349 research outputs found

    Moisture Absorption of Graphite-Epoxy Composites Immersed in Liquids and in Humid Air

    Full text link
    Moisture absorption of graphite-epoxy composites immersed in liquids and in himid air were investigated. The moisture content as a function of time and temperature was measured for three materials: Fiberite T300/1034, Hercules AS/3501-5 and Narmco T300/5208. Tests were per formed a) with the materials immersed in No. 2 diesel fuel, in jet A fuel, in aviation oil, in saturated salt water, and in distilled water (in the range of 300 to 322 K) and b)with the materials exposed to humid air (in the range 322 to 366 K). The results obtained were compared to available composite and neat resin data.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68153/2/10.1177_002199837901300205.pd

    A Planarity Test via Construction Sequences

    Full text link
    Optimal linear-time algorithms for testing the planarity of a graph are well-known for over 35 years. However, these algorithms are quite involved and recent publications still try to give simpler linear-time tests. We give a simple reduction from planarity testing to the problem of computing a certain construction of a 3-connected graph. The approach is different from previous planarity tests; as key concept, we maintain a planar embedding that is 3-connected at each point in time. The algorithm runs in linear time and computes a planar embedding if the input graph is planar and a Kuratowski-subdivision otherwise

    Improving detection of surface discontinuities in visual-force control systms

    Get PDF
    In this paper, a new approach to detect surface discontinuities in a visual–force control task is described. A task which consists in tracking a surface using visual–force information is shown. In this task, in order to reposition the robot tool with respect to the surface it is necessary to determine the surface discontinuities. This paper describes a new method to detect surface discontinuities employing sensorial information obtained from a force sensor, a camera and structured light. This method has proved to be more robust than previous systems even in situations where high frictions occur

    Recommended Medical and Non-Medical Factors to Assess Military Preventable Deaths: Subject Matter Experts Provide Valuable Insights

    Get PDF
    INTRODUCTION: Historically, there has been variability in the methods for determining preventable death within the US Department of Defense. Differences in methodologies partially explain variable preventable death rates ranging from 3% to 51%. The lack of standard review process likely misses opportunities for improvement in combat casualty care. This project identified recommended medical and non-medical factors necessary to (1) establish a comprehensive preventable death review process and (2) identify opportunities for improvement throughout the entire continuum of care. METHODS: This qualitative study used a modified rapid assessment process that includes the following steps: (1) identification and recruitment of US government subject matter experts (SMEs); (2) multiple cycles of data collection via key informant interviews and focus groups; (3) consolidation of information collected in these interviews; and (4) iterative analysis of data collected from interviews into common themes. Common themes identified from SME feedback were grouped into the following subject areas: (1) prehospital, (2) in-hospital and (3) forensic pathology. RESULTS: Medical recommendations for military preventable death reviews included the development, training, documentation, collection, analysis and reporting of the implementation of the Tactical Combat Casualty Care Guidelines, Joint Trauma System Clinical Practice Guidelines and National Association of Medical Examiners autopsy standards. Non-medical recommendations included training, improved documentation, data collection and analysis of non-medical factors needed to understand how these factors impact optimal medical care. CONCLUSIONS: In the operational environment, medical care must be considered in the context of non-medical factors. For a comprehensive preventable death review process to be sustainable in the military health system, the process must be based on an appropriate conceptual framework implemented consistently across all military services

    Monitoring Soil Quality to Assess the Sustainability of Harvesting Corn Stover

    Get PDF
    Harvesting feedstock for biofuel production must not degrade soil, water, or air resources. Our objective is to provide an overview of field research being conducted to quantify effects of harvesting corn (Zea mays L.) stover as a bioenergy feedstock. Coordinated field studies are being conducted near Ames, IA; St. Paul and Morris, MN; Mead, NE; University Park, PA; Florence, SC; and Brookings, SD., as part of the USDA-ARS Renewable Energy Assessment Project (REAP). A baseline soil quality assessment was made using the Soil Management Assessment Framework (SMAF). Corn grain and residue yield for two different stover harvest rates (∼50% and ∼90%) are being measured. Available soil data remains quite limited but sufficient for an initial SMAF analysis that confirms total organic carbon (TOC) is a soil quality indicator that needs to be closely monitored closely to quantify crop residue removal effects. Overall, grain yields averaged 9.7 and 11.7 Mg ha−1 (155 and 186 bu acre−1) in 2008 and 2009, values that are consistent with national averages for both years. The average amount of stover collected for the 50% treatment was 2.6 and 4.2 Mg ha−1 for 2008 and 2009, while the 90% treatment resulted in an average removal of 5.4 and 7.4 Mg ha−1, respectively. Based on a recent literature review, both stover harvest scenarios could result in a gradual decline in TOC. However, the literature value has a large standard error, so continuation of this long-term multi-location study for several years is warranted

    Landscape Features Impact on Soil Available Water, Corn Biomass, and Gene Expression during the Late Vegetative Stage

    Get PDF
    Crop yields at summit positions of rolling landscapes often are lower than backslope yields. The differences in plant response may be the result of many different factors. We examined corn (Zea mays L.) plant productivity, gene expression, soil water, and nutrient availability in two landscape positions located in historically high (backslope) and moderate (summit and shoulder) yielding zones to gain insight into plant response differences. Growth characteristics, gene expression, and soil parameters (water and N and P content) were determined at the V12 growth stage of corn. At tassel, plant biomass, N content, 13C isotope discrimination (Δ), and soil water was measured. Soil water was 35% lower in the summit and shoulder compared with the lower backslope plots. Plants at the summit had 16% less leaf area, biomass, and N and P uptake at V12 and 30% less biomass at tassel compared with plants from the lower backslope. Transcriptome analysis at V12 indicated that summit and shoulder-grown plants had 496 downregulated and 341 upregulated genes compared with backslope-grown plants. Gene set and subnetwork enrichment analyses indicated alterations in growth and circadian response and lowered nutrient uptake, wound recovery, pest resistance, and photosynthetic capacity in summit and shoulder-grown plants. Reducing plant populations, to lessen demands on available soil water, and applying pesticides, to limit biotic stress, may ameliorate negative water stress responses

    Superscaling of Inclusive Electron Scattering from Nuclei

    Get PDF
    We investigate the degree to which the concept of superscaling, initially developed within the framework of the relativistic Fermi gas model, applies to inclusive electron scattering from nuclei. We find that data obtained from the low energy loss side of the quasielastic peak exhibit the superscaling property, i.e., the scaling functions f(\psi') are not only independent of momentum transfer (the usual type of scaling: scaling of the first kind), but coincide for A \geq 4 when plotted versus a dimensionless scaling variable \psi' (scaling of the second kind). We use this behavior to study as yet poorly understood properties of the inclusive response at large electron energy loss.Comment: 33 pages, 12 color EPS figures, LaTeX2e using BoxedEPSF macros; email to [email protected]

    Global analysis of community-associated methicillin-resistant Staphylococcus aureus exoproteins reveals molecules produced in vitro and during infection

    Get PDF
    Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is a threat to human health worldwide. Although progress has been made, mechanisms of CA-MRSA pathogenesis are poorly understood and a comprehensive analysis of CA-MRSA exoproteins has not been conducted. To address that deficiency, we used proteomics to identify exoproteins made by MW2 (USA400) and LAC (USA300) during growth in vitro. Two hundred and fifty unique exoproteins were identified by 2-dimensional gel electrophoresis coupled with automated direct infusion-tandem mass spectrometry (ADI-MS/MS) analysis. Eleven known virulence-related exoproteins differed in abundance between the strains, including alpha-haemolysin (Hla), collagen adhesin (Cna), staphylokinase (Sak), coagulase (Coa), lipase (Lip), enterotoxin C3 (Sec3), enterotoxin Q (Seq), V8 protease (SspA) and cysteine protease (SspB). Mice infected with MW2 or LAC produced antibodies specific for known or putative virulence factors, such as autolysin (Atl), Cna, Ear, ferritin (Ftn), Lip, 1-phosphatidylinositol phosphodiesterase (Plc), Sak, Sec3 and SspB, indicating the exoproteins are made during infection in vivo. We used confocal microscopy to demonstrate aureolysin (Aur), Hla, SspA and SspB are produced following phagocytosis by human neutrophils, thereby linking exoprotein production in vitro with that during host–pathogen interaction. We conclude that the exoproteins identified herein likely account in part for the success of CA-MRSA as a human pathogen

    ABD Matrix of Single-Ply Triaxial Weave Fabric Composites

    Full text link
    The linear-elastic response of single-ply triaxial weave fabric composites is modelled in terms of a homogenized Kirchhoff plate. The ABD matrix for this plate is computed from an assembly of transversely isotropic three-dimensional beams whose unit cell is analysed using standard finite-element analysis, assuming periodic boundary conditions. A subset of the analytical results is validated by means of careful experiments. It is shown that this simple unit cell beam model captures accurately the experimentally observed behaviour. I
    corecore