38 research outputs found

    Development of a Model of Natural Infection with \u3ci\u3eMycobacterium bovis\u3c/i\u3e in White-Tailed Deer

    Get PDF
    The objective of this study was to develop a suitable experimental model of natural Mycobacterium bovis infection in white-tailed deer (Odocoileus virginianus), describe the distribution and character of tuberculous lesions, and to examine possible routes of disease transmission. In October 1997, 10 mature female white-tailed deer were inoculated by intratonsilar instillation of 2 3 103 (low dose) or 2 3 105 (high dose) colony forming units (CFU) of M. bovis. In January 1998, deer were euthanatized, examined, and tissues were collected 84 to 87 days post inoculation. Possible routes of disease transmission were evaluated by culture of nasal, oral, tonsilar, and rectal swabs at various times during the study. Gross and microscopic lesions consistent with tuberculosis were most commonly seen in medial retropharyngeal lymph nodes and lung in both dosage groups. Other tissues containing tuberculous lesions included tonsil, trachea, liver, and kidney as well as lateral retropharyngeal, mandibular, parotid, tracheobronchial, mediastinal, hepatic, mesenteric, superficial cervical, and iliac lymph nodes. Mycobacterium bovis was isolated from tonsilar swabs from 8 of 9 deer from both dosage groups at least once 14 to 87 days after inoculation. Mycobacterium bovis was isolated from oral swabs 63 and 80 days after inoculation from one of three deer in the low dose group and none of four deer in the high dose group. Similarly, M. bovis was isolated from nasal swabs 80 and 85 days after inoculation in one of three deer from the low dose group and 63 and 80 days after inoculation from two of four deer in the high dose group. Intratonsilar inoculation with M. bovis results in lesions similar to those seen in naturally infected white-tailed deer; therefore, it represents a suitable model of natural infection. These results also indicate that M. bovis persists in tonsilar crypts for prolonged periods and can be shed in saliva and nasal secretions. These infected fluids represent a likely route of disease transmission to other animals or humans

    High-impact animal health research conducted at the USDA’s National Animal Disease Center

    Get PDF
    Commissioned by President Dwight Eisenhower in 1958 and opened with a dedication ceremony in December 1961, the USDA, Agricultural Research Service (ARS), National Animal Disease Center (NADC) celebrated its 50-year anniversary in November 2011. Over these 50 years, the NADC established itself among the world’s premier animal health research centers. Its historic mission has been to conduct basic and applied research on selected endemic diseases of economic importance to the U.S. livestock and poultry industries. Research from NADC has impacted control or management efforts on nearly every major animal disease in the United States since 1961. For example, diagnostic tests and vaccines developed by NADC scientists to detect and prevent hog cholera were integral in the ultimate eradication of this costly swine disease from the U.S. Most major veterinary vaccines for critical diseases such as brucellosis and leptospirosis in cattle, porcine respiratory and reproductive syndrome (PRRS), porcine parvovirus and influenza in swine had their research origins or were developed and tested at the NADC. Additional discoveries made by NADC scientists have also resulted in the development of a nutritional approach and feed additives to prevent milk fever in transition dairy cattle. More recently, NADC’s archive of historic swine influenza viruses combined with an established critical mass of influenza research expertise enabled NADC researchers to lead an effective national research response to the pandemic associated with the novel 2009 H1N1 influenza virus. This review commemorates some of the key animal health contributions in NADC’s first 50 years, recaps the newly completed modernization of the center into new facilities, and offers highlights of the ongoing research that will define NADC’s mission going forward

    Naturally Occurring Tuberculosis in White-Tailed Deer

    Get PDF
    Objective—To determine the distribution of lesions and extent of tissues infected with Mycobacterium bovis in a captive population of white-tailed deer. Design—Cross-sectional study. Animals—116 captive white-tailed deer. Procedure—Deer were euthanatized, and postmortem examinations were performed. Tissues with gross lesions suggestive of tuberculosis were collected for microscopic analysis and bacteriologic culture. Tissues from the head, thorax, and abdomen of deer with no gross lesions were pooled for bacteriologic culture. Tonsillar, nasal, oral, and rectal swab specimens, fecal samples, and samples of hay and pelleted feed, soil around feeding sites, and water from 2 natural ponds were collected for bacteriologic culture. Results—Mycobacterium bovis was isolated from 14 of 116 (12%) deer; however, only 9 of 14 had lesions consistent with tuberculosis. Most commonly affected tissues included the medial retropharyngeal lymph node and lung. Five of 14 tuberculous deer had no gross lesions; however,M bovis was isolated from pooled tissue specimens from the heads of each of these deer. Bacteriologic culture of tonsillar swab specimens from 2 of the infected deer yielded M bovis. Mean (± SEM) age of tuberculous deer was 2.5 ± 0.3 years (range, 0.5 to 6 years). Mycobacterium bovis was not isolated from feed, soil, water, or fecal samples. Conclusions and Clinical Relevance—Examination of hunter-killed white-tailed deer for tuberculosis commonly includes only the lymph nodes of the head. Results of such examinations may underestimate disease prevalence by as much as 57%. Such discrepancy should be considered when estimating disease prevalence

    \u3ci\u3eMycobacterium bovis \u3c/i\u3ein Coyotes from Michigan

    Get PDF
    During a survey for tuberculosis in wild carnivores and omnivores, Mycobacteriurn bovis was cultured from pooled lymph nodes of three adult female coyotes (Canis latrans) harvested by hunters in Michigan (USA). No gross or histologic lesions suggestive of tuberculosis were seen in these animals. One coyote was taken from Montmorency county and two coyotes from Alcona county located in the northeastern portion of Michigan’s Lower Peninsula where free-ranging white-tailed deer (Odocoileus virginianus) have been found infected with bovine tuberculosis. It is thought that these coyotes became infected with M. bovis through the consumption of tuberculous deer. Other species included in the survey were the opossum (Didelphis virginiana), raccoon (Procyon lotor), red fox (Vulpes vulpes), bobcat (Felis rufus), and badger (Taxidea taxus)

    Bovine Tuberculosis in Free-Ranging Carnivores from Michigan

    Get PDF
    During a survey of carnivores and omnivores for bovine tuberculosis conducted in Michigan (USA) since 1996, Mycobacterium bovis was cultured from lymph nodes pooled from six coyotes (Canis latrans) (four adult female, two adult male), two adult male raccoons (Procyon lotor), one adult male red fox (Vulpes vulpes), and one 1.5-yr-old male black bear (Ursus americanus). One adult, male bobcat (Felis rufus) with histologic lesions suggestive of tuberculosis was negative on culture but positive for organisms belonging to the Mycobacterium tuberculosis complex when tested by polymerase chain reaction. All the tuberculous animals were taken from three adjoining counties where M. bovis is known to be endemic in the free-ranging white-tailed deer (Odocoileus virginianus) population. There were two coyotes, one raccoon, one red fox, and one bobcat infected in Alpena county. Montmorency County had two coyotes and one raccoon with M. bovis. Two coyotes and a bear were infected from Alcona County. These free-ranging carnivores/omnivores probably became infected with M. bovis through consumption of tuberculous deer. Other species included in the survey were opossum (Didelphis virginiana), gray fox (Urocyon cinereoargenteus), and badger (Taxidea taxus); these were negative for M. bovis

    SNAPSHOT USA 2019 : a coordinated national camera trap survey of the United States

    Get PDF
    This article is protected by copyright. All rights reserved.With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August - 24 November of 2019). We sampled wildlife at 1509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the USA. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as well as future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication.Publisher PDFPeer reviewe

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe

    Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery

    Get PDF
    International audienceThe relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential

    Limits to reproduction and seed size-number tradeoffs that shape forest dominance and future recovery

    Get PDF
    The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential
    corecore