1,157 research outputs found
Can we trust elemental abundances derived in late-type giants with the classical 1D stellar atmosphere models?
We compare the abundances of various chemical species as derived with 3D
hydrodynamical and classical 1D stellar atmosphere codes in a late-type giant
characterized by T_eff=3640K, log g = 1.0, [M/H] = 0.0. For this particular set
of atmospheric parameters the 3D-1D abundance differences are generally small
for neutral atoms and molecules but they may reach up to 0.3-0.4 dex in case of
ions. The 3D-1D differences generally become increasingly more negative at
higher excitation potentials and are typically largest in the optical
wavelength range. Their sign can be both positive and negative, and depends on
the excitation potential and wavelength of a given spectral line. While our
results obtained with this particular late-type giant model suggest that 1D
stellar atmosphere models may be safe to use with neutral atoms and molecules,
care should be taken if they are exploited with ions.Comment: Poster presented at the IAU Symposium 265 "Chemical Abundances in the
Universe: Connecting First Stars to Planets", Rio de Janeiro, 10-14 August
2009; 2 pages, 1 figur
Entwicklung eines situationsbezogenen Konzeptes zur Regulation des Erbsenwicklers in Gemüse- und Körnererbsen
Das Ziel des Projektes war es, ein Konzept zur Risikobewertung des Erbsenwicklerbefalls in Anbauregionen von Gemüseerbsen zu entwickeln, in dem präventive Maßnahmen und eine bedarfsgerechte Option zur Direktbekämpfung integriert sind.
Die Datenerfassung zur Beurteilung von Risikolagen erfolgte in Erbsenanbaugebieten in Hessen und Sachsen, beide mit Schwerpunkt auf ökologischen Landbau. Die Risikobewertung umfasste die Abschätzung der Schlaggefährdung durch den Erbsenwickler innerhalb der Anbaugebiete mittels zeitlich-räumlicher Analysen und die Berücksichtigung phänologischer Daten zum Erscheinen, Flugaktivität und Entwicklung des Erbsenwicklers in Abhängigkeit von Temperatur und Photoperiode. Basierend auf der Risikobewertung sollten Entscheidungen zum Einsatz ökologischer Regulierungsverfahren getroffen werden können, die in einem zweiten Projektteil bearbeitet wurden. Die Regulierung des Erbsenwicklers wurde in einem Parzellenversuch über die präventiven Maßnahmen Sortenwahl und Aussaatzeitpunkt und eine bedarfsgerechte Direktbekämpfung untersucht.
Als Ergebnis konnten die wesentlichen Faktoren, die für eine Risikobewertung zum Erbsenwicklerbefall notwendig sind, definiert werden:
a) ein zeitlich-räumlicher Zusammenhang zwischen den vorjährigen Erbsenflächen und dem Erbsenwicklerauftreten im Folgejahr
b) ein Einfluss von Photoperiode und Temperatur auf die Entwicklung der Überwinterungsstadien von C. nigricana, sowie Erscheinen und Flugaktivität der adulten Erbsenwickler
c) eine Steuerung der zeitlichen Koinzidenzvermeidung von empfindlichen Entwicklungsstadien der Erbsenpflanze und dem Erbsenwicklerauftreten durch Sortenwahl und Aussaatzeitpunkt.
Der Einsatz einer Pyrethrin-Rapsöl Formulierung hat eine variable Wirkung in der Regulierung des Erbsenwicklers gezeigt. Der Befall konnte nur bei geringem Befallsdruck unterhalb der sehr niedrigen Schadtoleranzgrenze von 0,5% geschädigter Ernteerbsen gehalten werden; bei einer starken Schädlingsdichte konnte keine ausreichende Befallsreduktion erreicht werden
3D simulations of M star atmosphere velocities and their influence on molecular FeH lines
We present an investigation of the velocity fields in early to late M-type
star hydrodynamic models, and we simulate their influence on FeH molecular line
shapes. The M star model parameters range between log g of 3.0 - 5.0 and Teff
of 2500 K and 4000 K. Our aim is to characterize the Teff- and log g
-dependence of the velocity fields and express them in terms of micro- and
macro-turbulent velocities in the one dimensional sense. We present also a
direct comparison between 3D hydrodynamical velocity fields and 1D turbulent
velocities. The velocity fields strongly affect the line shapes of FeH, and it
is our goal to give a rough estimate for the log g and Teff parameter range in
which 3D spectral synthesis is necessary and where 1D synthesis suffices. In
order to calculate M-star structure models we employ the 3D
radiative-hydrodynamics (RHD) code CO5BOLD. The spectral synthesis on these
models is performed with the line synthesis code LINFOR3D. We describe the 3D
velocity fields in terms of a Gaussian standard deviation and project them onto
the line of sight to include geometrical and limb-darkening effects. The micro-
and macro-turbulent velocities are determined with the "Curve of Growth" method
and convolution with a Gaussian velocity profile, respectively. To characterize
the log g and Teff dependence of FeH lines, the equivalent width, line width,
and line depth are regarded. The velocity fields in M-stars strongly depend on
log g and Teff. They become stronger with decreasing log g and increasing Teff.Comment: 14 pages, 17 figures, 3 tables, accepted by Astronomy & Astrophysic
Observing the Sun with Atacama Large Millimeter/submillimeter Array (ALMA): High Resolution Interferometric Imaging
Observations of the Sun at millimeter and submillimeter wavelengths offer a
unique probe into the structure, dynamics, and heating of the chromosphere; the
structure of sunspots; the formation and eruption of prominences and filaments;
and energetic phenomena such as jets and flares. High-resolution observations
of the Sun at millimeter and submillimeter wavelengths are challenging due to
the intense, extended, low- contrast, and dynamic nature of emission from the
quiet Sun, and the extremely intense and variable nature of emissions
associated with energetic phenomena. The Atacama Large Millimeter/submillimeter
Array (ALMA) was designed with solar observations in mind. The requirements for
solar observations are significantly different from observations of sidereal
sources and special measures are necessary to successfully carry out this type
of observations. We describe the commissioning efforts that enable the use of
two frequency bands, the 3 mm band (Band 3) and the 1.25 mm band (Band 6), for
continuum interferometric-imaging observations of the Sun with ALMA. Examples
of high-resolution synthesized images obtained using the newly commissioned
modes during the solar commissioning campaign held in December 2015 are
presented. Although only 30 of the eventual 66 ALMA antennas were used for the
campaign, the solar images synthesized from the ALMA commissioning data reveal
new features of the solar atmosphere that demonstrate the potential power of
ALMA solar observations. The ongoing expansion of ALMA and solar-commissioning
efforts will continue to enable new and unique solar observing capabilities.Comment: 22 pages, 12 figures, accepted for publication in Solar Physic
Observing the Sun with the Atacama Large Millimeter-submillimeter Array (ALMA): Fast-Scan Single-Dish Mapping
The Atacama Large Millimeter-submillimeter Array (ALMA) radio telescope has
commenced science observations of the Sun starting in late 2016. Since the Sun
is much larger than the field of view of individual ALMA dishes, the ALMA
interferometer is unable to measure the background level of solar emission when
observing the solar disk. The absolute temperature scale is a critical
measurement for much of ALMA solar science, including the understanding of
energy transfer through the solar atmosphere, the properties of prominences,
and the study of shock heating in the chromosphere. In order to provide an
absolute temperature scale, ALMA solar observing will take advantage of the
remarkable fast-scanning capabilities of the ALMA 12m dishes to make
single-dish maps of the full Sun. This article reports on the results of an
extensive commissioning effort to optimize the mapping procedure, and it
describes the nature of the resulting data. Amplitude calibration is discussed
in detail: a path that utilizes the two loads in the ALMA calibration system as
well as sky measurements is described and applied to commissioning data.
Inspection of a large number of single-dish datasets shows significant
variation in the resulting temperatures, and based on the temperature
distributions we derive quiet-Sun values at disk center of 7300 K at lambda=3
mm and 5900 K at lambda=1.3 mm. These values have statistical uncertainties of
order 100 K, but systematic uncertainties in the temperature scale that may be
significantly larger. Example images are presented from two periods with very
different levels of solar activity. At a resolution of order 25 arcsec, the 1.3
mm wavelength images show temperatures on the disk that vary over about a 2000
K range.Comment: Solar Physics, accepted: 24 pages, 13 figure
A weak characterization of slow variables in stochastic dynamical systems
We present a novel characterization of slow variables for continuous Markov
processes that provably preserve the slow timescales. These slow variables are
known as reaction coordinates in molecular dynamical applications, where they
play a key role in system analysis and coarse graining. The defining
characteristics of these slow variables is that they parametrize a so-called
transition manifold, a low-dimensional manifold in a certain density function
space that emerges with progressive equilibration of the system's fast
variables. The existence of said manifold was previously predicted for certain
classes of metastable and slow-fast systems. However, in the original work, the
existence of the manifold hinges on the pointwise convergence of the system's
transition density functions towards it. We show in this work that a
convergence in average with respect to the system's stationary measure is
sufficient to yield reaction coordinates with the same key qualities. This
allows one to accurately predict the timescale preservation in systems where
the old theory is not applicable or would give overly pessimistic results.
Moreover, the new characterization is still constructive, in that it allows for
the algorithmic identification of a good slow variable. The improved
characterization, the error prediction and the variable construction are
demonstrated by a small metastable system
Quiet-Sun imaging asymmetries in NaI D1 compared with other strong Fraunhofer lines
Imaging spectroscopy of the solar atmosphere using the NaI D1 line yields
marked asymmetry between the blue and red line wings: sampling a quiet-Sun area
in the blue wing displays reversed granulation, whereas sampling in the red
wing displays normal granulation. The MgI b2 line of comparable strength does
not show this asymmetry, nor does the stronger CaII 8542 line. We demonstrate
the phenomenon with near-simultaneous spectral images in NaI D1, MgI b2, and
CaII 8542 from the Swedish 1-m Solar Telescope. We then explain it with
line-formation insights from classical 1D modeling and with a 3D
magnetohydrodynamical simulation combined with NLTE spectral line synthesis
that permits detailed comparison with the observations in a common format. The
cause of the imaging asymmetry is the combination of correlations between
intensity and Dopplershift modulation in granular overshoot and the sensitivity
to these of the steep profile flanks of the NaI D1 line. The MgI b2 line has
similar core formation but much wider wings due to larger opacity buildup and
damping in the photosphere. Both lines obtain marked core asymmetry from
photospheric shocks in or near strong magnetic concentrations, less from
higher-up internetwork shocks that produce similar asymmetry in the spatially
averaged CaII 8542 profile.Comment: Accepted by Astron & Astrophys. In each in-text citation the year
links to the corresponding ADS abstract pag
Solar science with the Atacama Large Millimeter/submillimeter Array - A new view of our Sun
The Atacama Large Millimeter/submillimeter Array (ALMA) is a new powerful
tool for observing the Sun at high spatial, temporal, and spectral resolution.
These capabilities can address a broad range of fundamental scientific
questions in solar physics. The radiation observed by ALMA originates mostly
from the chromosphere - a complex and dynamic region between the photosphere
and corona, which plays a crucial role in the transport of energy and matter
and, ultimately, the heating of the outer layers of the solar atmosphere. Based
on first solar test observations, strategies for regular solar campaigns are
currently being developed. State-of-the-art numerical simulations of the solar
atmosphere and modeling of instrumental effects can help constrain and optimize
future observing modes for ALMA. Here we present a short technical description
of ALMA and an overview of past efforts and future possibilities for solar
observations at submillimeter and millimeter wavelengths. In addition, selected
numerical simulations and observations at other wavelengths demonstrate ALMA's
scientific potential for studying the Sun for a large range of science cases.Comment: 73 pages, 21 figures ; Space Science Reviews (accepted December 10th,
2015); accepted versio
Explosive events - swirling transition region jets
In this paper, we extend our earlier work to provide additional evidence for
an alternative scenario to explain the nature of so-called `explosive events'.
The bi-directed, fast Doppler motion of explosive events observed
spectroscopically in the transition region emission is classically interpreted
as a pair of bidirectional jets moving upward and downward from a reconnection
site. We discuss the problems of such a model. In our previous work, we focused
basically on the discrepancy of fast Doppler motion without detectable motion
in the image plane. We now suggest an alternative scenario for the explosive
events, based on our observations of spectral line tilts and bifurcated
structure in some events. Both features are indicative of rotational motion in
narrow structures. We explain the bifurcation as the result of rotation of
hollow cylindrical structures and demonstrate that such a sheath model can also
be applied to explain the nature of the puzzling `explosive events'. We find
that the spectral tilt, the lack of apparent motion, the bifurcation, and a
rapidly growing number of direct observations support an alternative scenario
of linear, spicular-sized jets with a strong spinning motion.Comment: 9 pages, 3 figures, accepted for publication in Solar Physic
- …