107 research outputs found

    Genome-Wide Identification, Evolution, and Co-expression Network Analysis of Mitogen-Activated Protein Kinase Kinase Kinases in Brachypodium distachyon

    Get PDF
    Mitogen-activated protein kinase (MAPK) cascades are the conserved and universal signal transduction modules in all eukaryotes, which play the vital roles in plant growth, development and in response to multiple stresses. In this study, we used bioinformatics methods to identify 86 MAPKKK protein encoded by 73 MAPKKK genes in Brachypodium. Phylogenetic analysis of MAPKKK family from Arabidopsis, rice and Brachypodium has classified them into three subfamilies, of which 28 belonged to MEKK, 52 to Raf and 6 to ZIK subfamily respectively. Conserved protein motif, exon-intron organization and splicing intron phase in kinase domains supported the evolutionary relationships inferred from the phylogenetic analysis. And gene duplication analysis suggested the chromosomal segment duplication happened before the divergence of the rice and Brachypodium, while all of three tandem duplicated gene pairs happened after their divergence. We further demonstrated that the MAPKKKs have evolved under strong purifying selection, implying the conservation of them. The splicing transcripts expression analysis showed that the splicesome translating longest protein tended to be adopted. Furthermore, the expression analysis of BdMAPKKKs in different organs and development stages as well as heat, virus and drought stresses revealed that the MAPKKK genes were involved in various signaling pathways. And the circadian analysis suggested there were 41 MAPKKK genes in Brachypodium showing cycled expression in at least one condition, of which seven MAPKKK genes expressed in all conditions and the promoter analysis indicated these genes possessed many cis-acting regulatory elements involved in circadian and light response. Finally, the co-expression network of MAPK, MAPKK and MAPKKK in Brachypodium was constructed using 144 microarray and RNA-seq datasets, and ten potential MAPK cascades pathway were predicted. To conclude, our study provided the important information for evolutionary and functional characterization of MAPKKK family in Brachypodium, which will facilitate the functional analysis of BdMAPKKK genes, and also will facilitate better understanding the MAPK signal pathway in Brachypodium and beyond

    The effects of anti-sense interleukin-5 gene transferred by recombinant adeno-associated virus in allergic rats

    Get PDF
    The accumulation and infiltration of eosinophils in airways is one of the most important characteristics of asthma, and is mediated partly by secretion of IL-5 from Th2 lymphocytes. It is well known that interleukin-5 (IL-5) played an important role in the regulation of eosinophils. In this study, an anti-sense IL-5 gene transferred by recombinant adeno-associated virus (rAAV-ASIL-5) was prepared to transfect allergic rats. It was found that the expression of IL-5 protein in plasma and BALF were inhibited significantly. The rAAV-ASIL-5-mediated suppression of total cell counts in peripheral blood and BALF were also observed. Moreover, rAAV-ASIL-5 remarkably reduced the eosinophil counts in peripheral blood and BALF, as well as the expression of ECP protein in plasma and BALF. The inflammation in lungs of rAAV-ASIL-5 pretreated rats also became slighter when compared with allergic rats. Otherwise, no apparent pathological damage to vital organs of rats was found. In conclusion, recombinant adeno-associated virus-mediated delivery of anti-sense IL-5 gene inhibited the accumulation of eosinophils and the airways inflammation in rat model of allergic asthma via suppressing IL-5 expression. It suggested the feasibility of rAAV-ASIL-5 in the gene therapy for allergic asthma and other eosinophilic diseases

    Genome-wide identification, phylogeny and expressional profiles of mitogen activated protein kinase kinase kinase (MAPKKK) gene family in bread wheat (Triticum aestivum L.)

    Get PDF
    FPKM values of the wheat MAPKKK gene in 5 tissues (grain, root, stem, leaf and spike) and under 4 abiotic stresses (drought, salt, heat and cold). (XLSX 34 kb

    Identification and Characterization of MicroRNAs from Barley (Hordeum vulgare L.) by High-Throughput Sequencing

    Get PDF
    MicroRNAs (miRNAs) are a class of endogenous RNAs that regulates the gene expression involved in various biological and metabolic processes. Barley is one of the most important cereal crops worldwide and is a model organism for genetic and genomic studies in Triticeae species. However, the miRNA research in barley has lagged behind other model species in grass family. To obtain more information of miRNA genes in barley, we sequenced a small RNA library created from a pool of equal amounts of RNA from four different tissues using Solexa sequencing. In addition to 126 conserved miRNAs (58 families), 133 novel miRNAs belonging to 50 families were identified from this sequence data set. The miRNA* sequences of 15 novel miRNAs were also discovered, suggesting the additional evidence for existence of these miRNAs. qRT-PCR was used to examine the expression pattern of six randomly selected miRNAs. Some miRNAs involved in drought and salt stress response were also identified. Furthermore, the potential targets of these putative miRNAs were predicted using the psRNATarget tools. Our results significantly increased the number of novel miRNAs in barley, which should be useful for further investigation into the biological functions and evolution of miRNAs in barley and other species

    Exploiting a wheat EST database to assess genetic diversity

    Get PDF
    Expressed sequence tag (EST) markers have been used to assess variety and genetic diversity in wheat (Triticum aestivum). In this study, 1549 ESTs from wheat infested with yellow rust were used to examine the genetic diversity of six susceptible and resistant wheat cultivars. The aim of using these cultivars was to improve the competitiveness of public wheat breeding programs through the intensive use of modern, particularly marker-assisted, selection technologies. The F2 individuals derived from cultivar crosses were screened for resistance to yellow rust at the seedling stage in greenhouses and adult stage in the field to identify DNA markers genetically linked to resistance. Five hundred and sixty ESTs were assembled into 136 contigs and 989 singletons. BlastX search results showed that 39 (29%) contigs and 96 (10%) singletons were homologous to wheat genes. The database-matched contigs and singletons were assigned to eight functional groups related to protein synthesis, photosynthesis, metabolism and energy, stress proteins, transporter proteins, protein breakdown and recycling, cell growth and division and reactive oxygen scavengers. PCR analyses with primers based on the contigs and singletons showed that the most polymorphic functional categories were photosynthesis (contigs) and metabolism and energy (singletons). EST analysis revealed considerable genetic variability among the Turkish wheat cultivars resistant and susceptible to yellow rust disease and allowed calculation of the mean genetic distance between cultivars, with the greatest similarity (0.725) being between Harmankaya99 and Sönmez2001, and the lowest (0.622) between Aytin98 and Izgi01

    Complete Chloroplast Genome Sequence of a Major Invasive Species, Crofton Weed (Ageratina adenophora)

    Get PDF
    Crofton weed (Ageratina adenophora) is one of the most hazardous invasive plant species, which causes serious economic losses and environmental damages worldwide. However, the sequence resource and genome information of A. adenophora are rather limited, making phylogenetic identification and evolutionary studies very difficult. Here, we report the complete sequence of the A. adenophora chloroplast (cp) genome based on Illumina sequencing.The A. adenophora cp genome is 150, 689 bp in length including a small single-copy (SSC) region of 18, 358 bp and a large single-copy (LSC) region of 84, 815 bp separated by a pair of inverted repeats (IRs) of 23, 755 bp. The genome contains 130 unique genes and 18 duplicated in the IR regions, with the gene content and organization similar to other Asteraceae cp genomes. Comparative analysis identified five DNA regions (ndhD-ccsA, psbI-trnS, ndhF-ycf1, ndhI-ndhG and atpA-trnR) containing parsimony-informative characters higher than 2%, which may be potential informative markers for barcoding and phylogenetic analysis. Repeat structure, codon usage and contraction of the IR were also investigated to reveal the pattern of evolution. Phylogenetic analysis demonstrated a sister relationship between A. adenophora and Guizotia abyssinica and supported a monophyly of the Asterales.We have assembled and analyzed the chloroplast genome of A. adenophora in this study, which was the first sequenced plastome in the Eupatorieae tribe. The complete chloroplast genome information is useful for plant phylogenetic and evolutionary studies within this invasive species and also within the Asteraceae family

    Shifting the limits in wheat research and breeding using a fully annotated reference genome

    Get PDF
    Introduction: Wheat (Triticum aestivum L.) is the most widely cultivated crop on Earth, contributing about a fifth of the total calories consumed by humans. Consequently, wheat yields and production affect the global economy, and failed harvests can lead to social unrest. Breeders continuously strive to develop improved varieties by fine-tuning genetically complex yield and end-use quality parameters while maintaining stable yields and adapting the crop to regionally specific biotic and abiotic stresses. Rationale: Breeding efforts are limited by insufficient knowledge and understanding of wheat biology and the molecular basis of central agronomic traits. To meet the demands of human population growth, there is an urgent need for wheat research and breeding to accelerate genetic gain as well as to increase and protect wheat yield and quality traits. In other plant and animal species, access to a fully annotated and ordered genome sequence, including regulatory sequences and genome-diversity information, has promoted the development of systematic and more time-efficient approaches for the selection and understanding of important traits. Wheat has lagged behind, primarily owing to the challenges of assembling a genome that is more than five times as large as the human genome, polyploid, and complex, containing more than 85% repetitive DNA. To provide a foundation for improvement through molecular breeding, in 2005, the International Wheat Genome Sequencing Consortium set out to deliver a high-quality annotated reference genome sequence of bread wheat. Results: An annotated reference sequence representing the hexaploid bread wheat genome in the form of 21 chromosome-like sequence assemblies has now been delivered, giving access to 107,891 high-confidence genes, including their genomic context of regulatory sequences. This assembly enabled the discovery of tissue- and developmental stage–related gene coexpression networks using a transcriptome atlas representing all stages of wheat development. The dynamics of change in complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. Aspects of the future value of the annotated assembly for molecular breeding and research were exemplarily illustrated by resolving the genetic basis of a quantitative trait locus conferring resistance to abiotic stress and insect damage as well as by serving as the basis for genome editing of the flowering-time trait. Conclusion: This annotated reference sequence of wheat is a resource that can now drive disruptive innovation in wheat improvement, as this community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding. Importantly, the bioinformatics capacity developed for model-organism genomes will facilitate a better understanding of the wheat genome as a result of the high-quality chromosome-based genome assembly. By necessity, breeders work with the genome at the whole chromosome level, as each new cross involves the modification of genome-wide gene networks that control the expression of complex traits such as yield. With the annotated and ordered reference genome sequence in place, researchers and breeders can now easily access sequence-level information to precisely define the necessary changes in the genomes for breeding programs. This will be realized through the implementation of new DNA marker platforms and targeted breeding technologies, including genome editing

    Genome studies of cereals / by Song Weining.

    Get PDF
    Bibliography: leaves 93-114.114, [43] leaves, [30] leaves of plates : ill. ; 30 cm.This thesis investigates genome analysis of wheat, rye and barley. The objective is to evaluate the feasibility of using polymerase chain reaction (PCR) as a tool for studying cereal genomes. Results are compared for PCR and RFLP (restriction fragment length polymorphism)Thesis (Ph.D.)--University of Adelaide, Dept. of Plant Science, 199

    Anchor primer associated problems in differential display reverse transcription polymerase chain reaction

    No full text
    Differential display reverse transcription PCR (DDRT-PCR)2 was first reported by P. Liang and A.B. Paredee in 1992. The method utilized an anchor primer, including a poly(T) component with the addition of one or two select bases in reverse transcription. The first-strand cDNA was amplified via PCR using the same anchor primer and a 10-base random primer. As the DDRT-PCR method is simple and sensitive, it has become a popular technology in gene expression work. However, a major problem with the technique is its ability to produce a high rate of false-positive products. A number of approaches to overcome such problems have been suggested, including using improved gel resolution systems, performing PCR with the cDNA generated by two different reverse transcriptases, and using cytoplasmic RNA to avoid unprocessed mRNA. While there has been a focus in the literature on modification of the random primer component as a means of improving DDRT-PCR reliability, in this study we report on the impact of modifications to the traditional anchor primer component and the role of anchor primers. The addition of weight bases is important for improving the reliability of traditional anchor primer in the DDRT PCR condition and can contribute to the reproducibility of DDRT PCR products
    • …
    corecore