568 research outputs found

    Natural or Artificial? Habitat-Use by the Bull Shark, Carcharhinus leucas

    Get PDF
    BACKGROUND: Despite accelerated global population declines due to targeted and illegal fishing pressure for many top-level shark species, the impacts of coastal habitat modification have been largely overlooked. We present the first direct comparison of the use of natural versus artificial habitats for the bull shark, Carcharhinus leucas, an IUCN ‘Near-threatened’ species - one of the few truly euryhaline sharks that utilises natural rivers and estuaries as nursery grounds before migrating offshore as adults. Understanding the value of alternate artificial coastal habitats to the lifecycle of the bull shark is crucial for determining the impact of coastal development on this threatened but potentially dangerous species. METHODOLOGY/FINDINGS: We used longline surveys and long-term passive acoustic tracking of neonate and juvenile bull sharks to determine the ontogenetic value of natural and artificial habitats to bull sharks associated with the Nerang River and adjoining canals on the Gold Coast, Australia. Long-term movements of tagged sharks suggested a preference for the natural river over artificial habitat (canals). Neonates and juveniles spent the majority of their time in the upper tidal reaches of the Nerang River and undertook excursions into adjoining canals. Larger bull sharks ranged further and frequented the canals closer to the river mouth. CONCLUSIONS/SIGNIFICANCE: Our work suggests with increased destruction of natural habitats, artificial coastal habitat may become increasingly important to large juvenile bull sharks with associated risk of attack on humans. In this system, neonate and juvenile bull sharks utilised the natural and artificial habitats, but the latter was not the preferred habitat of neonates. The upper reaches of tidal rivers, often under significant modification pressure, serve as nursery sites for neonates. Analogous studies are needed in similar systems elsewhere to assess the spatial and temporal generality of this research

    Leaf litter breakdown along an elevational gradient in Australian alpine streams

    Get PDF
    The breakdown of allochthonous organic matter, is a central step in nutrient cycling in stream ecosystems. There is concern that increased temperatures from climate change will alter the breakdown rate of organic matter, with important consequences for the ecosystem functioning of alpine streams. This study investigated the rate of leaf litter breakdown and how temperature and other factors such as microbial and invertebrate activities influenced this over elevational and temporal gradients. Dried leaves of Snow Gum (Eucalyptus pauciflora) and cotton strips were deployed in coarse (6 mm), and fine (50 mu m) mesh size bags along an 820 m elevation gradient. Loss of mass in leaf litter and cotton tensile strength per day (k per day), fungal biomass measured as ergosterol concentration, invertebrate colonization of leaf litter, and benthic organic matter (mass and composition) were determined. Both microbial and macroinvertebrate activities were equally important in leaf litter breakdown with the abundance of shredder invertebrate taxa. The overall leaf litter breakdown rate and loss of tensile strength in cotton strips (both k per day) were greater during warmer deployment periods and at lower elevations, with significant positive relationships between mean water temperature and leaf breakdown and loss of tensile strength rate, but no differences between sites, after accounting for the effects of temperature. Despite considerably lower amounts of benthic organic matter in streams above the tree line relative to those below, shredders were present in coarse mesh bags at all sites. Ergosterol concentration was greater on leaves in coarse mesh bags than in fine mesh bags, implying differences in the microbial communities. The importance of water temperatures on the rate of leaf litter breakdown suggests the potential effects of climate change-induced temperature increases on ecological processes in such streams

    The role of polycyclic frameworks in modulating P2X<inf>7</inf> receptor function

    Full text link
    Herein we describe our recent attempts to target the P2X7 receptor for potential treatment of neurological disorders. This work focusses on different polycycles including carborane, adamantane or cubane, joined by either a cyanoguanidine or an amide linker to phenyl or isoquinoline moieties. We have demonstrated the superiority of the adamantyl moiety over other polycycles in terms of synthetic accessibility and biological (cellular) activity. We have also shown that an amide or cyanoguanidine linker can greatly alter the biological activity of compounds. This SAR study provides important insights into the types of functionality required to target the P2X7 receptor

    Ideas and perspectives: Alleviation of functional limitations by soil organisms is key to climate feedbacks from arctic soils

    Get PDF
    Arctic soils play an important role in Earth's climate system, as they store large amounts of carbon that, if released, could strongly increase greenhouse gas levels in our atmosphere. Most research to date has focused on how the turnover of organic matter in these soils is regulated by abiotic factors, and few studies have considered the potential role of biotic regulation. However, arctic soils are currently missing important groups of soil organisms, and here, we highlight recent empirical evidence that soil organisms' presence or absence is key to understanding and predicting future climate feedbacks from arctic soils. We propose that the arrival of soil organisms into arctic soils may introduce “novel functions”, resulting in increased rates of, for example, nitrification, methanogenesis, litter fragmentation, or bioturbation, and thereby alleviate functional limitations of the current community. This alleviation can greatly enhance decomposition rates, in parity with effects predicted due to increasing temperatures. We base this argument on a series of emerging experimental evidence suggesting that the dispersal of until-then absent micro-, meso-, and macroorganisms (i.e. from bacteria to earthworms) into new regions and newly thawed soil layers can drastically affect soil functioning. These new observations make us question the current view that neglects organism-driven “alleviation effects” when predicting future feedbacks between arctic ecosystems and our planet's climate. We therefore advocate for an updated framework in which soil biota and the functions by which they influence ecosystem processes become essential when predicting the fate of soil functions in warming arctic ecosystems.</p

    A Pilot Study with a Novel Setup for Collaborative Play of the Humanoid Robot KASPAR with children with autism

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.This article describes a pilot study in which a novel experimental setup, involving an autonomous humanoid robot, KASPAR, participating in a collaborative, dyadic video game, was implemented and tested with children with autism, all of whom had impairments in playing socially and communicating with others. The children alternated between playing the collaborative video game with a neurotypical adult and playing the same game with the humanoid robot, being exposed to each condition twice. The equipment and experimental setup were designed to observe whether the children would engage in more collaborative behaviours while playing the video game and interacting with the adult than performing the same activities with the humanoid robot. The article describes the development of the experimental setup and its first evaluation in a small-scale exploratory pilot study. The purpose of the study was to gain experience with the operational limits of the robot as well as the dyadic video game, to determine what changes should be made to the systems, and to gain experience with analyzing the data from this study in order to conduct a more extensive evaluation in the future. Based on our observations of the childrens’ experiences in playing the cooperative game, we determined that while the children enjoyed both playing the game and interacting with the robot, the game should be made simpler to play as well as more explicitly collaborative in its mechanics. Also, the robot should be more explicit in its speech as well as more structured in its interactions. Results show that the children found the activity to be more entertaining, appeared more engaged in playing, and displayed better collaborative behaviours with their partners (For the purposes of this article, ‘partner’ refers to the human/robotic agent which interacts with the children with autism. We are not using the term’s other meanings that refer to specific relationships or emotional involvement between two individuals.) in the second sessions of playing with human adults than during their first sessions. One way of explaining these findings is that the children’s intermediary play session with the humanoid robot impacted their subsequent play session with the human adult. However, another longer and more thorough study would have to be conducted in order to better re-interpret these findings. Furthermore, although the children with autism were more interested in and entertained by the robotic partner, the children showed more examples of collaborative play and cooperation while playing with the human adult.Peer reviewe

    Dual signal transduction pathways activated by TSH receptors in rat primary tanycyte cultures

    Get PDF
    Tanycytes play multiple roles in hypothalamic functions, including sensing peripheral nutrients and metabolic hormones, regulating neurosecretion and mediating seasonal cycles of reproduction and metabolic physiology. This last function reflects the expression of TSH receptors in tanycytes, which detect photoperiod-regulated changes in TSH secretion from the neighbouring pars tuberalis. The present overall aim was to determine the signal transduction pathway by which TSH signals in tanycytes. Expression of the TSH receptor in tanycytes of 10-day-old Sprague Dawley rats was observed by in situ hybridisation. Primary ependymal cell cultures prepared from 10-day-old rats were found by immunohistochemistry to express vimentin but not GFAP and by PCR to express mRNA for Dio2, Gpr50, Darpp-32 and Tsh receptors that are characteristic of tanycytes. Treatment of primary tanycyte/ependymal cultures with TSH (100 IU/l) increased cAMP as assessed by ELISA and induced a cAMP-independent increase in the phosphorylation of ERK1/2 as assessed by western blot analysis. Furthermore, TSH (100 IU/l) stimulated a 2.17-fold increase in Dio2 mRNA expression. We conclude that TSH signal transduction in cultured tanycytes signals via Gαs to increase cAMP and via an alternative G protein to increase phosphorylation of ERK1/2

    Pharmacological evaluation of novel bioisosteres of an adamantanyl benzamide P2X7 receptor antagonist

    Get PDF
    Adamantanyl benzamide 1 was identified as a potent P2X7R antagonist but failed to progress further due to poor metabolic stability. We describe the synthesis and SAR of a series of bioisosteres of benzamide 1 to explore improvements in the pharmacological properties of this lead. Initial efforts investigated a series of heteroaromatic bioisosteres, which demonstrated improved physicochemical properties but reduced P2X7R antagonism. Installation of bioisosteric fluorine on the adamantane bridgeheads was well tolerated and led to a series of bioisosteres with improved physicochemical properties and metabolic stability. Trifluorinated benzamide 34 demonstrated optimal physicochemical parameters, superior metabolic stability (ten times longer than lead benzamide 1), and an improved physicokinetic profile and proved effective in the presence of several known P2X7R polymorphisms

    The psychopathological and psychosocial outcome of early-onset schizophrenia: Preliminary data of a 13-year follow-up

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Relatively little is known about the long-term psychopathological and psychosocial outcome of early-onset schizophrenia. The existing literature describes more severe courses of illness in these patients compared with adult-onset schizophrenia. This article reports preliminary data of a study exploring the outcome of early-onset schizophrenia 13.4 years (mean) after first admission. Predictors for interindividual outcomes were investigated.</p> <p>Methods</p> <p>We retrospectively assessed 27 former patients (mean age at first admission 15.5 years, SD = 2.0) that were consecutively admitted to the Department of Child and Adolescent Psychiatry at the University of Wuerzburg between 1990 and 2000. A multidimensional approach was chosen to assess the outcome consisting of a mail survey including different questions about psychopathological symptoms, psychosocial parameters, and standardized self-reports (ESI and ADS).</p> <p>Results</p> <p>Concerning the psychopathological outcome, 22.2% reported having acute schizophrenic symptoms. Almost one third (30.8%) described symptoms of depression and 37.0% reported having tried to commit suicide or seriously thought about it. 77.8% of the former patients were still in outpatient treatment. Compared to the general population, the number of patients without a school graduation was relatively high (18.5%). Almost half of participants still live with their parents (48.1%) or in assisted or semi-assisted living conditions (33.3%). Only 18.5% were working in the open market.</p> <p>Conclusion</p> <p>Schizophrenia with an early onset has an unfavourable prognosis. Our retrospective study of the psychopathological and psychosocial outcome concludes with a generally poor rating.</p

    Efficacy and tolerability of lisdexamfetamine dimesylate in children with attention-deficit/hyperactivity disorder: sex and age effects and effect size across the day

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Efficacy and safety profiles by sex and age (6-9 vs 10-12 years) and magnitude and duration of effect by effect size overall and across the day of lisdexamfetamine dimesylate (LDX) vs placebo were assessed.</p> <p>Methods</p> <p>This study enrolled children (6-12 years) with attention-deficit/hyperactivity disorder (ADHD) in an open-label dose optimization with LDX (30-70 mg/d) followed by a randomized, double-blind, placebo-controlled, 2-way crossover phase. Post hoc analyses assessed interaction between sex or age and treatment and assessed effect sizes for Swanson, Kotkin, Agler, M-Flynn, and Pelham (SKAMP) and Permanent Product Measure of Performance (PERMP) scales and ADHD Rating Scale IV measures. No corrections for multiple testing were applied on time points and subgroup statistical comparisons.</p> <p>Results</p> <p>129 participants enrolled; 117 randomized. Both sexes showed improvement on all assessments at postdose time points; females showed less impairment than males for SKAMP and PERMP scores in treatment and placebo groups at nearly all times. Both age groups improved on all assessments at postdose time points. Children 10-12 years had less impairment in SKAMP ratings than those 6-9 years. Treatment-by-sex interactions were observed at time points for SKAMP-D, SKAMP total, and PERMP scores; no consistent pattern across scales or time points was observed. LDX demonstrated significant improvement vs placebo, by effect size, on SKAMP-D from 1.5-13 hours postdose. The overall LS mean (SE) SKAMP-D effect size was -1.73 (0.18). In the dose-optimization phase, common (≄2%) treatment-emergent adverse events (TEAEs) in males were upper abdominal pain, headache, affect lability, initial insomnia, and insomnia; in females were nausea and decreased weight. During the crossover phase for those taking LDX, higher incidence (≄2% greater) was observed in males for upper abdominal pain and insomnia and in females for nausea and headache. Overall incidence of TEAEs in age groups was similar.</p> <p>Conclusion</p> <p>Apparent differences in impairment level between sex and age groups were noted. However, these results support the efficacy of LDX from 1.5 hours to 13 hours postdose in boys and girls with medium to large effect sizes across the day with some variability in TEAE incidence by sex.</p> <p>Trial Registration Number</p> <p>ClinicalTrials.gov Identifier: <a href="http://clinicaltrials.gov/ct2/show/NCT00500149">NCT00500149</a>.</p
    • 

    corecore