73 research outputs found

    Impact of gene variants on sex-specific regulation of human Scavenger receptor class B type 1 (SR-BI) expression in liver and association with lipid levels in a population-based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have noted that genetic variants of <it>SCARB1</it>, a lipoprotein receptor involved in reverse cholesterol transport, are associated with serum lipid levels in a sex-dependent fashion. However, the mechanism underlying this gene by sex interaction has not been explored.</p> <p>Methods</p> <p>We utilized both epidemiological and molecular methods to study how estrogen and gene variants interact to influence <it>SCARB1 </it>expression and lipid levels. Interaction between 35 <it>SCARB1 </it>haplotype-tagged polymorphisms and endogenous estradiol levels was assessed in 498 postmenopausal Caucasian women from the population-based Rancho Bernardo Study. We further examined associated variants with overall and <it>SCARB1 </it>splice variant (SR-BI and SR-BII) expression in 91 human liver tissues using quantitative real-time PCR.</p> <p>Results</p> <p>Several variants on a haplotype block spanning intron 11 to intron 12 of <it>SCARB1 </it>showed significant gene by estradiol interaction affecting serum lipid levels, the strongest for rs838895 with HDL-cholesterol (p = 9.2 × 10<sup>-4</sup>) and triglycerides (p = 1.3 × 10<sup>-3</sup>) and the triglyceride:HDL cholesterol ratio (p = 2.7 × 10<sup>-4</sup>). These same variants were associated with expression of the SR-BI isoform in a sex-specific fashion, with the strongest association found among liver tissue from 52 young women <45 years old (p = 0.002).</p> <p>Conclusions</p> <p>Estrogen and <it>SCARB1 </it>genotype may act synergistically to regulate expression of <it>SCARB1 </it>isoforms and impact serum levels of HDL cholesterol and triglycerides. This work highlights the importance of considering sex-dependent effects of gene variants on serum lipid levels.</p

    Genome-Wide Association Study of Lp-PLA2 Activity and Mass in the Framingham Heart Study

    Get PDF
    Lipoprotein-associated phospholipase A2 (Lp-PLA2) is an emerging risk factor and therapeutic target for cardiovascular disease. The activity and mass of this enzyme are heritable traits, but major genetic determinants have not been explored in a systematic, genome-wide fashion. We carried out a genome-wide association study of Lp-PLA2 activity and mass in 6,668 Caucasian subjects from the population-based Framingham Heart Study. Clinical data and genotypes from the Affymetrix 550K SNP array were obtained from the open-access Framingham SHARe project. Each polymorphism that passed quality control was tested for associations with Lp-PLA2 activity and mass using linear mixed models implemented in the R statistical package, accounting for familial correlations, and controlling for age, sex, smoking, lipid-lowering-medication use, and cohort. For Lp-PLA2 activity, polymorphisms at four independent loci reached genome-wide significance, including the APOE/APOC1 region on chromosome 19 (p = 6×10−24); CELSR2/PSRC1 on chromosome 1 (p = 3×10−15); SCARB1 on chromosome 12 (p = 1×10−8) and ZNF259/BUD13 in the APOA5/APOA1 gene region on chromosome 11 (p = 4×10−8). All of these remained significant after accounting for associations with LDL cholesterol, HDL cholesterol, or triglycerides. For Lp-PLA2 mass, 12 SNPs achieved genome-wide significance, all clustering in a region on chromosome 6p12.3 near the PLA2G7 gene. Our analyses demonstrate that genetic polymorphisms may contribute to inter-individual variation in Lp-PLA2 activity and mass

    Tree Cover Mapping Based on Sentinel-2 Images Demonstrate High Thematic Accuracy in Europe

    Get PDF
    The spatial and temporal distribution of trees has a large impact on human health and the environment through contributions to important climate mechanisms as well as commercial, recreational and social activities in society. A range of tree mapping methodologies has been presented in the literature, but tree cover estimates still differ widely between the individual datasets, and comparisons of the thematic accuracy of the resulting tree maps are rather scarce. The Copernicus Sentinel-2 satellites, which were launched in 2015 and 2017, have a combination of high spatial and temporal resolution. Given that this is a new satellite, a substantial amount of research on development of tree mapping algorithms as well as accuracy assessment of said algorithms have to be done in the years to come. To contribute to this process, a tree map produced through unsupervised classification was created for six Sentinel-2 tiles. The agreement between the tree map and the corresponding national forest inventory, as a function of the band combination chosen, was analysed and the thematic accuracy was assessed for two out of the six tiles. The results show that the highest agreement between the present tree map and the national forest inventory was found for bands 2, 3, 6 and 12. The present tree map has a relative difference in tree cover between 8% and 79% compared to previous estimates, but results are characterised by large scatter. Lastly, it is shown that the overall thematic accuracy of the present map is up to 90%, with the user’s accuracy ranging from 34.85 % to 92.10 %, and the producer’s accuracy ranging from 23.80 % to 97.60 % for the various thematic classes. This demonstrates that tree maps with high thematic accuracy can be produced from Sentinel-2. In the future the thematic accuracy can be increased even more through the use of temporal averaging in the mapping procedure, which will enable an accurate estimate of the European tree cover

    Electrophilic Substitution with Allylic Rearrangement (SE′). Anti Stereoselectivity in Trifluoroacetolysis of Some CycIohex-2-enylsilanes, -germanes, and -stannanes

    No full text
    Trifluoroacetolysis of various cyclohex-2-enylsilanes, -germanes, and -stannanes is demonstrated to be γ regiospecific and highly anti stereoselective, as predicted for a dominating LUMO-HOMO interaction in a concerted S2′ process

    Modifying the surface of polymer substrates by graft polymerization

    No full text
    Abstract The present invention relates generally to a grafting process comprising the formation of a grafted polymeric structure having a substrate polymer in hybrid formation with one or more of the same or other polymers or monomeric subunits thereof. More particularly, the present invention contemplates a method of generating a homogenous or heterogenous grafted polymer by inducing or otherwise facilitating free radical formation to initiate polymerization of monomer units corresponding to the same or different polymers to a substrate polymer previously subjected to physical stress means. The resulting hybrid polymer may comprise a substrate polymer and a population of a second or further polymers in homogenous or heterogenous hybrid formation with the substrate polymer. A homogenous population includes a grafted population of the same polymer whereas a heterogenous population comprises a grafted population of two or more different polymers. The homogenous or heterogenous population may be in a random or patterned array and may be regarded, in one embodiment, as reactive or interactive centres for solid phase organic synthesis and binding of polymeric and/or chemically interactive molecules. The present invention also discloses a method to render polymers, previously regarded as not being suitable material for graft formation, capable of receiving a graft polymer in a heterogenous or homogenous fashion. Thus, the instant invention permits the production of a new range of hybrid polymer including copolymer materials and blends of polymers

    2H Nuclear Magnetic Resonance Study of the Stereochemistry of Reduction of Some Organomercurials

    No full text
    The stereochemical courses of the replacement of mercury by deuterium in a range of organomercury halides or acetates, by employing as reducing systems sodium borodeuteride/tetrahydrofuran/aqueous base and 1-2% sodium amalgam/deuterium oxide/sodium deuterioxide, have been investigated by H nuclear magnetic resonance spectroscopy. The following organomercurials were examined: cis- and frans-(4-methylcyclohexyl)mercuric acetate (or bromide), cis-(3-methylcyclohexyl)mercuric bromide, cis- and trms-(2-methoxycyclohexyl)- and -(2-methoxycyclopentyl) mercuric chlorides, exo,endo-(2-norbornyl)mercuric acetate, (5-acetoxy-exo,exo-tricyclo- [2.2.1.0]hept-3-yl)mercuric chloride [(5-acetoxy-3-nortricyclyl)mercuric chloride] and (cis-exo-2-acetoxynorborn- 5-en-3-yl)mercuric chloride. The sodium borodeuteride reductions provide mixtures and unambiguous assignments of the H spectra were possible either by synthesis of authentic deuterated compounds or on the basis of established H chemical shifts. The signal intensities provide accurate measures of the preferred directions of abstraction by the radicals generally agreed to be involved in these borohydride reductions. In contrast, sodium amalgam reductions are completely stereospecific with retention at carbon, and no rearrangement was observed in the rearrangement-prone nontricyclyl-norbomenyl pair. These results support the idea that the H-incorporating step is electrophilic cleavage of the C-Hg bond, probably in a subvalent organomercury species. The stereochemistries of the (deuterio)alkylcyclohexanes resulting from AIBN-initiated tributylstannane-d reductions of various alkylcyclohexyl bromides were also determined for comparison purposes
    corecore