855 research outputs found

    Photon shield for atomic hydrogen plasma sources

    Get PDF

    Fermions and noncommutative emergent gravity II: Curved branes in extra dimensions

    Full text link
    We study fermions coupled to Yang-Mills matrix models from the point of view of emergent gravity. The matrix model Dirac operator provides an appropriate coupling for fermions to the effective gravitational metric for general branes with nontrivial embedding, albeit with a non-standard spin connection. This generalizes previous results for 4-dimensional matrix models. Integrating out the fermions in a nontrivial geometrical background induces indeed the Einstein-Hilbert action of the effective metric, as well as additional terms which couple the Poisson tensor to the Riemann tensor, and a dilaton-like term.Comment: 34 pages; minor change

    An SO(10) Grand Unified Theory of Flavor

    Get PDF
    We present a supersymmetric SO(10) grand unified theory (GUT) of flavor based on an S4S_4 family symmetry. It makes use of our recent proposal to use SO(10) with type II seesaw mechanism for neutrino masses combined with a simple ansatz that the dominant Yukawa matrix (the {\bf 10}-Higgs coupling to matter) has rank one. In this paper, we show how the rank one model can arise within some plausible assumptions as an effective field theory from vectorlike {\bf 16} dimensional matter fields with masses above the GUT scale. In order to obtain the desired fermion flavor texture we use S4S_4 flavon multiplets which acquire vevs in the ground state of the theory. By supplementing the S4S_4 theory with an additional discrete symmetry, we find that the flavon vacuum field alignments take a discrete set of values provided some of the higher dimensional couplings are small. Choosing a particular set of these vacuum alignments appears to lead to an unified understanding of observed quark-lepton flavor: (i) the lepton mixing matrix that is dominantly tri-bi-maximal with small corrections related to quark mixings; (ii) quark lepton mass relations at GUT scale: mb≃mτm_b\simeq m_{\tau} and mμ≃3msm_\mu\simeq 3 m_s and (iii) the solar to atmospheric neutrino mass ratio m⊙/matm≃θCabibbom_\odot/m_{\rm atm}\simeq \theta_{\rm Cabibbo} in agreement with observations. The model predicts the neutrino mixing parameter, Ue3≃θCabibbo/(32)∼0.05U_{e3} \simeq \theta_{\rm Cabibbo}/(3\sqrt2) \sim 0.05, which should be observable in planned long baseline experiments.Comment: Final version of the paper as it will appear in JHEP

    Psychological determinants of whole-body endurance performance

    Get PDF
    Background: No literature reviews have systematically identified and evaluated research on the psychological determinants of endurance performance, and sport psychology performance-enhancement guidelines for endurance sports are not founded on a systematic appraisal of endurance-specific research. Objective: A systematic literature review was conducted to identify practical psychological interventions that improve endurance performance and to identify additional psychological factors that affect endurance performance. Additional objectives were to evaluate the research practices of included studies, to suggest theoretical and applied implications, and to guide future research. Methods: Electronic databases, forward-citation searches, and manual searches of reference lists were used to locate relevant studies. Peer-reviewed studies were included when they chose an experimental or quasi-experimental research design, a psychological manipulation, endurance performance as the dependent variable, and athletes or physically-active, healthy adults as participants. Results: Consistent support was found for using imagery, self-talk, and goal setting to improve endurance performance, but it is unclear whether learning multiple psychological skills is more beneficial than learning one psychological skill. The results also demonstrated that mental fatigue undermines endurance performance, and verbal encouragement and head-to-head competition can have a beneficial effect. Interventions that influenced perception of effort consistently affected endurance performance. Conclusions: Psychological skills training could benefit an endurance athlete. Researchers are encouraged to compare different practical psychological interventions, to examine the effects of these interventions for athletes in competition, and to include a placebo control condition or an alternative control treatment. Researchers are also encouraged to explore additional psychological factors that could have a negative effect on endurance performance. Future research should include psychological mediating variables and moderating variables. Implications for theoretical explanations of endurance performance and evidence-based practice are described

    Hierarchies of Susy Splittings and Invisible Photinos as Dark Matter

    Full text link
    We explore how to generate hierarchies in the splittings between superpartners. Some of the consequences are the existence of invisible components of dark matter, new inflaton candidates, invisible monopoles and a number of invisible particles that might dominate during various eras, in particular between BBN and recombination and decay subsequently.Comment: 16 pages. v3: Ref. 27 has been modified. v4: Published versio

    Noncommutative cosmological models coupled to a perfect fluid and a cosmological constant

    Full text link
    In this work we carry out a noncommutative analysis of several Friedmann-Robert-Walker models, coupled to different types of perfect fluids and in the presence of a cosmological constant. The classical field equations are modified, by the introduction of a shift operator, in order to introduce noncommutativity in these models. We notice that the noncommutative versions of these models show several relevant differences with respect to the correspondent commutative ones.Comment: 27 pages. 7 figures. JHEP style.arXiv admin note: substantial text overlap with arXiv:1104.481

    Three Dimensional Visualization and Fractal Analysis of Mosaic Patches in Rat Chimeras: Cell Assortment in Liver, Adrenal Cortex and Cornea

    Get PDF
    The production of organ parenchyma in a rapid and reproducible manner is critical to normal development. In chimeras produced by the combination of genetically distinguishable tissues, mosaic patterns of cells derived from the combined genotypes can be visualized. These patterns comprise patches of contiguously similar genotypes and are different in different organs but similar in a given organ from individual to individual. Thus, the processes that produce the patterns are regulated and conserved. We have previously established that mosaic patches in multiple tissues are fractal, consistent with an iterative, recursive growth model with simple stereotypical division rules. Fractal dimensions of various tissues are consistent with algorithmic models in which changing a single variable (e.g. daughter cell placement after division) switches the mosaic pattern from islands to stripes of cells. Here we show that the spiral pattern previously observed in mouse cornea can also be visualized in rat chimeras. While it is generally held that the pattern is induced by stem cell division dynamics, there is an unexplained discrepancy in the speed of cellular migration and the emergence of the pattern. We demonstrate in chimeric rat corneas both island and striped patterns exist depending on the age of the animal. The patches that comprise the pattern are fractal, and the fractal dimension changes with the age of the animal and indicates the constraint in patch complexity as the spiral pattern emerges. The spiral patterns are consistent with a loxodrome. Such data are likely to be relevant to growth and cell division in organ systems and will help in understanding how organ parenchyma are generated and maintained from multipotent stem cell populations located in specific topographical locations within the organ. Ultimately, understanding algorithmic growth is likely to be essential in achieving organ regeneration in vivo or in vitro from stem cell populations

    The effect of hypertensive disorders in pregnancy on small for gestational age and stillbirth: a population based study

    Get PDF
    BACKGROUND: Hypertensive disorders in pregnancy are leading causes of maternal, fetal and neonatal morbidity and mortality worldwide. However, studies attempting to quantify the effect of hypertension on adverse perinatal outcomes have been mostly conducted in tertiary centres. This population-based study explored the frequency of hypertensive disorders in pregnancy and the associated increase in small for gestational age (SGA) and stillbirth. METHODS: We used information on all pregnant women and births, in the Canadian province of Nova Scotia, between 1988 and 2000. Pregnancies were excluded if delivery occurred < 20 weeks, if birthweight was < 500 grams, if there was a high-order multiple pregnancy (greater than twin gestation), or a major fetal anomaly. RESULTS: The study population included 135,466 pregnancies. Of these, 7.7% had mild pregnancy-induced hypertension (PIH), 1.3% had severe PIH, 0.2% had HELLP (hemolysis, elevated liver enzymes, low platelets), 0.02% had eclampsia, 0.6% had chronic hypertension, and 0.4% had chronic hypertension with superimposed PIH. Women with any hypertension in pregnancy were 1.6 (95% CI 1.5–1.6) times more likely to have a live birth with SGA and 1.4 (95% CI 1.1–1.8) times more likely to have a stillbirth as compared with normotensive women. Adjusted analyses showed that women with gestational hypertension without proteinuria (mild PIH) and with proteinuria (severe PIH, HELLP, or eclampsia) were more likely to have infants with SGA (RR 1.5, 95% CI 1.4–1.6 and RR 3.2, 95% CI 2.8–3.6, respectively). Women with pre-existing hypertension were also more likely to give birth to an infant with SGA (RR 2.5, 95% CI 2.2–3.0) or to have a stillbirth (RR 3.2, 95% CI 1.9–5.4). CONCLUSIONS: This large, population-based study confirms and quantifies the magnitude of the excess risk of small for gestational age and stillbirth among births to women with hypertensive disease in pregnancy

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore