The Atacama Large Millimeter-submillimeter Array (ALMA) radio telescope has
commenced science observations of the Sun starting in late 2016. Since the Sun
is much larger than the field of view of individual ALMA dishes, the ALMA
interferometer is unable to measure the background level of solar emission when
observing the solar disk. The absolute temperature scale is a critical
measurement for much of ALMA solar science, including the understanding of
energy transfer through the solar atmosphere, the properties of prominences,
and the study of shock heating in the chromosphere. In order to provide an
absolute temperature scale, ALMA solar observing will take advantage of the
remarkable fast-scanning capabilities of the ALMA 12m dishes to make
single-dish maps of the full Sun. This article reports on the results of an
extensive commissioning effort to optimize the mapping procedure, and it
describes the nature of the resulting data. Amplitude calibration is discussed
in detail: a path that utilizes the two loads in the ALMA calibration system as
well as sky measurements is described and applied to commissioning data.
Inspection of a large number of single-dish datasets shows significant
variation in the resulting temperatures, and based on the temperature
distributions we derive quiet-Sun values at disk center of 7300 K at lambda=3
mm and 5900 K at lambda=1.3 mm. These values have statistical uncertainties of
order 100 K, but systematic uncertainties in the temperature scale that may be
significantly larger. Example images are presented from two periods with very
different levels of solar activity. At a resolution of order 25 arcsec, the 1.3
mm wavelength images show temperatures on the disk that vary over about a 2000
K range.Comment: Solar Physics, accepted: 24 pages, 13 figure