512 research outputs found
NASA research in supersonic propulsion: A decade of progress
A second generation, economically viable, and environmentally acceptable supersonic aircraft is reviewed. Engine selection, testbed experiments, and noise reduction research are described
Seasonal variations of glaciochemical, isotopic and stratigraphic properties in Siple Dome (Antarctica) surface snow
Six snow-pit records recovered from Siple Dome, West Antarctica, during 1994 are used to study seasonal variations in chemical (major ion and H202), isotopic (deuterium) and physical stratigraphic properties during the 1988-94 period. Comparison of ΎD measurements and satellite-derived brightness temperature for the Siple Dome area suggests that most seasonal SD maxima occur within ±4 weeks of each 1 January. Several other chemical species (H2O2, non-sea-salt (nss) SO4 2-, methanesulfonic acid and NO3-) show coeval peaks with SD, together providing an accurate method for identifying summer accumulation. Sea-salt-derived species generally peak during winter/spring, but episodic input is noted throughout some years. No reliable seasonal signal is identified in species with continental sources (nssCa2+ nss Mg2+), NH4 + or nssCl-. Visible strata such as large depth-hoar layers (\u3e5 cm) are associated with summer accumulation and its metamorphosis, but smaller hoar layers and crusts are more difficult to interpret. A multi-parameter approach is found to provide the most accurate dating of these snow-pit records, and is used to determine annual layer thicknesses at each site Significant spatial accumulation variability exists on an annual basis, but mean accumulation in the sampled 10 km2 grid for the 1988-94 period is fairly uniform
Non-Singlet QCD Analysis of the Structure Function F_2 in 3-Loops
First results of a non--singlet QCD analysis of the structure function
in 3--loop order based on the non--singlet world data are
presented. Correlated errors are determined and their propagation through the
evolution equations is performed analytically. The value for is
determined to be compatible with results from other
QCD analyses. Low moments for , and with
correlated errors are calculated which may be compared with results from
lattice simulations.Comment: 1 Latex file, 1 style file, 2 figures Current World average on
alpha_s adde
Radiative Corrections to Electron-Proton Scattering
The radiative corrections to elastic electron-proton scattering are analyzed
in a hadronic model including the finite size of the nucleon. For initial
electron energies above 8 GeV and large scattering angles, the proton vertex
correction in this model increases by at least two percent the overall factor
by which the one-photon exchange (Rosenbluth) cross section must be multiplied.
The contribution of soft photon emission is calculated exactly. Comparison is
made with the generally used expressions previously obtained by Mo and Tsai.
Results are presented for some kinematics at high momentum transfer.Comment: 31 pages, 4 figure
Influence of Collision Cascade Statistics on Pattern Formation of Ion-Sputtered Surfaces
Theoretical continuum models that describe the formation of patterns on
surfaces of targets undergoing ion-beam sputtering, are based on Sigmund's
formula, which describes the spatial distribution of the energy deposited by
the ion. For small angles of incidence and amorphous or polycrystalline
materials, this description seems to be suitable, and leads to the classic BH
morphological theory [R.M. Bradley and J.M.E. Harper, J. Vac. Sci. Technol. A
6, 2390 (1988)]. Here we study the sputtering of Cu crystals by means of
numerical simulations under the binary-collision approximation. We observe
significant deviations from Sigmund's energy distribution. In particular, the
distribution that best fits our simulations has a minimum near the position
where the ion penetrates the surface, and the decay of energy deposition with
distance to ion trajectory is exponential rather than Gaussian. We provide a
modified continuum theory which takes these effects into account and explores
the implications of the modified energy distribution for the surface
morphology. In marked contrast with BH's theory, the dependence of the
sputtering yield with the angle of incidence is non-monotonous, with a maximum
for non-grazing incidence angles.Comment: 12 pages, 13 figures, RevTe
Parton distribution functions from the precise NNLO QCD fit
We report the parton distribution functions (PDFs) determined from the NNLO
QCD analysis of the world inclusive DIS data with account of the precise NNLO
QCD corrections to the evolution equations kernel. The value of strong coupling
constant \alpha_s^{NNLO}(M_Z)=0.1141(14), in fair agreement with one obtained
using the earlier approximate NNLO kernel by van Neerven-Vogt. The intermediate
bosons rates calculated in the NNLO using obtained PDFs are in agreement to the
latest Run II results.Comment: 8 pages, LATEX, 2 figures (EPS
Impaired V(D)J Recombination and Lymphocyte Development in Core RAG1-expressing Mice
RAG1 and RAG2 are the lymphocyte-specific components of the V(D)J recombinase. In vitro analyses of RAG function have relied on soluble, highly truncated âcoreâ RAG proteins. To identify potential functions for noncore regions and assess functionality of core RAG1 in vivo, we generated core RAG1 knockin (RAG1c/c) mice. Significant B and T cell numbers are generated in RAG1c/c mice, showing that core RAG1, despite missing âŒ40% of the RAG1 sequence, retains significant in vivo function. However, lymphocyte development and the overall level of V(D)J recombination are impaired at the progenitor stage in RAG1c/c mice. Correspondingly, there are reduced numbers of peripheral RAG1c/c B and T lymphocytes. Whereas normal B lymphocytes undergo rearrangement of both JH loci, substantial levels of germline JH loci persist in mature B cells of RAG1c/c mice, demonstrating that DJH rearrangement on both IgH alleles is not required for developmental progression to the stage of VH to DJH recombination. Whereas VH to DJH rearrangements occur, albeit at reduced levels, on the nonselected alleles of RAG1c/c B cells that have undergone D to JH rearrangements, we do not detect VH to DH rearrangements in RAG1c/c B cells that retain germline JH alleles. We discuss the potential implications of these findings for noncore RAG1 functions and for the ordered assembly of VH, DH, and JH segments
Neutron Structure Functions
Neutron structure functions can be extracted from proton and deuteron data
and a representation of the deuteron structure. This procedure does not require
DIS approximations or quark structure assumptions. We find that the results
depend critically on properly accounting for the Q^2 dependence of proton and
deuteron data. We interpolate the data to fixed Q^2, and extract the ratio of
neutron to proton structure functions. The extracted ratio decreases with
increasing x, up to x \approx 0.9, while there are no data available to
constrain the behavior at larger x.Comment: 16 pages, 6 figure
Recommended from our members
The Benefits and Limits of Urban Tree Planting for Environmental and Human Health
Many of the world's major cities have implemented tree planting programs based on assumed environmental and social benefits of urban forests. Recent studies have increasingly tested these assumptions and provide empirical evidence for the contributions of tree planting programs, as well as their feasibility and limits, for solving or mitigating urban environmental and social issues. We propose that current evidence supports local cooling, stormwater absorption, and health benefits of urban trees for local residents. However, the potential for urban trees to appreciably mitigate greenhouse gas emissions and air pollution over a wide array of sites and environmental conditions is limited. Consequently, urban trees appear to be more promising for climate and pollution adaptation strategies than mitigation strategies. In large part, this is due to space constraints limiting the extent of urban tree canopies relative to the current magnitude of emissions. The most promising environmental and health impacts of urban trees are those that can be realized with well-stewarded tree planting and localized design interventions at site to municipal scales. Tree planting at these scales has documented benefits on local climate and health, which can be maximized through targeted site design followed by monitoring, adaptive management, and studies of long-term eco-evolutionary dynamics.Peer reviewe
Radiative corrections to deep-inelastic scattering. Case of tensor polarized deuteron
The model-independent radiative corrections to deep-inelastic scattering of
unpolarized electron beam off the tensor polarized deuteron target have been
considered. The contribution to the radiative corrections due to the
hard-photon emission from the elastic electron-deuteron scattering (the
so-called elastic radiative tail) is also investigated. The calculation is
based on the covariant parametrization of the deuteron quadrupole polarization
tensor. The numerical estimates of the radiative corrections to the
polarization observables have been done for the kinematical conditions of the
current experiment at HERAComment: 21 pages, 5 figure
- âŠ