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‘

This paper describes a Bayesian approach to prevalence estimation based on pooled
samples that accommodates variation in pool size and adjusts for test imperfection. A
logistic model was developed for pooled fecal culture (PFC) sensitivity as a function
of pool size and a logistic mixed model for ovine Johne’s disease (OJD) prevalence as
a function of covariates that were found significant in a recent OJD risk factor study
conducted in Australia. Available data on these factors and prior information about
prevalence and sensitivity were incorporated into a Bayesian model to estimate OJD
prevalence from PFC data. Overall, posterior cohort OJD prevalence was estimated to
be 0.16 (range of prevalences across cohorts 0.002 to 0.72). The average prevalence
was higher in wethers than ewes. PFC sensitivities for pool sizes 10, 30 and 50 were
estimated to be 0.91 (95% probability intervals 0.80, 0.96), 0.85 (0.80, 0.90) and 0.77
(0.65, 0.88), respectively. Posterior specificity of PFC was almost perfect though based
primarily on the prior. Results suggest the Bayesian model successfully estimated the
animal-level prevalence after accounting for variable pool size and imperfect test pa-
rameters. The method can be easily adapted for other conditions and diseases where
pooled samples are collected. WinBugs code for the article is available online.

Key Words: Diagnostic test; Mycobacterium; Ovine Johne’s disease; Paratuberculo-
sis; Prevalence; Sensitivity.

1. INTRODUCTION

Ovine Johne’s disease (OJD), a chronic debilitating disease of sheep caused by My-
cobacterium avium subsp. paratuberculosis (MAP), is prevalent in many countries of the
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world, including Australia, and causes significant economic losses to farmers (Bush, Wind-
sor, and Toribio 2006). Pooled fecal culture (PFC), the principal test used for OJD diag-
nosis in Australia, has better sensitivity and specificity than serological tests and is more
cost effective than individual fecal culture (Whittington et al. 2000). It has proved to be
very useful for detection of infected flocks, however, pooled results provide only a crude
estimate of within-flock prevalence. Statistical methods for estimating animal-level preva-
lence from pooled results are available, but are in some way limited when applied to OJD
field data (Toribio and Sergeant 2007).

Estimation of animal-level prevalence from PFC results is complicated due to variation
in PFC sensitivity with pool size and with disease pathology (Whittington et al. 2000). Col-
lection of variable, rather than uniform pool sizes due to the logistics of sample collection
in the field, further complicates the estimation of animal-level prevalence. All currently
available methods, except that of Williams and Moffitt (2001), assume collection of pools
of uniform size. However, the method of Williams and Moffitt (2001) assumes perfect sen-
sitivity and specificity, which is not true for PFC. We are not aware of any method that can
be used to estimate animal-level prevalence from PFC results by accounting for both the
variable pool size and imperfect or unknown test sensitivity and specificity, highlighting
the need for such a method.

This paper describes a Bayesian approach to prevalence estimation based on PFC results
that accommodates variation in pool size as well as test imperfection. This new approach
was applied to estimate OJD prevalence for sheep cohorts enrolled in a risk factor study
and can be easily modified for similar situations or disease conditions.

2. METHODS

2.1. DESCRIPTION OF THE OJD RISK FACTOR STUDY DATA SET

OJD risk factor study was conducted in infected sheep flocks in four states of Aus-
tralia during 2004–2005. Detailed study design and sampling methodology are available
elsewhere (Dhand et al. 2007), and therefore will be discussed here only in brief.

A cohort of sheep, defined as a group of sheep of the same age and sex in a flock, was the
unit of interest in this study. Usually one cohort was enrolled per flock, but due to logistics
of sampling, two or more cohorts had to be enrolled from some flocks (Figure 1). The data
set used for the present analysis consisted of 97 cohorts representing 86 flocks (1 cohort
per flock from 75 flocks and 2 cohorts per flock from 11 flocks). We were interested in
estimating animal-level OJD prevalence for each cohort.

Most pools were comprised of pellets from 30 or 50 sheep, with each sheep selected
using a systematic sampling approach and then one pellet collected per rectum per sheep.
Some pools had pellets from less sheep due to insufficient sheep on the farm on the day
of sampling. Pooled fecal samples were cultured using a modified BACTEC radiomet-
ric method (Whittington et al. 2000). MAP in culture positive samples were further con-
firmed by polymerase chain reaction (PCR) and restriction endonuclease analysis (REA)
by demonstrating the presence of IS900 (Cousins, Evans, and Francis 1995; Whittington
et al. 1998). Only such confirmed positive pools were considered to be PFC positive while
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Figure 1. Sampling schema for collecting pooled faecal samples in the OJD risk factor study conducted in
2004–2005 in sheep flocks in Australia. Typically, seven fecal pools were collected from each cohort, with each
pool generally constructed by one fecal pellet collected per rectum per sheep from 30 sheep.

all other pools (even if BACTEC positive) were considered to be PFC negative. This com-
posite procedure will be referred to from here on as a single test procedure, the PFC. This
procedure will have very high specificity because the three tests were conducted in series
but less sensitivity than if the pools were tested by BACTEC method alone. Note that PFC
was preferred to individual fecal culture as this is the most commonly used approach for
disease diagnosis in Australia.

We now discuss the Bayesian approach developed to estimate animal-level prevalence
based on PFC results.

2.2. POOL AND ANIMAL-LEVEL PREVALENCES

We introduce some notation. Consider a cohort from which x pools tested positive out
of a total n pools collected, all of the same pool size. We assume x is distributed binomially,
that is,

x ∼ bin(n,P ), (2.1)

where P is the apparent pool prevalence of OJD in the cohort calculated as the sum of
probabilities for true positive and false positive pools (see (2.2) below). A pool is truly
positive if it has fecal pellets from at least one infected sheep and on the other hand a pool
is truly negative if it is constituted by pellets from all uninfected sheep.

Let T + denote that a pool has tested positive and let D+ denote a pool that has pel-
lets from at least one infected sheep. Then the (population) apparent prevalence can be
generically calculated using the law of total probability as:
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P = Pr(T +) = Pr(True Positive Pool) + Pr(False Positive Pool)

= (True Pool Prevalence)(Sensitivity) + (1 − True Pool Prevalence)(1 − Specificity)

= Pr(≥ 1D+) ∗ Pr(T + | ≥ 1D+) + Pr(0D+) ∗ Pr(T + |0D+). (2.2)

If π is the true animal-level prevalence (proportion of animals shedding MAP in a co-
hort) and k the number of animals constituting a pool (pool size), the probability that a
pool has pellets from any infected sheep is (1 − π)k . Consequently, the probability that
a pool is positive or has pellets from at least one infected sheep is 1 − (1 − π)k , which
of course is the true pool prevalence. Denote Sp as the PFC specificity, considered to be
constant across various pool sizes, and Sek as PFC sensitivity, allowed to vary according
to pool size. Then the (population version of the) apparent prevalence for a pool of size k

in the sampled population is

Pk = {1 − (1 − π)k} ∗ Sek + (1 − π)k ∗ (1 − Sp). (2.3)

The sampling design considered resulted in multiple binomial counts like the one described
above. The animal-level prevalence π was assumed to vary depending on available covari-
ate information (see Section 2.3 below).

As discussed above, the basic sampling unit was flock, and from each flock one or more
cohorts were identified (units of interest) from which multiple pools were sampled. Our
situation can thus be described by defining xijk to be the number of positive pools of size
k that were observed in cohort i in flock j , and by letting Pijk be the corresponding appar-
ent prevalence. These counts are assumed to be independent and binomially distributed as
discussed above. However, since the unit of interest was a cohort, our notation simplifies
to xik as the number of positive pools for the ith cohort with pools of size k and with Pik

denoting the corresponding apparent prevalence. In the next subsection, we describe how
animal prevalences were modeled as functions of covariate information and how sensitivi-
ties were modeled as functions of pool size.

2.3. MODEL FOR ANIMAL-LEVEL PREVALENCE

True prevalence π for animals within a particular cohort was modeled as a function of
covariates that were found to be significant in a previous analysis using an ordinal logistic
regression model for cohort OJD prevalence level. In addition to covariates, a flock level
random effect variable was added to the model to account for clustering within the flock.

Let πi be the true OJD prevalence of cohort i. Then logit of true prevalence in the ith
cohort is modeled as

logit(πi) = g1 + g2si + g3ai + g4m2i + g5m3i + g6sri + g7v2i + g8v3i + g9fi + g10wi

+ g11(m2 ∗ sr)i + g12(m3 ∗ sr)i + u(flocki ) (2.4)

where g1 to g12 are unknown regression parameters; s indicates sex of the cohort (0 =
females; 1 = males); a indicates the age group (0 = 3-year olds and 1 = 4-year olds); m2

and m3 are two indicator variables for the current OJD mortality (m2 = 1 indicates yes
for <2% mortalities and m3 = 1 indicates yes for ≥2% mortalities, thus m2 = m3 = 0
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indicates ‘no mortalities’); sr is lambing paddock stocking rate (0 corresponds to <14
dry sheep equivalent (dse)/hectare;1 1 corresponds to ≥14 dse/hectare); v2 and v3 are the
indicator variables for number of years since commencement of OJD vaccination in the
flock (v2 = 1 indicates yes for >2 years and v3 = 1 indicates yes for ‘no vaccination,’ so
v2 = v3 = 0 implies 1 or 2 years since commencement of vaccination); f indicates the
use of fertilizers other than superphosphate and lime on the property (0 = no; 1 = yes); w

indicates the presence of wildlife other than kangaroos and rabbits on the farm (0 = no;
1 = yes); m2 ∗ sr and m3 ∗ sr represent interactions between stocking rate and current OJD
mortality; u’s are the random effects for flocks. Refer to Dhand et al. (2007) for further
details about the covariates.

Inclusion of random effects for flock was necessary for two reasons. First, there will be
variability in overall prevalences among flocks that is due to differences among flocks, per-
haps due to differences in management practices, that is unaccounted for by the covariate
information that is available. Thus, if we consider a particular combination of covariates,
we think of ui = 0 as corresponding to a “typical” flock among those that have that partic-
ular combination of risk factors. A well managed flock with those risk factors might have
a value of u that is below 0, resulting in a lower prevalence than for a “typical” flock, and
similarly for a poorly managed flock the corresponding value of u might be positive and
thus result in a larger prevalence. Second, it would be expected that yes/no outcomes of
infection might be correlated within flocks, and modeling the random effects accounts for
this correlation.

Model selection was performed by considering Posterior Probability of Positive and
Negative Association (PPPA and PPNA, respectively) of individual terms in the model and
by comparing deviance information criteria (DIC) for models with and without various ef-
fects (Spiegelhalter et al. 2002). Smaller values of DIC are associated with better combined
goodness of fit and parsimony.

We also compared the selected mixed model with two other variants:

• a model with only three covariates (age, sex and current mortality) and random effects
for flocks to evaluate whether this simpler model would suffice rather than a model
with all covariates;

• a model with all fixed effects but no random effects.

The uncertainty about regression parameters g1 to g12 and the random effects scale
parameter was modeled by eliciting prior information, which is discussed below.

2.3.1. Prior Elicitation for Prevalence Parameters

Since actual prior data for prevalences are unavailable, a partially informative prior was
elicited from an expert, Professor R. J. Whittington, with about 12 years of experience in

1Stocking density is usually measured in dse per hectare where one dse is the energy requirement of a 50 kg
wether just for maintaining weight.
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Table 1. Priors for pooled fecal culture (PFC) test sensitivity and specificity, and OJD prevalence elicited in the
study.

Priors Input Values Prior distributionsa

Mode Lower/Upperb a b Mean (95% PI)

PFC Sensitivity
Pool size 10 0.74 0.50 10.20 4.20 0.71 (0.46, 0.90)
Pool size 50 0.60 0.40 10.90 7.60 0.59 (0.36, 0.80)

PFC Specificity 0.995 0.99 1137.50 6.71 0.99 (0.99, 1.00)

Cohort OJD Prevalence
Nil mortality flocks
3-year-old ewes 0.05 0.08 8.77 148.70 0.056 (0.03, 0.10)
3-year-old wethers 0.05 0.10 4.57 68.74 0.062 (0.02, 0.13)
4-year-old ewes 0.05 0.10 4.57 68.74 0.062 (0.02, 0.13)
Low mortality flocks (<2%)
3-year-old ewes 0.07 0.15 3.78 37.95 0.09 (0.02, 0.19)
High mortality flocks (≥2%)
3-year-old ewes 0.35 0.70 2.68 4.12 0.39 (0.09, 0.75)

aa and b are parameters of the respective beta probability distributions.
bFor sensitivity and specificity, lower 5% limits were obtained from previous literature. For prevalence, upper
90% limits for nil- and low-mortality flocks and an upper 95% limit for high-mortality flocks were elicited from
Prof R.J. Whittington. Relatively non-informative priors were used for other parameters including the standard
deviation, σ , which was assigned a Unif[0.01,3] prior distribution.

OJD research. Our technique involves specifying prior information about several preva-
lences where each prevalence corresponds to a particular combination of covariate values.
For example, first we asked our expert to give his ‘most likely’ value for prevalence in
a cohort of 3-year-old ewes reared in a flock with nil OJD mortality, say π̃1, and also a
value that he is ‘virtually certain’ that the prevalence would not exceed. We then trans-
lated that value to either be the 90th or 95th percentile of a beta(a, b) distribution with
mode ([a − 1]/[1 + b − 2]) equal to his most likely value and solved for the beta dis-
tribution that satisfies these characteristics. Our second choice of covariate combination
corresponds to a wether cohort, but otherwise has all baseline characteristics. We obtained
our expert’s most likely value as well as an upper percentile for that prevalence, say π̃2,
and solved for a second beta distribution, etc. See Table 1 for inputs and selection of (a, b)

values for all five covariate combinations. These prevalence priors were used to induce
α and β parameters of beta probability distributions for the regression coefficients (g1 to
g5) for the prevalence model, adapting the technique described by Hanson et al. (2003)
and Bedrick, Christensen, and Johnson (1997) and theoretically justified in Christensen
et al. (2010). Note that we only elicited expert opinion for these five coefficients and
placed relatively non-informative priors on the rest of the coefficients in the prevalence
model.

Briefly, consider g1 to be the intercept; g2 and g3 be the regression parameters for sex
(0 = females, 1 = males) and age groups (0 = young, 1 = old); and g4 and g5 be the
parameters for low (<2%) and high (≥2%) mortality, respectively in five logit beta prior
distributions. We assume for the moment that all other variates are set to their reference
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values. The logit of prevalences corresponding to five age, sex and mortality combinations

(lp1, lp2, lp3, lp4 and lp5) are given as:

lp1 = logit(π̃1) = g1 + g20 + g30 + g40 + g50,

lp2 = logit(π̃2) = g1 + g21 + g30 + g40 + g50,

lp3 = logit(π̃3) = g1 + g20 + g31 + g40 + g50, (2.5)

lp4 = logit(π̃4) = g1 + g20 + g30 + g41 + g50,

lp5 = logit(π̃5) = g1 + g20 + g30 + g40 + g51.

So, π̃1, π̃2 and π̃3 are the OJD prevalences among 3-year-old ewes, 3-year-old wethers

and 4-year-old ewes respectively, in nil mortality flocks and with reference values for other

covariates. Similarly, π̃4 and π̃5 are the OJD prevalences among 3-year-old ewes in low

(<2%) and high (≥2%) mortality flocks, respectively, with reference values for other co-

variates.

The uncertainty about π̃i ’s was modeled with independent beta prior distributions based

on expert opinion, as discussed above. It is possible to solve for g’s:

g1 = 1lp1 + 0lp2 + 0lp3 + 0lp4 + 0lp5,

g2 = −1lp1 + 1lp2 + 0lp3 + 0lp4 + 0lp5,

g3 = −1lp1 + 0lp2 + 1lp3 + 0lp4 + 0lp5, (2.6)

g4 = −1lp1 + 0lp2 + 0lp3 + 1lp4 + 0lp5,

g5 = −1lp1 + 0lp2 + 0lp3 + 0lp4 + 1lp5.

It is clear that information about these g’s can be induced from the information about

the π̃i ’s. This is easily handled in WinBUGS (see Appendix).

Relatively non-informative priors were used for the remaining unknown coefficients in

the prevalence model (g6 to g12), which were set to be normally distributed with mean zero

and variance one.

2.3.2. Prior for Random Effects’ Scale Parameter

The random effect ui was assumed to be normally distributed with mean 0 and preci-

sion τ , which can be obtained from standard deviation (σ ), that is, (σ = 1/
√

τ). Since we

have a logistic regression model, values of ui that are larger than 6 or less than −6 will

lead to corresponding probabilities that are near one or zero, respectively. Thus we used

a uniform prior on (0.01, 3) in order to be relatively non-informative, subject to the con-

straint that the largest value that two standard deviations above or below the mean for ui

can be, is about 6.
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2.4. MODELING PFC SENSITIVITY

Sek , the sensitivity of PFC for a pool of size k, was modeled as a function of pool size
through a logit transform

logit(Sek) = b1 + b2 ∗ (k − m)/sd, (2.7)

where b1 and b2 are unknown regression parameters; m is the mean and sd the standard
deviation of k for the values of k in the Whittington et al. (2000) data. Standardizing
stabilizes subsequent analysis.

The prior on PFC sensitivity (Se) was derived based on analysis of previous data (Ab-
bott, Whittington, and McGregor 2004; Whittington et al. 2000) and then used to induce
priors on the regression parameters (b1 and b2) using a similar method to the one used for
prevalence parameters. A brief description of the method follows.

2.4.1. Prior Elicitation for Sensitivity

Two major types of pathological entities are associated with OJD, namely, multibacil-
lary and paucibacillary forms of disease. Greater numbers of MAP organisms are shed in
the feces in multibacillary sheep resulting in higher sensitivity in culture methods if sheep
are manifesting the multibacillary rather than paucibacillary form of disease (Whittington
et al. 2000). However, usually sheep with both forms of disease are present in a population
and therefore their relative proportion affects the overall sensitivity of PFC, which would
be lowest when all the animals are paucibacillary.

Thus, we first estimated multi- to pauci-bacillary ratio in a typical flock based on the
results from a recent field trial. In this trial, sheep born to infected and uninfected dams
were raised on either an infected or an uninfected pasture, thus mimicking different real
field conditions (Abbott, Whittington, and McGregor 2004). Of the sheep in that study
that survived up to three years during a trial period, the ratio of multi- to pauci-bacillary
sheep was estimated to be 17:83. The multi- to pauci-bacillary ratio depends on a number
of factors (Whittington and McGregor 2005); nonetheless, the trial gave a realistic esti-
mate based on a typical situation which is consistent with the current understanding of the
biology of OJD. Moreover, it should lead to conservative estimates of PFC sensitivities
for different pool sizes. Therefore we assumed multi- to pauci-bacillary ratio of 20:80, an
approximation from trial estimates.

Using this ratio, we computed a weighted average of the number of pools likely to be
positive in a typical flock based on the data of Whittington et al. (2000) if pools of size 10
and 50 are collected from the flock. This formed the basis of our prior beta distributions
for these pool sizes (Table 1). These beta distributions were subsequently used to induce
prior distributions on the sensitivity parameters (b1, b2) using the method of Hanson et al.
(2003), similar to the description for prevalence. This is easily accomplished in WinBUGS
by simply defining the b’s in terms of the sensitivities (see Appendix for WinBUGS code).
Also, see Bedrick, Christensen, and Johnson (1997) for additional details about this method
of prior specification.
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2.4.2. Elicitation of Specificity Prior

In contrast to sensitivity, PFC specificity was considered to be independent of pool size
and other covariates. Uncertainty about specificity was modeled with a beta distribution

Sp ∼ beta(asp, bsp), (2.8)

where asp and bsp are, respectively, the parameters of the beta distribution. Due to the
nature of the PFC test, and as the positive pools were further confirmed by PCR and REA,
the specificity of PFC was considered to be almost perfect. Therefore lower probability
limit and modal values near one were used for the beta distribution for specificity (Table 1)
adopting an approach similar to that of Tavornpanich et al. (2004).

2.5. SENSITIVITY ANALYSIS

A sensitivity analysis was conducted by varying prior specifications for PFC sensitivity
and cohort OJD prevalence by ±20% to evaluate their impact on posterior distributions.

2.6. MODEL CHECK

We assessed model fit using a method described by Gelman, Meng, and Stern (1996)
(GMS). Let xobs = (x1, . . . , xn) be the observed binomial counts. Analogously to their
expression (8), we define Pearson-type chi-square discrepancy

D(xobs; θ) =
n∑

i=1

(xi − nipi)
2

nipi

,

where θ corresponds generically to model parameters and pi corresponds to (2.3) using
(2.4) with (πi, ki) substituted for (π, k). If we substituted estimates of πi ’s, we would
have the classic Pearson chi-square statistic for testing goodness of fit. GMS recommend
calculating the “predictive p-value (ppv)”

ppv ≡ Pr(D(xrep; θ) > D(xobs, θ)|xobs)

=
∫

I
[
D(xrep; θ) > D(xobs, θ)

]
p(xrep| θ, xobs)p(θ |xobs) dxrep dθ. (2.9)

Here xrep corresponds to a “repetition” of the sampled data under the presumed model;
xrep is sampled from the predictive density of a future vector of data conditional on the ob-
served data. This amounts to thinking of the predictive density p(xrep|xobs) as a reference
distribution for simulating future data from the assumed model. Relation (2.9) is numeri-
cally approximated by sampling θ t from the posterior for θ followed by sampling xt from
p(xrep| θ t , xobs) and approximating ppv

.= ∑r
t=1 I [D(xt ; θ t ) > D(xobs, θ

t )]/r. If ppv is
quite small, the inference is that the fit of the observed data to the model is inconsistent
with the distribution of fits of data that are sampled from the assumed model.

We also defined the “deviance” measure analogue for goodness of fit and calculated a
ppv corresponding to it as well.
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2.7. IMPLEMENTATION

All the models were implemented in WinBUGS (Lunn et al. 2000). Brief WinBUGS
code is provided in Appendix and a detailed version is available online.

We performed a convergence check by monitoring histories, running quantile plots and
the so-called BGR (Brooks and Gelman 1998) plot. All models were run for 30,000 itera-
tions for each of the two chains and the initial 5000 iterations were discarded. Output from
WinBUGS was saved in Convergence Diagnostic and Output Analysis (CODA) format for
creation of plots in the R language environment (R Development Core Team 2009).

3. RESULTS

3.1. MODEL SELECTION

We first analyzed model (2.4) and found that PPPA or PPNA for coefficients were all at
least 0.95, except for ‘cohort age,’ ‘presence of wildlife other than kangaroos and rabbits
on the farm’ and the two interaction terms ‘(m2 ∗ sr and m3 ∗ sr).’ Therefore they were can-
didates for removal from the model. We did not consider removal of ‘cohort age’ because it
was considered to be a confounder a priori. Removal of variable ‘presence of wildlife other
than kangaroos and rabbits on the farm’ and the interaction terms increased DIC values
(Table 3) indicating that the model containing these terms was superior to the one without
them. The stocking rate by mortality interaction was further investigated by considering
estimated odds of OJD with sr = 1, to the odds of OJD with sr = 0, for cohorts in nil, low
and high mortality flocks (calculated as: eg6 , eg6+g11 and eg6+g12 , respectively). These odds
ratios were estimated to be 2.27, 4.53 and 3.85, respectively, for nil, low and high mortality
flocks, whereas under the model with no interaction, these three values would be identical.
Therefore, we concluded that the interactions were of practical importance and therefore
should be retained in the model despite our lack of certainty about their statistical import.

We could have considered model averaging over model (2.4) with and without inter-
actions, and perhaps this would be the preferable model if our goal were prediction, but
because we were mainly interested in estimating prevalences, we preferred model (2.4). Pa-
rameter estimates and the posterior probabilities for all terms in this model are presented
in Table 2.

Comparison of model (2.4) with other variants indicated that this was superior to the
model with only fixed effects (Table 3). As expected, model (2.4) was more complex (i.e.
had a higher pD), but we preferred it because of its considerably lower DIC. However, in-
terestingly, model (2.4) had a higher DIC value compared to that containing just cohort age,
cohort sex and current OJD mortality, even though all the remaining terms in model (2.4)
had PPPA or PPNA values > 0.90 (of course, except cohort age and interaction terms, as
discussed above). Given that these terms could be biological important, we preferred to
choose model (2.4) as our final model.

3.2. ESTIMATES OF PFC SENSITIVITY AND SPECIFICITY

Posterior inferences for PFC sensitivities, Sek , with pool sizes of k = 10, 30 and 50
are 0.91 (0.80, 0.96), 0.85 (0.80, 0.90) and 0.77 (0.65, 0.88), respectively. The estimates
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Table 2. Bayesian model for cohort OJD prevalence based on the data of OJD risk factor study conducted in
Australia in 2004, with posterior probabilities (PPNA/PPPA) that the estimated coefficients for various
covariates in the model were positive or negative (<0 or >0).

Parameters Categories b sd (95% PI) Probability

Constant −3.15 0.27 (−3.70, −2.63) 1.000 (<0)

Current OJD mortalitya

No mortalities
<2% mortalities 0.86 0.40 (0.10, 1.66) 0.986 (>0)
≥2% mortalities 2.11 0.54 (1.11, 3.25) 1.000 (>0)

Cohort sex
Ewes

Wethers 0.63 0.33 (0.02, 1.29) 0.972 (>0)

Cohort age
3 years
4 years 0.43 0.39 (−0.31, 1.23) 0.865 (>0)

Stocking rate in the lambing paddock

<14 dseb/hectare
≥14 dse/hectare 0.82 0.45 (−0.04, 1.73) 0.969 (>0)

Years since commencement of OJD vaccination
1 or 2 years
> 2 years −1.00 0.43 (−1.79, −0.08) 0.982 (<0)

Vaccination not being done −0.89 0.53 (−1.88, 0.20) 0.950 (<0)

Application of fertilizers other than super and lime
No
Yes −1.31 0.52 (−2.32, −0.27) 0.992 (<0)

Presence of wildlife other than kangaroos and rabbits on the farm
No
Yes −0.56 0.40 (−1.35, 0.23) 0.924 (<0)

Interaction between stocking rate in the lambing paddock and current OJD mortality
<2% mortalities × High stocking rate 0.69 0.63 (−0.49, 1.98) 0.870 (>0)
≥2% mortalities × High stocking rate 0.53 0.78 (−0.87, 2.20) 0.744 (>0)

aFarmer-reported flock-OJD mortality in adult sheep (>2 years old) for previous 12 months.
bLambing ewe = 2.45 dry-sheep equivalent (dse).

Table 3. Deviance Information Criterion (DIC) for all the model variants considered in this paper.

Models DIC pD

The final mixed effect model (model (2.4)) 297.2 24.7
Model (2.4) without the interaction term 298.0 26.5
Model (2.4) without the variable
‘presence of wildlife other than kangaroos and rabbits on the farm’ 299.9 24.3
Model (2.4) but with just cohort age, cohort sex and current OJD mortality 289.8 19.2
Model (2.4) without random effects (fixed effects model) 336.5 9.4

of PFC sensitivity displayed in Figure 2a indicate that the PFC sensitivity decreased with
increase in pool size. However, the probability intervals were narrower for pools around
size 30 than both the lower and higher pool sizes.
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Figure 2. Pooled fecal culture (PFC) test sensitivity based on the analysis of data from the OJD risk factor study
conducted in 2004–2005 in sheep flocks in Australia. (a) Posterior median and 95% probability intervals for pools
of sizes from 10 to 50; (b) Comparison of priors with the posteriors for PFC sensitivity.

Posterior distributions of PFC sensitivity, Sek , along with the sensitivity priors presented

in Figure 2b indicate that the posteriors were concentrated within the range of priors and

the data provided considerable extra information beyond that in the priors. In contrast,

posterior specificity of PFC was almost perfect (median 0.994; 95% PI 0.989, 0.998) and

the posterior distribution for specificity was aligned almost exactly the same as the prior

(figure not shown).
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Figure 3. Posterior prevalences for cohorts studied in the OJD risk factor study conducted in 2004–2005 in
Australia. (a) Comparison of prevalences based on the random effects model (model (2.4)) and the fixed effects
model; (b) Posterior median and 95% probability intervals by keeping u = 0.

3.3. ESTIMATES OF OJD PREVALENCE FOR INDIVIDUAL COHORTS

Posterior median prevalence estimates for 97 individual cohorts ranged from 0.002 to

0.72 with an overall average of 0.16. Their comparison with the estimates obtained from the

model using only fixed effects is presented in Figure 3a. Both models resulted in estimates

that were almost identical for lower prevalence levels, but differences were noticeable at

higher levels.
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Next, we estimated average OJD prevalences for fixed age by sex combinations, where
average corresponds to averaging the prevalences across all data cohorts. Posterior distri-
butions of these average prevalences indicate that the prevalences for wether cohorts were
higher than for ewe cohorts, but there were no appreciable differences in estimated preva-
lences between the age groups: 3-year-old wethers 0.27 (0.15, 0.45); 3-year-old ewes 0.16
(0.09, 0.28); 4-year-old wethers 0.25 (0.11, 0.48); 4-year-old ewes 0.17 (0.08, 0.35).

3.4. INFERENCES FOR OJD PREVALENCE FOR “TYPICAL” FLOCKS WITH

GIVEN COVARIATE COMBINATIONS

In order to make inferences beyond the current cohorts/flocks (since flocks outside the
data even with the same covariates will necessarily be different due to different u’s), we
consider prevalences for “typical” flocks, that is, flocks that are just like the ones we have
in the data, except with the corresponding u’s set to zero. In this way, it is meaningful to
obtain probability intervals for such flocks (see Figure 3b). Note that the intervals were
wider as the prevalence estimate was increased.

Of even greater interest are inferences for “typical” flocks as we take account of par-
ticular covariate combinations. Consider Table 4 where we considered all possible com-
binations of age, sex and mortality, with other fixed covariates set to zero. Consideration
of this table makes it possible to see the practical import of the effect of sex for example,
by simply comparing estimated prevalences between sex groups with other variables held
fixed (similarly, for age and mortality). Results in Table 4 indicate that the prevalence was
higher in flocks with high mortality in all combinations of age and sex. Further, the trends
in prevalence observed in ewes and whethers were also evident even after stratifying by
current OJD mortality.

3.5. SENSITIVITY ANALYSIS

A sensitivity analysis was conducted by varying prior specifications for PFC sensitivity
and cohort OJD prevalence. The modal and the appropriate upper or lower values of priors
in Table 1 were increased by 20% of the corresponding values given in Table 1 to con-
struct Prior I (and reduced by 20% to construct Prior II). Results illustrated in Figure 4a,
b indicate that the estimated cohort OJD prevalence estimates moderately increased with
a decrease in the modal and the lower values of sensitivity priors, and with increase in
the modal and the upper values of prevalence priors. There was a greater variability in the
estimates at a higher estimated prevalence than at a lower level.

Similarly, the estimates did not change after increasing the number of iterations to
200,000 (and discarding first 20,000 iterations), suggesting that the model and analysis
were appropriate.

3.6. MODEL CHECK

The values for ppv for our Pearson and Deviance measures using the GMS predictive
model checking method are 0.59 and 0.43 respectively. We are thus not at all tempted to
consider revising our model.
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Table 4. Inferences for OJD prevalence for “typical” flocks with given covariate combinations obtained by
setting u = 0. Other covariate values are set to reference values.

Sex Age Level of Mortality Median (95% PI)

Wethers
3-year-old

Nil 0.11 (0.05, 0.24)
Low (<2%) 0.22 (0.08, 0.53)
High (≥2%) 0.50 (0.19, 0.84)

4-year-old
Nil 0.07 (0.04, 0.13)

Low (<2%) 0.16 (0.07, 0.32)
High (≥2%) 0.39 (0.18, 0.70)

Ewes
3-year-old

Nil 0.06 (0.03, 0.12)
Low (<2%) 0.13 (0.05, 0.31)
High (≥2%) 0.35 ( 0.14, 0.69)

4-year-old
Nil 0.04 (0.02, 0.07)

Low (<2%) 0.09 (0.05, 0.17)
High (≥2%) 0.26 (0.12, 0.52)

4. DISCUSSION

Animal-level OJD prevalence was successfully estimated using the Bayesian model. As
far as we are aware, this is the first method of its kind that can adjust the prevalences for
both variable pool size and imperfect test sensitivity.

Seven methods for prevalence estimation were reviewed by Cowling, Gardner, and
Johnson (1999). All these methods assume uniform pool sizes, which is not realistic, at
least for OJD studies, due to logistics of sample collection and budgetary constraints.
Moreover, some of these methods assume a perfect test or known sensitivity and speci-
ficity. In addition, many of them are based on large sample theory and could have negative
lower confidence limits for low prevalence flocks, while others cannot compute estimates
when prevalence is high. Of the currently available methods, only that of Williams and
Moffitt (2001) accounts for variable pool size but it assumes perfect sensitivity and thus
will result in biased estimates of true prevalence with intervals that are too narrow. The
Bayesian method considered here, on the other hand, assumes an imperfect test, models
uncertainty about test characteristics and results in findings that obey probability laws, and
does not rely on large sample approximations for its validity.

However, this method requires elicitation of appropriate prior information. We took
several steps to obtain priors that reflected available information in the literature so as to
reduce the subjectivity inherent in them. First, we carefully developed sensitivity priors
based on analysis of previously published data. Second, we increased the width of preva-
lence priors where our expert was not certain about the estimates. Third, we used prior
information for both prevalence and sensitivity to induce priors on model parameters. All
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Figure 4. Sensitivity analyses to investigate the effect of changing sensitivity and prevalence priors on posterior
cohort OJD prevalence. (a) Influence of changing sensitivity priors; (b) Influence of changing prevalence priors.

this would have improved the appropriateness of our priors. Comparison of the prior and

posterior distributions for sensitivity (Figure 2b) indicated that the priors were not obvi-

ously unreasonable. Probability intervals of sensitivity posteriors were narrower for pools

around size 30 probably due to this corresponding to the “center” of the data.
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In contrast, PFC specificity was considered to be nearly perfect because the identity
of MAP organisms was confirmed using accepted taxonomic criteria. The test can only
be false positive if there is a cross-contamination between samples during pooling or cul-
turing, or misidentification of samples in the field or lab, which although possible, was
not likely in the OJD risk factor study. In this study, the sample collector changed gloves
after collecting every pool. Further, the pellets from all sheep in a pool were collected di-
rectly in a box in the field and thus were not pooled in the lab, reducing the possibility
of cross-contamination. Also, due to inclusion of negative controls and other quality con-
trol procedures, the possibility of false positive results is negligible. This confidence was
reflected in the highly concentrated specificity prior, which, as expected, was very influ-
ential in determining the posterior specificity. Other workers have also used concentrated
specificity priors for similar tests (Tavornpanich et al. 2004).

We tested several variants of the model to check the importance of random effects and
other covariates. Exclusion of the interaction terms did not have a noticeable influence
on any inferences except for the relationship between response as a function of stocking
rate and mortality, where the effect of the combination of high stocking rate and non-
nil mortality is increased over what it would be if the interaction terms were left out. As
an alternative to our presentation, we could have analyzed the more parsimonious model
(model (2.4) without interactions) and then simply mentioned the possible effect of the
interaction. We did not favor deletion of age because it was considered to be a confounder.
Based on all evidence, we believe that our final mixed effects model represents the data
well.

It was interesting to note that model (2.4) had a noticeably higher DIC value than the
“reduced” model with just Current OJD mortality, Cohort age and Cohort sex. To investi-
gate this further, we considered a sequence of nested models by adding terms to the latter
model, building up to model (2.4). We first added stocking rate and then the interaction be-
tween it and OJD mortality. The DIC values for both of these models were slightly smaller
than for the reduced model. Next, we added the vaccination terms, resulting in a DIC that
was 5 larger, but where the PPNAs were 0.99 and 0.94, respectively, and where poste-
rior probabilities of negative or positive coefficients for all the other terms remained high.
Similarly, after evaluating DIC values and posterior probabilities estimated by adding the
remaining terms to the model we conclude that model (2.4) is the most appropriate given
our biological and statistical considerations.

Since we included an interaction in the model between stocking rate and mortality, their
effects must be discussed together. From Table 2 it is seen that stocking rate and mortal-
ity are positively associated with prevalence and that there is a combined effect of high
stocking rate and non-nil mortality (since all coefficients including those for interaction
are positive), as mentioned in the previous paragraph. OJD prevalence was higher in both
low and high mortality flocks, was higher for flocks with a high stocking rate, and was
even higher when the two effects were combined (PPPAs of 0.986, 1.000, 0.969 for main
effects, and 0.870, 0.744 for interactions). However, interestingly, high stocking rate had a
greater influence in increasing prevalence in flocks with <2% mortalities than flocks with
≥2% mortalities.
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The effect of lambing paddock stocking could be due to poor nutrition among over-
stocked dams resulting in nutritional stress in lambs, thereby making them more suscep-
tible to infectious diseases. Poor dam nutrition could also increase MAP fecal shedding,
thus increasing MAP pasture and environmental contamination, consequently increasing
the availability of MAP to susceptible lambs. Lambs, known to be highly susceptible to
infection, are thus exposed to high doses of MAP, increasing the probability of progression
to clinal stage.

In contrast to the effect of stocking rate, the flocks that had vaccinated sheep against
OJD for more than 2 years (mainly 3–4 years) had lower cohort OJD prevalence compared
to flocks that had vaccinated for only 1–2 years (PPNA = 0.982). This may indicate the
reduction in MAP contamination across farms that have several age groups of vaccinated
sheep who are shedding fewer organisms. In contrast, the OJD level in some flocks not
vaccinating at all was also low (PPNA = 0.950). This could be due to the owners/managers
of these flocks not observing high OJD mortality and hence deciding not to vaccinate their
sheep.

A history of applying less common fertilizers (such as bio-soil, pasture gold, organic
manure, reactive phosphorus rock, mono-ammonium phosphate, di-ammonium phosphate,
sewage ash, super-potash and pasture special) on the farm was associated with lower cohort
OJD (PPNA = 0.992). Most of these fertilizers are associated with cropping and may in-
dicate a spelling effect due to paddocks being cropped or cultivated before stocking sheep.
This may reduce the pasture contamination level. The ‘presence of wildlife other than kan-
garoos and rabbits on the farm’ was protective but we are not sure about the reasons of
such association. The finding of higher OJD prevalence in wethers than in ewes (PPPA =
0.972) could be due to differences in management between wethers and ewes. All these
variables had a similar direction of association in the ordinal logistic regression model for
three levels of OJD prevalence (<2, 2–10 and >10%) (Dhand et al. 2007), imparting a
greater confidence to our previous results as well as to this model.

Robustness of our model was apparent from the sensitivity analyses as there were only
minimal changes in the posterior estimates after changing the sensitivity and prevalence
priors even by large proportions. Greater variation (and wider prevalence probability inter-
vals) at a higher prevalence level could be due to uncertainty resulting from a majority of
the pools testing positive. Further evaluation of this Bayesian approach could in theory be
done by comparing the results with culture of all individual samples constituting a pool.
However, such results were not available in the OJD risk factor study because individual
fecal samples were not collected.

This method can be easily extended to other diseases or conditions where pooled sam-
ples are collected. Similar sensitivity and prevalence priors can be constructed based on
the previous literature and/or expert opinion.
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SUPPLEMENTAL MATERIALS

WinBUGS code: WinBUGS code to perform the analyses described in the article.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the
original author(s) and source are credited.

APPENDIX: WINBUGS CODE
# Estimation of probability of positive pool:

# nn is the num of distinct cohort/pool size combinations

# x[i] is the number of positive pools out of n[i], of size k[i]

model{

for ( i in 1:nn )

{x[i] ~ dbin(p[i],n[i])

temp[i] <- pow(1-pi[i], k[i])

p[i] <- (1-temp[i])*se[k[i]]+( temp[i])*(1-sp)

# First few rows of data copied below to help you understand the model.

# The first cohort (c) is made up of 1 pool (n) of size 12 (k)

# and 6 pools of size 30. Similarly, the second cohort is made up

# of 1 pool each of size 15 and 20 and 5 pools of size 30.

# c[] k[] n[] x[] a[] s[] m1[] m2[] sr[] v2[] v3[] f[] w[]

# 1 12 1 0 0 0 1 0 1 0 0 1 0

# 1 30 6 3 0 0 1 0 1 0 0 1 0

# 2 15 1 0 0 0 1 0 0 0 0 0 1

# 2 20 1 0 0 0 1 0 0 0 0 0 1

# 2 30 5 3 0 0 1 0 0 0 0 0 1

# a and s are, respectively, the age and sex groups of the cohort

# m1 and m2 are two dummy variables for the current OJD mortality

# v2 and v3 are two dummy variables for the number of years since

# commencement of OJD vaccination in the flock

# f: use of fertilizers other than superphosphate and lime

# w: the presence of wildlife other than kangaroos and rabbits

# Please refer to Section 2.3 for further details.

# Random effects model for animal-level prevalence:

logit(pi[i])<- g[1]+ g[2]*s[i]+ g[3]*a[i] + g[4]*m1[i]

+ g[5]*m2[i]+ g[6]*sr[i] + g[7]*v2[i]

+ g[8]*v3[i]+ g[9]*f[i] + g[10]*w[i]

+ g[11]*m1[i]*sr[i]+ g[12]*m2[i]*sr[i]

+ U[flock[i]]

# g1 to g12 are unknown regression parameters. See Section 2.3

# for details about the covariates in the model.

# Prevalences without random effects

logit(prev[i])<- g[1]+ g[2]*s[i]+ g[3]*a[i] + g[4]*m2[i]

+ g[5]*m3[i]+ g[6]*sr[i] + g[7]*v2[i]

+ g[8]*v3[i]+ g[9]*f[i] + g[10]*w[i]

+ g[11]*m1[i]*sr[i]+g[12]*m2[i]*sr[i]

}

# Distribution of the random effects, U;

for(i in 1: nflocks)

{ U[i] ~ dnorm(0,tau)}

# Average Prevalence in cohorts
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for (i in 1:ncohorts){

for (j in 1:nn){ v[i,j] <- equals(cohort[j],i)

vv[i,j] <- v[i,j]*pi[j] }

cprev[i] <- sum(vv[i,])/sum(v[i,])

}

# Similarly average Prevalence was calculated without

# random effects (code not shown)

# Estimated probabilities of infection for all possible

# combinations of sex, age and mortality with all

# other covariates set to 0

for(i in 1:2){

for (j in 1:2){

for (r in 1:3){

logit(pprev[i,j,r]) <- g[1] + g[2]*equals(i,1) + g[3]*equals(j,1)

+ g[4]*equals(r,1) + g[5]*equals(r,2)}}}

# Calculation of prevalence for age and sex cohorts:

# Note: Only calculations of prevalence for 3-year-old wethers is shown here

for(i in 1:nn)

{ pymtemp[i] <- pi[i]*ym[i]

ym[i] <- s[i]*(1-a[i]) }

pym <- sum(pymtemp[])/sum(ym[])

# Priors:

# Priors for sensitivity:

for(l in 1:50){

logit(se[l])<- b[1] + b[2]*(l-22.75)/21.84} #standardization of pool size

# Induced priors for beta’s: based on analysis of Whittington et al. (2000) data

se1 ~ dbeta(10.2,4.2) # k= 10; Median = 0.74 and 5p = 0.50

se2 ~ dbeta(10.9,7.6) # k= 50; Median = 0.60 and 5p = 0.40

ls1<- logit(se1)

ls2 <- logit(se2)

b[1] <- .68125*ls1 + .31875*ls2

b[2] <- -.546*ls1 + .546*ls2

prob[1] <- step(b[1])

prob[2] <- step(b[2])

# Prior for specificity

sp ~ dbeta(asp,bsp)

# Prevalence priors (elicited from Prof. Richard Whittington)

# Nil Mortality flocks

pi1 ~ dbeta(8.77,148.70)# Mode=0.05, 90P =0.08; 3-year-old ewes

pi2 ~ dbeta(4.57,68.74) # Mode=0.05, 90P =0.10; 3-year-old wethers

pi3 ~ dbeta(4.57,68.74) # Mode=0.05, 90P =0.10; 4-year-old ewes

# Low Mortality flocks

pi4 ~ dbeta(3.78,37.95)# Mode=0.07, 90p =0.15; 3-year-old ewes

# High Mortality flocks

pi5 ~ dbeta(2.68,4.12)# Mode=0.35, 95p =0.7; 3-year-old ewes

# Induced priors for g1 to g5

lp1 <- logit(pi1)

lp2 <- logit(pi2)

lp3 <- logit(pi3)

lp4 <- logit(pi4)

lp5 <- logit(pi5)

g[1] <- 1*lp1 + 0*lp2 +0*lp3

g[2] <- -1*lp1 + 1*lp2 +0*lp3

g[3] <- -1*lp1 + 0*lp2 +1*lp3

g[4] <- -1*lp1 + 0*lp2 +0*lp3 + lp4

g[5] <- -1*lp1 + 0*lp2 +1*lp3 + lp5



472 N.K. DHAND, W. O. JOHNSON, AND J.-A. L. M. L. TORIBIO

# Flat priors for g6 to g12 (normally distributed)

for (i in 6:12) {g[i] ~ dnorm(0,1)}

# Prior for u’s (uniformally distributed)

tau <- 1/pow (sigma, 2)

sigma ~ dunif (.01, 3)

# Posterior probabilities that g’s are positive

probg[1] <- step(g[1])

probg[2] <- step(g[2]) # Similar for all g’s up to g[9]

}

[Accepted November 2009. Published Online June 2010.]
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