18 research outputs found
Relative performance of indoor vector control interventions in the Ifakara and the West African experimental huts.
BACKGROUND: West African and Ifakara experimental huts are used to evaluate indoor mosquito control interventions, including spatial repellents and insecticides. The two hut types differ in size and design, so a side-by-side comparison was performed to investigate the performance of indoor interventions in the two hut designs using standard entomological outcomes: relative indoor mosquito density (deterrence), exophily (induced exit), blood-feeding and mortality of mosquitoes. METHODS: Metofluthrin mosquito coils (0.00625% and 0.0097%) and Olyset® Net vs control nets (untreated, deliberately holed net) were evaluated against pyrethroid-resistant Culex quinquefasciatus in Benin. Four experimental huts were used: two West African hut designs and two Ifakara hut designs. Treatments were rotated among the huts every four nights until each treatment was tested in each hut 52 times. Volunteers rotated between huts nightly. RESULTS: The Ifakara huts caught a median of 37 Culex quinquefasciatus/ night, while the West African huts captured a median of 8/ night (rate ratio 3.37, 95% CI: 2.30-4.94, P  4-fold higher mosquito exit relative to the West African huts (odds ratio 4.18, 95% CI: 3.18-5.51, P < 0.0001), regardless of treatment. While blood-feeding rates were significantly higher in the West African huts, mortality appeared significantly lower for all treatments. CONCLUSIONS: The Ifakara hut captured more Cx. quinquefasciatus that could more easily exit into windows and eave traps after failing to blood-feed, compared to the West African hut. The higher mortality rates recorded in the Ifakara huts could be attributable to the greater proportions of Culex mosquitoes exiting and probably dying from starvation, relative to the situation in the West African huts
Evaluation of standard pyrethroid based LNs (MiraNet and MagNet) in experimental huts against pyrethroid resistant Anopheles gambiae s.l. M'bé, Côte d'Ivoire: Potential for impact on vectorial capacity.
BACKGROUND: There is evidence from experimental hut and household studies that the entomological efficacy of long lasting pyrethroid treated nets (LLINs) is compromised in areas of pyrethroid resistance. The rapid increase in resistance intensity in African malaria vectors could further undermine the performance of these nets. The pyrethroid resistance intensity in Anopheles gambiae s.l. M'bé from central Côte d'Ivoire is reported to be high (> 1700 fold). Whether this translates into an increase in entomological indicators of malaria transmission needs investigation. METHOD: The efficacy of two long lasting insecticidal nets (LN) MiraNet and MagNet, both alpha-cypermethrin based was evaluated in experimental huts against pyrethroid resistant Anopheles gambiae in M'bé, central Côte d'Ivoire. All nets were deliberately holed to simulate wear-and-tear and were tested unwashed and after 20 standardized washes. RESULTS: The entry rates of An. gambiae s.l. into huts with insecticide treated nets were 62-84% lower than entry into huts with untreated nets (p < 0.001). Exit rates of An. gambiae s.l. with unwashed MiraNet and MagNet LNs were significantly greater than with untreated nets (50-60% vs 26%) and this effect after washing 20 times nets did not decrease. Blood-feeding with both nets was significantly inhibited relative to the untreated reference net (31-55%) (p < 0.001). Washing MiraNet LN 20 times had no significant impact on protection against An. gambiae s.l. bites but it did cause a significant fall by 40% in protection with MagNet LN (p < 0.001). All insecticide treated nets induced higher mortality of An. gambiae s.l. than the untreated net (p < 0.05). The impact though significant was limited (14-30%). The personal protection against An. gambiae s.l. bites derived from all treatments was high (75-90%). The overall insecticidal effect was compromised by pyrethroid resistance and was not detectable in some treatments. CONCLUSION: In this area of high pyrethroid resistance intensity (over 1700 fold), both MiraNet and MagNet LNs still conferred appreciable personal protection against mosquito bites despite inducing only slightly greater mortality of pyrethroid resistant Anopheles mosquitoes than untreated nets. The impact is comparable to moderately intense Benin resistance area (207 fold) and Burkina Faso (over 1000 fold). This preserved level of protection plus the small but sensitive killing of mosquitoes may continue to impact vectorial capacity despite high intensity of resistance. Nevertheless, there is an obvious need for strategies and nets with novel mode of action to enhance vector control
Evaluation of an alpha-cypermethrin + PBO mixture long-lasting insecticidal net VEERALIN® LN against pyrethroid resistant Anopheles gambiae s.s.: an experimental hut trial in M'bé, central Côte d'Ivoire.
BACKGROUND: Long-lasting insecticidal nets (LLINs) are the primary method of malaria prevention. However, the widespread resistance to pyrethroids among major malaria vector species represents a significant threat to the continued efficacy of pyrethroid LLIN. Piperonyl butoxide (PBO) is a synergist that inhibits the activity of metabolic enzymes of the cytochrome P450 family known to detoxify insecticides including pyrethroids. Synergist LLIN incorporating PBO and a pyrethroid may provide improved control compared to pyrethroid-only LLIN. METHODS: The efficacy of VEERALIN® LN (VKA polymers Pvt Ltd, India), an alpha-cypermethrin PBO synergist net was evaluated in experimental huts in M'bé, central Côte d'Ivoire against wild pyrethroid resistant Anopheles gambiae s.s. Comparison was made with a standard alpha-cypermethrin-treated net (MAGNet® LN, VKA polymers Pvt Ltd, India). Nets were tested unwashed and after 20 standardized washes. RESULTS: VEERALIN® LN demonstrated improved efficacy compared to MAGNet® LN against wild free-flying pyrethroid-resistant An. gambiae s.s. Before washing, VEERALIN® LN produced mortality of An. gambiae s.s. (51%) significantly higher than the standard pyrethroid-only net (29%) (P < 0.0001). Although there was a significant reduction in mortality with both LLINs after 20 washes, VEERALIN® LN remained superior in efficacy to MAGNet® LN (38 vs 17%) (P < 0.0001). Blood-feeding was significantly inhibited with both types of insecticide-treated nets relative to the untreated control net (P < 0.0001). Unwashed VEERALIN® LN induced significantly higher blood-feeding inhibition of An. gambiae s.s. (62.6%) compared to MAGNet® LN (35.4%) (P < 0.001). The difference persisted after washing, as there was no indication that either LLIN lost protection against biting or blood-feeding. The level of personal protection derived from the use of VEERALIN® LN was high (87%) compared to MAGNet® LN (66-69%) whether unwashed or washed. The AI content of VEERALIN® LN after 20 washes decreased from 6.75 to 6.03 g/kg for alpha-cypermethrin and from 2.95 to 2.64 g/kg for PBO, corresponding to an overall retention of 89% for each compound. CONCLUSIONS: The addition of the synergist PBO to pyrethroid net greatly improved protection and control of pyrethroid-resistant An. gambiae s.s. The pyrethroid-PBO VEERALIN® LN has the potential to reduce transmission in areas compromised by pyrethroid resistance
Indoor use of attractive toxic sugar bait in combination with long-lasting insecticidal net against pyrethroid-resistant Anopheles gambiae: an experimental hut trial in Mbé, central Côte d'Ivoire.
BACKGROUND: Indoor attractive toxic sugar bait (ATSB) has potential as a supplementary vector-control and resistance-management tool, offering an alternative mode of insecticide delivery to current core vector-control interventions, with potential to deliver novel insecticides. Given the high long-lasting insecticidal bed net (LLIN) coverage across Africa, it is crucial that the efficacy of indoor ATSB in combination with LLINs is established before it is considered for wider use in public health. METHODS: An experimental hut trial to evaluate the efficacy of indoor ATSB traps treated with 4% boric acid (BA ATSB) or 1% chlorfenapyr (CFP ATSB) in combination with untreated nets or LLINs (holed or intact), took place at the M'bé field station in central Côte d'Ivoire against pyrethroid resistant Anopheles gambiae sensu lato. RESULTS: The addition of ATSB to LLINs increased the mortality rates of wild pyrethroid-resistant An. gambiae from 19% with LLIN alone to 28% with added BA ATSB and to 39% with added CFP ATSB (p < 0.001). Anopheles gambiae mortality with combined ATSB and untreated net was similar to that of combined ATSB and LLIN regardless of which insecticide was used in the ATSB. The presence of holes in the LLIN did not significantly affect ATSB-induced An. gambiae mortality. Comparative tests against pyrethroid resistant and susceptible strains using oral application of ATSB treated with pyrethroid demonstrated 66% higher survival rate among pyrethroid-resistant mosquitoes. CONCLUSION: Indoor ATSB traps in combination with LLINs enhanced the control of pyrethroid-resistant An. gambiae. However, many host-seeking An. gambiae entering experimental huts with indoor ATSB exited into the verandah trap without sugar feeding when restricted from a host by a LLIN. Although ATSB has potential for making effective use of classes of insecticide otherwise unsuited to vector control, it does not exempt potential selection of resistance via this route
Empirical and theoretical investigation into the potential impacts of insecticide resistance on the effectiveness of insecticide-treated bed nets.
In spite of widespread insecticide resistance in vector mosquitoes throughout Africa, there is limited evidence that long-lasting insecticidal bed nets (LLINs) are failing to protect against malaria. Here, we showed that LLIN contact in the course of host-seeking resulted in higher mortality of resistant Anopheles spp. mosquitoes than predicted from standard laboratory exposures with the same net. We also found that sublethal contact with an LLIN caused a reduction in blood feeding and subsequent host-seeking success in multiple lines of resistant mosquitoes from the laboratory and the field. Using a transmission model, we showed that when these LLIN-related lethal and sublethal effects were accrued over mosquito lifetimes, they greatly reduced the impact of resistance on malaria transmission potential under conditions of high net coverage. If coverage falls, the epidemiological impact is far more pronounced. Similarly, if the intensity of resistance intensifies, the loss of malaria control increases nonlinearly. Our findings help explain why insecticide resistance has not yet led to wide-scale failure of LLINs, but reinforce the call for alternative control tools and informed resistance management strategies
Screening and field performance of powder-formulated insecticides on eave tube inserts against pyrethroid resistant Anopheles gambiae s.l.:an investigation into 'actives' prior to a randomized controlled trial in Côte d'Ivoire
BACKGROUND: The widespread emergence of insecticide resistance in African malaria vectors remains one of the main challenges facing control programmes. Electrostatic coating that uses polarity to bind insecticide particles is a new way of delivering insecticides to mosquitoes. Although previous tests demonstrated the resistance breaking potential of this application method, studies screening and investigating the residual efficacy of a broader range of insecticides are necessary.METHODS: Eleven insecticide powder formulations belonging to six insecticide classes (pyrethroid, carbamate, organophosphate, neonicotinoid, entomopathogenic fungus and boric acid) were initially screened for residual activity over 4 weeks against pyrethroid resistant Anopheles gambiae sensu lato (s.l.) from the M'bé valley, central Côte d'Ivoire. Tests were performed using the eave tube assay that simulates the behavioural interaction between mosquitoes and insecticide-treated inserts. With the best performing insecticide, persistence was monitored over 12 months and the actual contact time lethal to mosquitoes was explored, using a range of transient exposure time (5 s, 30 s, 1 min up to 2 min) in the tube assays in laboratory. The mortality data were calibrated against overnight release-recapture data from enclosure around experimental huts incorporating treated inserts at the M'bé site. The natural recruitment rate of mosquitoes to the tube without insecticide treatment was assessed using fluorescent dust particles.RESULTS: Although most insecticides assayed during the initial screening induced significant mortality (45-100%) of pyrethroid resistant An. gambiae during the first 2 weeks, only 10% beta-cyfluthrin retained high residual efficacy, killing 100% of An. gambiae during the first month and > 80% over 8 subsequent months. Transient exposure for 5 s of mosquitoes to 10% beta-cyfluthrin produced 56% mortality, with an increase to 98% when contact time was extended to 2 min (P = 0.001). In the experimental hut enclosures, mortality of An. gambiae with 10% beta-cyfluthrin treated inserts was 55% compared to similar rate (44%) of mosquitoes that contacted the inserts treated with fluorescent dusts. This suggests that all host-seeking female mosquitoes that contacted beta-cyfluthrin treated inserts during host-seeking were killed.CONCLUSION: The eave tube technology is a novel malaria control approach which combines house proofing and targeted control of anopheline mosquitoes using insecticide treated inserts. Beta-cyfluthrin showed great promise for providing prolonged control of pyrethroid resistant An. gambiae and has potential to be deployed year-round in areas where malaria parasites are transmitted by highly pyrethroid resistant An. gambiae across sub-Saharan Africa.</p
The role of human and mosquito behaviour in the efficacy of a house-based intervention : Lethal House Lure for Malaria Mosquitoes
Housing improvement such as blocking eaves and screening windows can help in reducing exposure to indoor biting mosquitoes. The impacts of physical barriers could potentially be boosted by the addition of a mechanism that kills mosquitoes as they attempt to enter the house. One example is to combine household screening with EaveTubes, which are insecticide-treated tubes inserted into closed eaves that attract and kill host-searching mosquitoes. The epidemiological impact of screening + EaveTubes is being evaluated in a large cluster randomized trial in Cote d'Ivoire. The study presented here is designed as a complement to this trial to help better understand the functional roles of screening and EaveTubes. We began by evaluating householder behaviour and household condition in the study villages. This work revealed that doors (and to some extent windows) were left open for large parts of the evening and morning, and that even houses modified to make them more 'mosquito proof' often had possible entry points for mosquitoes. We next built two realistic experimental houses in a village to enable us to explore how these aspects of behaviour and household quality affected the impact of screening and EaveTubes. We found that screening could have a substantial impact on indoor mosquito densities, even with realistic household condition and behaviour. By contrast, EaveTubes had no significant impact on indoor mosquito density, either as a stand-alone intervention or in combination with screening. However, there was evidence that mosquitoes recruited to the EaveTubes, and the resulting mortality could create a community benefit. These complementary modes of action of screening and EaveTubes support the rationale of combining the technologies to create a 'Lethal House Lure'. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'
Impact and cost-effectiveness of a lethal house lure against malaria transmission in central Côte d'Ivoire : a two-arm, cluster-randomised controlled trial
Background: New vector control tools are required to sustain the fight against malaria. Lethal house lures, which target mosquitoes as they attempt to enter houses to blood feed, are one approach. Here we evaluated lethal house lures consisting of In2Care (Wageningen, Netherlands) Eave Tubes, which provide point-source insecticide treatments against host-seeking mosquitoes, in combination with house screening, which aims to reduce mosquito entry. Methods: We did a two-arm, cluster-randomised controlled trial with 40 village-level clusters in central Côte d'Ivoire between Sept 26, 2016, and April 10, 2019. All households received new insecticide-treated nets at universal coverage (one bednet per two people). Suitable households within the clusters assigned to the treatment group were offered screening plus Eave Tubes, with Eave Tubes treated using a 10% wettable powder formulation of the pyrethroid β-cyfluthrin. Because of the nature of the intervention, treatment could not be masked for households and field teams, but all analyses were blinded. The primary endpoint was clinical malaria incidence recorded by active case detection over 2 years in cohorts of children aged 6 months to 10 years. This trial is registered with ISRCTN, ISRCTN18145556. Findings: 3022 houses received screening plus Eave Tubes, with an average coverage of 70% across the intervention clusters. 1300 eligible children were recruited for active case detection in the control group and 1260 in the intervention group. During the 2-year follow-up period, malaria case incidence was 2·29 per child-year (95% CI 1·97–2·61) in the control group and 1·43 per child-year (1·21–1·65) in the intervention group (hazard ratio 0·62, 95% CI 0·51–0·76; p<0·0001). Cost-effectiveness simulations suggested that screening plus Eave Tubes has a 74·0% chance of representing a cost-effective intervention, compared with existing healthcare activities in Côte d'Ivoire, and is similarly cost-effective to other core vector control interventions across sub-Saharan Africa. No serious adverse events associated with the intervention were reported during follow-up. Interpretation: Screening plus Eave Tubes can provide protection against malaria in addition to the effects of insecticide-treated nets, offering potential for a new, cost-effective strategy to supplement existing vector control tools. Additional trials are needed to confirm these initial results and further optimise Eave Tubes and the lethal house lure concept to facilitate adoption. Funding: The Bill & Melinda Gates Foundation
Efficacy of a ‘lethal house lure’ against Culex quinquefasciatus from Bouaké city, Côte d’Ivoire
Background:
Eave tube technology is a novel method of insecticide application that uses an electrostatic coating system to boost insecticide efficacy against resistant mosquitoes. A series of previous experiments showed encouraging insecticidal effects against malaria vectors. This study was undertaken to assess the effects of the eave tube approach on other Culicidae, in particular Culex quinquefasciatus, under laboratory and semi-field conditions.
Methods:
Larvae of Cx. quinquefasciatus from Bouaké were collected and reared to adult stage, and World Health Organization (WHO) cylinder tests were performed to determine their resistance status. WHO standard 3-min cone bioassays were conducted using PermaNet 2.0 netting versus eave tube-treated inserts. To assess the transient exposure effect on Cx. quinquefasciatus, eave tube assay utilizing smelly socks as attractant was performed with exposure time of 30 s, 1 min, and 2 min on 10% beta-cyfluthrin-treated inserts. Residual activity of these treated inserts was then monitored over 9 months. Field tests involving release–recapture of Cx. quinquefasciatus within enclosures around experimental huts fitted with windows and untreated or insecticide-treated eave tubes were conducted to determine house entry preference and the impact of tubes on the survival of this species.
Results:
Bouaké Cx. quinquefasciatus displayed high resistance to three out of four classes of insecticides currently used in public health. After 3 min of exposure in cone tests, 10% beta-cyfluthrin-treated inserts induced 100% mortality in Cx. quinquefasciatus, whereas the long-lasting insecticidal net (LLIN) only killed 4.5%. With reduced exposure time on the eave tube insert, mortality was still 100% after 2 min, 88% after 1 min, and 44% after 30 s. Mortality following 1 h exposure on 10% beta-cyfluthrin-treated insert was > 80% continuously up to 7 months post-treatment. Data suggest that Cx. quinquefasciatus have a stronger preference for entering a house through the eaves than through windows. Beta-cyfluthrin-treated inserts were able to kill 51% of resistant Cx. quinquefasciatus released within the enclosure.
Conclusions:
Eave tubes are a novel method for delivery of insecticide to the house. They attract nuisance host-seeking Cx. quinquefasciatus mosquitoes and are as effective in controlling them as they are against pyrethroid-resistant Anopheles gambiae, despite the high level of resistance Cx. quinquefasciatus have developed
Global malaria predictors at a localized scale
Malaria is a life-threatening disease caused by Plasmodium parasites transmitted by Anopheles mosquitoes. In 2022, more than 249 million cases of malaria were reported worldwide, with an estimated 608,000 deaths. While malaria incidence has decreased globally in recent decades, some public health gains have plateaued, and many endemic hotspots still face high transmission rates. Understanding local drivers of malaria transmission is crucial but challenging due to the complex interactions between climate, entomological and human variables, and land use. This study focuses on highly climatically suitable and endemic areas in Côte d’Ivoire to assess the explanatory power of coarse climatic predictors of malaria transmission at a fine scale. Using data from 40 villages participating in a randomized controlled trial of a household malaria intervention, the study examines the effects of climate variation over time on malaria transmission. Through panel regressions and statistical modeling, the study investigates which variable (temperature, precipitation, or entomological inoculation rate) and its form (linear or unimodal) best explains seasonal malaria transmission and the factors predicting spatial variation in transmission. The results highlight the importance of temperature and rainfall, with quadratic temperature and all precipitation models performing well, but the causal influence of each driver remains unclear due to their strong correlation. Further, an independent, mechanistic temperature-dependent R0 model based on laboratory data, which predicts that malaria transmission peaks at 25°C and declines at lower and higher temperatures, aligns well with observed malaria incidence rates, emphasizing the significance and predictability of temperature suitability across scales. By contrast, entomological variables, such as entomological inoculation rate, were not strong predictors of human incidence in this context. Finally, the study explores the predictors of spatial variation in malaria, considering land use, intervention, and entomological variables. The findings contribute to a better understanding of malaria transmission dynamics at local scales, aiding in the development of effective control strategies in endemic regions