1,153 research outputs found

    The Effects of God Language on Perceived Attributes of God

    Full text link
    Sixty-three participants listened to an audio· tape asking them to imagine themselves in God\u27s presence. Half the participants listened to a script in which God was presented as female and half listened to a script in which God was presented as male. Half of those in each group listened to a male narrator and the other half listened to a female narrator. Before and after listening to the script, participants rated the attributes of God on a forced-choice questionnaire. Those to whom God was presented as female were more likely to emphasize God\u27s mercy at posttest whereas those to whom God was presented as male were more likely to endorse God\u27s power. Those hearing a male voice describe a female God and those hearing a female voice describe a male God reported enjoying the experiment and the audiotape more than those hearing a narrator describing a God of the same gender. Implications are discussed

    Target and Beam-Target Spin Asymmetries in Exclusive Pion Electroproduction for \u3cem\u3eQ\u3c/em\u3e\u3csup\u3e2\u3c/sup\u3e \u3e 1 GeV\u3csup\u3e2\u3c/sup\u3e. II. \u3cem\u3eep\u3c/em\u3e → \u3cem\u3eeπ\u3c/em\u3e\u3csup\u3e0\u3c/sup\u3e\u3cem\u3ep\u3c/em\u3e

    Get PDF
    Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive π0 electroproduction reaction γ∗p → pπ0, expanding an analysis of the γ∗p → nπ+ reaction from the same experiment. The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic ranges covered are 1.1 \u3c W \u3c 3 GeV and 1 \u3c Q2 \u3c 6 GeV2. Results were obtained for about 5700 bins in W, Q2, cos(θ∗), and ϕ∗. The beam-target asymmetries were found to generally be greater than zero, with relatively modest ϕ∗ dependence. The target asymmetries exhibit very strong ϕ∗ dependence, with a change in sign occurring between results at low W and high W, in contrast to π+ electroproduction. Reasonable agreement is found with phenomenological fits to previous data for W \u3c 1.6 GeV, but significant differences are seen at higher W. When combined with cross-sectional measurements, as well as π+ observables, the present results will provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q2, for resonances with masses as high as 2.4 GeV

    Exclusive Photoproduction of \u3cem\u3eπ\u3c/em\u3e\u3csup\u3e0\u3c/sup\u3e Up to Large Values of Mandlestam Variables \u3cem\u3es\u3c/em\u3e, \u3cem\u3et\u3c/em\u3e, and \u3cem\u3eu\u3c/em\u3e with CLAS

    Get PDF
    Exclusive photoproduction cross sections have been measured for the process γp → pπ0[e+e−(γ)] with the Dalitz decay final state using tagged photon energies in the range of Eγ = 1.275–5.425 GeV. The complete angular distribution of the final state π0, for the entire photon energy range up to large values of t and u, has been measured for the first time. The data obtained show that the cross section dσ/dt, at mid to large angles, decreases with energy as s−6.89±0.26. This is in agreement with the perturbative QCD quark counting rule prediction of s−7. Paradoxically, the size of angular distribution of measured cross sections is greatly underestimated by the QCD-based generalized parton distribution mechanism at highest available invariant energy s = 11 GeV2. At the same time, the Regge-exchange-based models for π0 photoproduction are more consistent with experimental data

    Target and beam-target spin asymmetries in exclusive pion electroproduction for Q(2) \u3e 1 GeV2. II. ep -\u3e e pi(0) p

    Get PDF
    Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive pi(0) electroproduction reaction. gamma(*) p -\u3e p pi(0), expanding an analysis of the. gamma(*) p -\u3e n pi(+) reaction from the same experiment. The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic ranges covered are 1.1 \u3c W \u3c 3 GeV and 1 \u3c Q(2) \u3c 6 GeV2. Results were obtained for about 5700 bins in W, Q(2), cos(theta(*)), and phi(*). The beam-target asymmetries were found to generally be greater than zero, with relatively modest phi(*) dependence. The target asymmetries exhibit very strong phi(*) dependence, with a change in sign occurring between results at low W and high W, in contrast to pi(+) electroproduction. Reasonable agreement is found with phenomenological fits to previous data for W \u3c 1.6 GeV, but significant differences are seen at higherW. When combined with cross-sectional measurements, as well as pi(+) observables, the present results will provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q(2), for resonances with masses as high as 2.4 GeV

    Abnormal left and right amygdala-orbitofrontal cortical functional connectivity to emotional faces:state versus trait vulnerability markers of depression in bipolar disorder

    Get PDF
    Background - Amygdala-orbitofrontal cortical (OFC) functional connectivity (FC) to emotional stimuli and relationships with white matter remain little examined in bipolar disorder individuals (BD). Methods - Thirty-one BD (type I; n = 17 remitted; n = 14 depressed) and 24 age- and gender-ratio-matched healthy individuals (HC) viewed neutral, mild, and intense happy or sad emotional faces in two experiments. The FC was computed as linear and nonlinear dependence measures between amygdala and OFC time series. Effects of group, laterality, and emotion intensity upon amygdala-OFC FC and amygdala-OFC FC white matter fractional anisotropy (FA) relationships were examined. Results - The BD versus HC showed significantly greater right amygdala-OFC FC (p = .001) in the sad experiment and significantly reduced bilateral amygdala-OFC FC (p = .007) in the happy experiment. Depressed but not remitted female BD versus female HC showed significantly greater left amygdala-OFC FC (p = .001) to all faces in the sad experiment and reduced bilateral amygdala-OFC FC to intense happy faces (p = .01). There was a significant nonlinear relationship (p = .001) between left amygdala-OFC FC to sad faces and FA in HC. In BD, antidepressants were associated with significantly reduced left amygdala-OFC FC to mild sad faces (p = .001). Conclusions - In BD, abnormally elevated right amygdala-OFC FC to sad stimuli might represent a trait vulnerability for depression, whereas abnormally elevated left amygdala-OFC FC to sad stimuli and abnormally reduced amygdala-OFC FC to intense happy stimuli might represent a depression state marker. Abnormal FC measures might normalize with antidepressant medications in BD. Nonlinear amygdala-OFC FC–FA relationships in BD and HC require further study

    Measurement of Two-Photon Exchange Effect by Comparing Elastic \u3cem\u3ee\u3c/em\u3e\u3csup\u3e±\u3c/sup\u3e\u3cem\u3ep\u3c/em\u3e Cross Sections

    Get PDF
    Background: The electromagnetic form factors of the proton measured by unpolarized and polarized electron scattering experiments show a significant disagreement that grows with the squared four-momentum transfer (Q2). Calculations have shown that the two measurements can be largely reconciled by accounting for the contributions of two-photon exchange (TPE). TPE effects are not typically included in the standard set of radiative corrections since theoretical calculations of the TPE effects are highly model dependent, and, until recently, no direct evidence of significant TPE effects has been observed. Purpose: We measured the ratio of positron-proton to electron-proton elastic-scattering cross sections in order to determine the TPE contribution to elastic electron-proton scattering and thereby resolve the proton electric form factor discrepancy. Methods: We produced a mixed simultaneous electron-positron beam in Jefferson Lab\u27s Hall B by passing the 5.6-GeV primary electron beam through a radiator to produce a bremsstrahlung photon beam and then passing the photon beam through a convertor to produce electron-positron pairs. The mixed electron-positron (lepton) beam with useful energies from approximately 0.85 to 3.5 GeV then struck a 30-cm-long liquid hydrogen (LH2) target located within the CEBAF Large Acceptance Spectrometer (CLAS). By detecting both the scattered leptons and the recoiling protons, we identified and reconstructed elastic scattering events and determined the incident lepton energy. A detailed description of the experiment is presented. Results: We present previously unpublished results for the quantity R2γ, the TPE correction to the elastic-scattering cross section, at Q2 ≈ 0.85 and 1.45 GeV2 over a large range of virtual photon polarization ɛ. Conclusions: Our results, along with recently published results from VEPP-3, demonstrate a nonzero contribution from TPE effects and are in excellent agreement with the calculations that include TPE effects and largely reconcile the form-factor discrepancy up to Q2 ≈ 2 GeV2. These data are consistent with an increase in R2γ with decreasing ɛ at Q2 ≈ 0.85 and 1.45 GeV2. There are indications of a slight increase in R2γ with Q2

    Measurement of two-photon exchange effect by comparing elastic e(+/-)p cross sections

    Get PDF
    Background: The electromagnetic form factors of the proton measured by unpolarized and polarized electron scattering experiments showa significant disagreement that grows with the squared four-momentum transfer (Q(2)). Calculations have shown that the two measurements can be largely reconciled by accounting for the contributions of two-photon exchange (TPE). TPE effects are not typically included in the standard set of radiative corrections since theoretical calculations of the TPE effects are highly model dependent, and, until recently, no direct evidence of significant TPE effects has been observed. Purpose: We measured the ratio of positron-proton to electron-proton elastic-scattering cross sections in order to determine the TPE contribution to elastic electron-proton scattering and thereby resolve the proton electric form factor discrepancy. Methods: We produced a mixed simultaneous electron-positron beam in Jefferson Lab\u27s Hall B by passing the 5.6-GeV primary electron beam through a radiator to produce a bremsstrahlung photon beam and then passing the photon beam through a convertor to produce electron-positron pairs. The mixed electron-positron (lepton) beam with useful energies from approximately 0.85 to 3.5 GeV then struck a 30-cm-long liquid hydrogen (LH2) target located within the CEBAF Large Acceptance Spectrometer (CLAS). By detecting both the scattered leptons and the recoiling protons, we identified and reconstructed elastic scattering events and determined the incident lepton energy. A detailed description of the experiment is presented. Results: We present previously unpublished results for the quantity R-2 gamma, the TPE correction to the elastic-scattering cross section, at Q(2) approximate to 0.85 and 1.45 GeV2 over a large range of virtual photon polarization epsilon. Conclusions: Our results, along with recently published results from VEPP-3, demonstrate a nonzero contribution from TPE effects and are in excellent agreement with the calculations that include TPE effects and largely reconcile the form-factor discrepancy up to Q(2) approximate to 2 GeV2. These data are consistent with an increase in R-2 gamma. with decreasing e at Q(2) approximate to 0.85 and 1.45 GeV2. There are indications of a slight increase in R-2 gamma with Q(2)

    Predicting Positive p53 Cancer Rescue Regions Using Most Informative Positive (MIP) Active Learning

    Get PDF
    Many protein engineering problems involve finding mutations that produce proteins with a particular function. Computational active learning is an attractive approach to discover desired biological activities. Traditional active learning techniques have been optimized to iteratively improve classifier accuracy, not to quickly discover biologically significant results. We report here a novel active learning technique, Most Informative Positive (MIP), which is tailored to biological problems because it seeks novel and informative positive results. MIP active learning differs from traditional active learning methods in two ways: (1) it preferentially seeks Positive (functionally active) examples; and (2) it may be effectively extended to select gene regions suitable for high throughput combinatorial mutagenesis. We applied MIP to discover mutations in the tumor suppressor protein p53 that reactivate mutated p53 found in human cancers. This is an important biomedical goal because p53 mutants have been implicated in half of all human cancers, and restoring active p53 in tumors leads to tumor regression. MIP found Positive (cancer rescue) p53 mutants in silico using 33% fewer experiments than traditional non-MIP active learning, with only a minor decrease in classifier accuracy. Applying MIP to in vivo experimentation yielded immediate Positive results. Ten different p53 mutations found in human cancers were paired in silico with all possible single amino acid rescue mutations, from which MIP was used to select a Positive Region predicted to be enriched for p53 cancer rescue mutants. In vivo assays showed that the predicted Positive Region: (1) had significantly more (p<0.01) new strong cancer rescue mutants than control regions (Negative, and non-MIP active learning); (2) had slightly more new strong cancer rescue mutants than an Expert region selected for purely biological considerations; and (3) rescued for the first time the previously unrescuable p53 cancer mutant P152L
    corecore