports of a single unit from 2006 to 2013 were analyzed retrospectively. Spearman’s correlation coefficient and chi-square test were used to identify correlations. Results. There were a total of 158 patients (M : F, 10 : 57) who had polyps encountered on colonoscopy (n=1408) and flexible sigmoidoscopy (n=2402) with an incidence of 4.1%. Mean age was 56.5 years (SD 16.4) and the incidence of polyps increased with age. The majority (81.6%) had one polyp. A total of 188 polyps were assessed and most were seen in the rectum (33.5%) followed by sigmoid colon (22.9%). The commonest histological type was tubulovillous adenoma (33.5%) followed by tubular adenoma (24.5%). Most polyps were benign (91.5%). There was no statistically significant correlation with age or gender with malignancy, site, or histology. Discussion and Conclusion. The incidence of colorectal polyps was lower than the values reported in the west. More polyps were identified in males. There was no statistically significant association between age, gender, or multiplicity and malignant change in the polyps

    Factors influencing the approaches to studying of preclinical and clinical students and postgraduate trainees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Students can be classified into three categories depending on their approaches to studying; namely, deep approach (DA), strategic approach (SA) and surface apathetic or superficial approach (SAA). The aim of this study was to identify factors affecting the approaches to studying among Sri Lankan medical undergraduates and post graduate trainees and to analyze the change in the pattern of study skills with time and experience.</p> <p>Method</p> <p>Pre-clinical and clinical students of the Faculty of Medicine, University of Colombo and postgraduate trainees in Surgery at the National Hospital of Sri Lanka were invited to complete the Approaches and Study Skills Inventory for Students (ASSIST) questionnaire.</p> <p>Results</p> <p>A total of 187 pre clinical (M: F = 96:91), 124 clinical (M: F = 61:63) and 53 post graduate trainees (M: F = 50:3) participated in the study. Approaches of male and female students were similar. SA was significantly affected by age among the preclinical students (p = 0.01), but not in other groups. Among pre-clinical students, males preferred a teacher who supported understanding (p = 0.04) but females preferred a passive transmission of information (p < 0.001). This, too, was not visible among other groups. A linear regression performed on group (batch), gender, island rank at GCE Advance Level (AL) examination, self appraisal score and the preference scores of type of teacher only managed to explain 35% or less of variance observed for each approach in individual groups.</p> <p>Conclusion</p> <p>Different factors affect the approach to studying in different groups but these explain only a small fraction of the variance observed.</p

    Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection

    Get PDF
    BackgroundAccurate rapid diagnostic tests for SARS‐CoV‐2 infection could help manage the COVID‐19 pandemic by potentially increasing access to testing and speed detection of infection, as well as informing clinical and public health management decisions to reduce transmission. Previous iterations of this review provided clear and conclusive evidence of superior test performance in those experiencing possible signs and symptoms of Covid‐19. However, test performance in asymptomatic individuals and sensitivity by setting and indication for testing remains unclear. This is the fourth iteration of this review, first published in 2020.ObjectivesTo assess the diagnostic accuracy of rapid, point‐of‐care antigen tests (Ag‐RDTs) for diagnosis of SARS‐CoV‐2 infection in asymptomatic population groups.Search methodsWe searched the COVID‐19 Open Access Project living evidence database from the University of Bern (which includes daily updates from MEDLINE and Embase and preprints from medRxiv and bioRxiv) on 17 February 2022. We included independent evaluations from national reference laboratories, FIND and the Diagnostics Global Health website. We did not apply language restrictions.Selection criteriaWe included test accuracy studies of any design that evaluated commercially produced, rapid antigen tests in asymptomatic people tested because of known or suspected contact with SARS‐CoV‐2 infection, known SARS‐CoV‐2 infection or known absence of infection, or those who were being screened for infection. We included evaluations of single applications of a test (one test result reported per person). Reference standards for presence or absence of infection were any laboratory‐based molecular test (primarily reverse transcription polymerase chain reaction (RT‐PCR)).Data collection and analysisWe used standard screening procedures with three reviewers. Two reviewers independently carried out quality assessment (using the QUADAS‐2 tool) and extracted study results. Other study characteristics were extracted by one review author and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test, and pooled data using the bivariate model. We investigated heterogeneity by including indicator variables in the random‐effects logistic regression models. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status.Main resultsWe included 146 study cohorts (described in 130 study reports). The main results relate to 164 evaluations of single test applications including 144,250 unique samples (7104 with confirmed SARS‐CoV‐2) obtained from asymptomatic or mainly asymptomatic populations. Studies were mainly conducted in Europe (85/146, 58%), and evaluated 41 different commercial antigen assays (test kit). Only six studies compared two or more brands of test. Nearly all studies (96%) used RT‐PCR alone to define presence or absence of infection.Risk of bias was high because of participant selection (13, 9%); interpretation of the index test (3, 2%); weaknesses in the reference standard for absence of infection (3, 2%); and participant flow and timing (46, 32%). Characteristics of participants (11, 8%) and index test delivery (117, 80%) differed from the way in which and in whom the test was intended to be used.Estimates of sensitivity varied considerably between studies, with consistently high specificities. Average sensitivity was 55.0% (95% CI 50.9%, 59.0%) and average specificity was 99.5% (95% CI 99.5%, 99.6%) across the 147 evaluations of Ag‐RDTs reporting both sensitivity and specificity (149,251 samples, 7636 cases). Average sensitivity was higher when epidemiological exposure to SARS‐CoV‐2 was suspected (58.6%, 95% CI 51.4% to 65.5%; 43 evaluations; 15,516 samples, 1483 cases) compared to where COVID‐19 testing was reported to be widely available to anyone on presentation for testing (53.0%, 95% CI 48.4% to 57.5%; 103 evaluations; 129,032 samples, 5660 cases); however CIs overlapped, limiting the inference that can be drawn from these data. Average specificity was similarly high for both groups (99.4% and 99.6%). Sensitivity was generally lower when used in a screening context (summary values from 40.6% to 42.1% for three of four screening settings) compared to testing asymptomatic individuals at Covid‐19 test centres (56.7%) or emergency departments (54.7%). We observed a decline in summary sensitivities as measures of sample viral load decreased.Sensitivity varied between brands. When tests were used according to manufacturer instructions, average sensitivities by brand ranged from 36.3% to 78.8% in asymptomatic participants (14 assays with sufficient data for pooling). None of the assays met the WHO acceptable performance standard for sensitivity (of 80%) based on meta‐analysis; however, sensitivities from individual studies (where meta‐analysis was not possible) exceeded 80% for three assays. The WHO acceptable performance criterion of 97% specificity was met by all but four assays (based on individual studies or meta‐analysis) when tests were used according to manufacturer instructions.At 0.5% prevalence using summary data for asymptomatic people, where testing was widely available and where epidemiological exposure to COVID‐19 was suspected, resulting PPVs would be 40% and 33%, meaning that 3 in 5 or 2 in 3 positive results will be false positives, and between 1 in 2 and 2 in 5 cases will be missed.Authors' conclusionsEvidence for antigen testing in asymptomatic cohorts has increased considerably since the publication of the previous update of this review. Average sensitivities remain lower for testing of asymptomatic when compared to symptomatic individuals; however, there is an indication that sensitivities may be higher where epidemiological exposure to SARS‐CoV‐2 is suspected compared to testing any asymptomatic individual regardless of indication. Sensitivities were particularly low when antigen tests were used in screening settings. Assays from different manufacturers also vary in sensitivity, indicating the need for appropriate clinical validation of a particular antigen test in a given intended use setting prior to more widespread deployment.Further research is needed to evaluate the effectiveness of screening programmes at reducing transmission of infection, whether mass screening or targeted approaches, including schools, healthcare setting and traveller screening.FundingThis paper presents independent research supported by the NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, and the University of Birmingham. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.RegistrationProtocol (2020) doi: 10.1002/14651858.CD013596<p/

    Antibody tests for identification of current and past infection with SARS-CoV-2

    Get PDF
    Background The diagnostic challenges associated with the COVID‐19 pandemic resulted in rapid development of diagnostic test methods for detecting SARS‐CoV‐2 infection. Serology tests to detect the presence of antibodies to SARS‐CoV‐2 enable detection of past infection and may detect cases of SARS‐CoV‐2 infection that were missed by earlier diagnostic tests. Understanding the diagnostic accuracy of serology tests for SARS‐CoV‐2 infection may enable development of effective diagnostic and management pathways, inform public health management decisions and understanding of SARS‐CoV‐2 epidemiology. Objectives To assess the accuracy of antibody tests, firstly, to determine if a person presenting in the community, or in primary or secondary care has current SARS‐CoV‐2 infection according to time after onset of infection and, secondly, to determine if a person has previously been infected with SARS‐CoV‐2. Sources of heterogeneity investigated included: timing of test, test method, SARS‐CoV‐2 antigen used, test brand, and reference standard for non‐SARS‐CoV‐2 cases. Search methods The COVID‐19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) was searched on 30 September 2020. We included additional publications from the Evidence for Policy and Practice Information and Co‐ordinating Centre (EPPI‐Centre) ‘COVID‐19: Living map of the evidence’ and the Norwegian Institute of Public Health ’NIPH systematic and living map on COVID‐19 evidence’. We did not apply language restrictions. Selection criteria We included test accuracy studies of any design that evaluated commercially produced serology tests, targeting IgG, IgM, IgA alone, or in combination. Studies must have provided data for sensitivity, that could be allocated to a predefined time period after onset of symptoms, or after a positive RT‐PCR test. Small studies with fewer than 25 SARS‐CoV‐2 infection cases were excluded. We included any reference standard to define the presence or absence of SARS‐CoV‐2 (including reverse transcription polymerase chain reaction tests (RT‐PCR), clinical diagnostic criteria, and pre‐pandemic samples). Data collection and analysis We use standard screening procedures with three reviewers. Quality assessment (using the QUADAS‐2 tool) and numeric study results were extracted independently by two people. Other study characteristics were extracted by one reviewer and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and, for meta‐analysis, we fitted univariate random‐effects logistic regression models for sensitivity by eligible time period and for specificity by reference standard group. Heterogeneity was investigated by including indicator variables in the random‐effects logistic regression models. We tabulated results by test manufacturer and summarised results for tests that were evaluated in 200 or more samples and that met a modification of UK Medicines and Healthcare products Regulatory Agency (MHRA) target performance criteria. Main results We included 178 separate studies (described in 177 study reports, with 45 as pre‐prints) providing 527 test evaluations. The studies included 64,688 samples including 25,724 from people with confirmed SARS‐CoV‐2; most compared the accuracy of two or more assays (102/178, 57%). Participants with confirmed SARS‐CoV‐2 infection were most commonly hospital inpatients (78/178, 44%), and pre‐pandemic samples were used by 45% (81/178) to estimate specificity. Over two‐thirds of studies recruited participants based on known SARS‐CoV‐2 infection status (123/178, 69%). All studies were conducted prior to the introduction of SARS‐CoV‐2 vaccines and present data for naturally acquired antibody responses. Seventy‐nine percent (141/178) of studies reported sensitivity by week after symptom onset and 66% (117/178) for convalescent phase infection. Studies evaluated enzyme‐linked immunosorbent assays (ELISA) (165/527; 31%), chemiluminescent assays (CLIA) (167/527; 32%) or lateral flow assays (LFA) (188/527; 36%). Risk of bias was high because of participant selection (172, 97%); application and interpretation of the index test (35, 20%); weaknesses in the reference standard (38, 21%); and issues related to participant flow and timing (148, 82%). We judged that there were high concerns about the applicability of the evidence related to participants in 170 (96%) studies, and about the applicability of the reference standard in 162 (91%) studies. Average sensitivities for current SARS‐CoV‐2 infection increased by week after onset for all target antibodies. Average sensitivity for the combination of either IgG or IgM was 41.1% in week one (95% CI 38.1 to 44.2; 103 evaluations; 3881 samples, 1593 cases), 74.9% in week two (95% CI 72.4 to 77.3; 96 evaluations, 3948 samples, 2904 cases) and 88.0% by week three after onset of symptoms (95% CI 86.3 to 89.5; 103 evaluations, 2929 samples, 2571 cases). Average sensitivity during the convalescent phase of infection (up to a maximum of 100 days since onset of symptoms, where reported) was 89.8% for IgG (95% CI 88.5 to 90.9; 253 evaluations, 16,846 samples, 14,183 cases), 92.9% for IgG or IgM combined (95% CI 91.0 to 94.4; 108 evaluations, 3571 samples, 3206 cases) and 94.3% for total antibodies (95% CI 92.8 to 95.5; 58 evaluations, 7063 samples, 6652 cases). Average sensitivities for IgM alone followed a similar pattern but were of a lower test accuracy in every time slot. Average specificities were consistently high and precise, particularly for pre‐pandemic samples which provide the least biased estimates of specificity (ranging from 98.6% for IgM to 99.8% for total antibodies). Subgroup analyses suggested small differences in sensitivity and specificity by test technology however heterogeneity in study results, timing of sample collection, and smaller sample numbers in some groups made comparisons difficult. For IgG, CLIAs were the most sensitive (convalescent‐phase infection) and specific (pre‐pandemic samples) compared to both ELISAs and LFAs (P < 0.001 for differences across test methods). The antigen(s) used (whether from the Spike‐protein or nucleocapsid) appeared to have some effect on average sensitivity in the first weeks after onset but there was no clear evidence of an effect during convalescent‐phase infection. Investigations of test performance by brand showed considerable variation in sensitivity between tests, and in results between studies evaluating the same test. For tests that were evaluated in 200 or more samples, the lower bound of the 95% CI for sensitivity was 90% or more for only a small number of tests (IgG, n = 5; IgG or IgM, n = 1; total antibodies, n = 4). More test brands met the MHRA minimum criteria for specificity of 98% or above (IgG, n = 16; IgG or IgM, n = 5; total antibodies, n = 7). Seven assays met the specified criteria for both sensitivity and specificity. In a low‐prevalence (2%) setting, where antibody testing is used to diagnose COVID‐19 in people with symptoms but who have had a negative PCR test, we would anticipate that 1 (1 to 2) case would be missed and 8 (5 to 15) would be falsely positive in 1000 people undergoing IgG or IgM testing in week three after onset of SARS‐CoV‐2 infection. In a seroprevalence survey, where prevalence of prior infection is 50%, we would anticipate that 51 (46 to 58) cases would be missed and 6 (5 to 7) would be falsely positive in 1000 people having IgG tests during the convalescent phase (21 to 100 days post‐symptom onset or post‐positive PCR) of SARS‐CoV‐2 infection. Authors' conclusions Some antibody tests could be a useful diagnostic tool for those in whom molecular‐ or antigen‐based tests have failed to detect the SARS‐CoV‐2 virus, including in those with ongoing symptoms of acute infection (from week three onwards) or those presenting with post‐acute sequelae of COVID‐19. However, antibody tests have an increasing likelihood of detecting an immune response to infection as time since onset of infection progresses and have demonstrated adequate performance for detection of prior infection for sero‐epidemiological purposes. The applicability of results for detection of vaccination‐induced antibodies is uncertain

    Global, regional, and national incidence of six major immune-mediated inflammatory diseases: findings from the global burden of disease study 2019

    Get PDF
    BACKGROUND: The causes for immune-mediated inflammatory diseases (IMIDs) are diverse and the incidence trends of IMIDs from specific causes are rarely studied. The study aims to investigate the pattern and trend of IMIDs from 1990 to 2019. METHODS: We collected detailed information on six major causes of IMIDs, including asthma, inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, psoriasis, and atopic dermatitis, between 1990 and 2019, derived from the Global Burden of Disease study in 2019. The average annual percent change (AAPC) in number of incidents and age standardized incidence rate (ASR) on IMIDs, by sex, age, region, and causes, were calculated to quantify the temporal trends. FINDINGS: In 2019, rheumatoid arthritis, atopic dermatitis, asthma, multiple sclerosis, psoriasis, inflammatory bowel disease accounted 1.59%, 36.17%, 54.71%, 0.09%, 6.84%, 0.60% of overall new IMIDs cases, respectively. The ASR of IMIDs showed substantial regional and global variation with the highest in High SDI region, High-income North America, and United States of America. Throughout human lifespan, the age distribution of incident cases from six IMIDs was quite different. Globally, incident cases of IMIDs increased with an AAPC of 0.68 and the ASR decreased with an AAPC of −0.34 from 1990 to 2019. The incident cases increased across six IMIDs, the ASR of rheumatoid arthritis increased (0.21, 95% CI 0.18, 0.25), while the ASR of asthma (AAPC = −0.41), inflammatory bowel disease (AAPC = −0.72), multiple sclerosis (AAPC = −0.26), psoriasis (AAPC = −0.77), and atopic dermatitis (AAPC = −0.15) decreased. The ASR of overall and six individual IMID increased with SDI at regional and global level. Countries with higher ASR in 1990 experienced a more rapid decrease in ASR. INTERPRETATION: The incidence patterns of IMIDs varied considerably across the world. Innovative prevention and integrative management strategy are urgently needed to mitigate the increasing ASR of rheumatoid arthritis and upsurging new cases of other five IMIDs, respectively. FUNDING: The Global Burden of Disease Study is funded by the Bill and Melinda Gates Foundation. The project funded by Scientific Research Fund of Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital (2022QN38)

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. METHODS: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. FINDINGS: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. INTERPRETATION: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    publishedVersio

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
    corecore