597 research outputs found

    Proposal and preliminary design for a high speed civil transport aircraft. Swift: A high speed civil transport for the year 2000

    Get PDF
    To meet the needs of the growing passenger traffic market in light of an aging subsonic fleet, a new breed of aircraft must be developed. The Swift is an aircraft that will economically meet these needs by the year 2000. Swift is a 246 passenger, Mach 2.5, luxury airliner. It has been designed to provide the benefit of comfortable, high speed transportation in a safe manner with minimal environmental impact. This report will discuss the features of the Swift aircraft and establish a solid, foundation for this supersonic transport of tomorrow

    Is green space in the living environment associated with people's feelings of social safety?

    Get PDF
    Abstract. The authors investigate whether the percentage of green space in people's living environ- ment affects their feelings of social safety positively or negatively. More specifically they investigate the extent to which this relationship varies between urban and rural areas, between groups in the community that can be identified as more or less vulnerable, and the extent to which different types of green space exert different influences. The study includes 83736 Dutch citizens who were interviewed about their feelings of social safety. The percentage of green space in the living environment of each respondent was calculated, and data analysed by use of a three-level latent variable model, controlled for individual and environmental background characteristics. The analyses suggest that more green space in people's living environment is associated with enhanced feelings of social safetyöexcept in very strongly urban areas, where enclosed green spaces are associated with reduced feelings of social safety. Contrary to the common image of green space as a dangerous hiding place for criminal activity which causes feelings of insecurity, the results suggest that green space generally enhances feelings of social safety. The results also suggest, however, that green space in the most urban areas is a matter of concern with respect to social safety.

    Signature change events: A challenge for quantum gravity?

    Full text link
    Within the framework of either Euclidian (functional-integral) quantum gravity or canonical general relativity the signature of the manifold is a priori unconstrained. Furthermore, recent developments in the emergent spacetime programme have led to a physically feasible implementation of signature change events. This suggests that it is time to revisit the sometimes controversial topic of signature change in general relativity. Specifically, we shall focus on the behaviour of a quantum field subjected to a manifold containing regions of different signature. We emphasise that, regardless of the underlying classical theory, there are severe problems associated with any quantum field theory residing on a signature-changing background. (Such as the production of what is naively an infinite number of particles, with an infinite energy density.) From the viewpoint of quantum gravity phenomenology, we discuss possible consequences of an effective Lorentz symmetry breaking scale. To more fully understand the physics of quantum fields exposed to finite regions of Euclidean-signature (Riemannian) geometry, we show its similarities with the quantum barrier penetration problem, and the super-Hubble horizon modes encountered in cosmology. Finally we raise the question as to whether signature change transitions could be fully understood and dynamically generated within (modified) classical general relativity, or whether they require the knowledge of a full theory of quantum gravity.Comment: 33 pages. 4 figures; V2: 3 references added, no physics changes; V3: now 24 pages - significantly shortened - argument simplified and more focused - no physics changes - this version accepted for publication in Classical and Quantum Gravit

    Solitary splenic metastasis from ovarian carcinosarcoma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Metastatic tumors to the spleen are rare but are usually found in conjunction with metastasis to other organs. The most common sources of splenic metastasis are breast, lung and colorectal cancers as well as melanoma and ovarian carcinoma. A solitary carcinosarcoma metastasis to the spleen of any origin is very rare. To the best of our knowledge, there are fewer than 30 reported cases of ovarian primary tumors with solitary metastasis to the spleen, and only three solitary primary carcinosarcomas to the spleen have been reported, of which one is female. We present what is, to the best of our knowledge, the first case of a solitary metastatic carcinosarcoma to the spleen arising from a primary ovarian carcinsarcoma.</p> <p>Case presentation</p> <p>A 72-year-old Hispanic woman status post-total abdominal hysterectomy for ovarian carcinosarcoma presented with complaints of early satiety and abdominal pain for the past two months with a 30-lb unintentional weight loss. An initial computed tomographic scan of her abdomen and pelvis revealed a 30 cm × 27 cm splenic mass with displacement of the left kidney, stomach and liver. The patient was found to have a solitary metastatic carcinosarcoma of the spleen with biphasic epithelial (carcinomatous) and mesenchymal (sarcomatous) elements consistent with carcinosarcoma.</p> <p>Conclusion</p> <p>Carcinosarcoma of the spleen is a rare tumor. Carcinosarcomas are a biphasic neoplasm comprising malignant epithelial and mesenchymal components arising from a stem cell capable of differentiation. They can arise anywhere in the female genital tract, most commonly from the endometrium. Even though it is rare, carcinosarcomas can metastasize to the spleen. This unique case of a solitary splenic metastasis from ovarian carcinosarcoma has particular interest in medicine, especially for the specialties of surgical oncology, pathology and hematology/oncology.</p

    CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting

    Get PDF
    CRISPR/Cas9-based therapeutics hold the possibility for permanent treatment of genetic disease. The potency and specificity of this system has been used to target dominantly inherited conditions caused by heterozygous missense mutations through inclusion of the mutated base in the short-guide RNA (sgRNA) sequence. This research evaluates a novel approach for targeting heterozygous single-nucleotide polymorphisms (SNPs) using CRISPR/Cas9. We determined that a mutation within KRT12, which causes Meesmann's epithelial corneal dystrophy (MECD), leads to the occurrence of a novel protospacer adjacent motif (PAM). We designed an sgRNA complementary to the sequence adjacent to this SNP-derived PAM and evaluated its potency and allele specificity both in vitro and in vivo. This sgRNA was found to be highly effective at reducing the expression of mutant KRT12 mRNA and protein in vitro. To assess its activity in vivo we injected a combined Cas9/sgRNA expression construct into the corneal stroma of a humanized MECD mouse model. Sequence analysis of corneal genomic DNA revealed non-homologous end-joining repair resulting in frame-shifting deletions within the mutant KRT12 allele. This study is the first to demonstrate in vivo gene editing of a heterozygous disease-causing SNP that results in a novel PAM, further highlighting the potential for CRISPR/Cas9-based therapeutics

    CRISPR Interference Directs Strand Specific Spacer Acquisition

    Get PDF
    Background: CRISPR/Cas is a widespread adaptive immune system in prokaryotes. This system integrates short stretches of DNA derived from invading nucleic acids into genomic CRISPR loci, which function as memory of previously encountered invaders. In Escherichia coli, transcripts of these loci are cleaved into small RNAs and utilized by the Cascade complex to bind invader DNA, which is then likely degraded by Cas3 during CRISPR interference. Results: We describe how a CRISPR-activated E. coli K12 is cured from a high copy number plasmid under non-selective conditions in a CRISPR-mediated way. Cured clones integrated at least one up to five anti-plasmid spacers in genomic CRISPR loci. New spacers are integrated directly downstream of the leader sequence. The spacers are non-randomly selected to target protospacers with an AAG protospacer adjacent motif, which is located directly upstream of the protospacer. A cooccurrence of PAM deviations and CRISPR repeat mutations was observed, indicating that one nucleotide from the PAM is incorporated as the last nucleotide of the repeat during integration of a new spacer. When multiple spacers were integrated in a single clone, all spacer targeted the same strand of the plasmid, implying that CRISPR interference caused by the first integrated spacer directs subsequent spacer acquisition events in a strand specific manner. Conclusions: The E. coli Type I-E CRISPR/Cas system provides resistance against bacteriophage infection, but also enables removal of residing plasmids. We established that there is a positive feedback loop between active spacers in a cluster – i

    Abundant Fas expression by gastrointestinal stromal tumours may serve as a therapeutic target for MegaFasL

    Get PDF
    Although the tyrosine kinase inhibitor imatinib has been shown to be an active agent in patients with gastrointestinal stromal tumours (GIST), complete remissions are almost never seen and most patients finally experience disease progression during their course of treatment. An alternative therapeutic option is to target death receptors such as Fas. We showed that a panel of imatinib-sensitive (GIST882) and imatinib-resistant (GIST48, GIST430 and GIST430K-) cell lines expressed Fas. MegaFasL, a recently developed hexameric form of soluble Fas ligand (FasL), appeared to be an active apoptosis-inducing agent in these cell lines. Moreover, MegaFasL potentiated the apoptotic effects of imatinib. Immunohistochemical evaluations, in 45 primary GISTs, underscored the relevance of the Fas pathway: Fas was expressed in all GISTs and was expressed strongly in 93%, whereas FasL was expressed at moderate and strong levels in 35 and 53% of GISTs, respectively. Fas and FasL expression were positively correlated in these primary GISTs, but there was no association between Fas or FasL expression and primary site, histological subtype, tumour size, mitotic index, risk classification, and KIT mutation status. The abundant immunohistochemical Fas and FasL expression were corroborated by western blot analysis. In conclusion, our data implicate Fas as a potential therapeutic target in GIST

    Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis

    Get PDF
    Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis

    Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms

    Get PDF
    Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P &lt; 5 × 10(-8), in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms
    corecore