1,309 research outputs found

    Similar ultrafast dynamics of several dissimilar Dirac and Weyl semimetals

    Get PDF
    Recent years have seen the rapid discovery of solids whose low-energy electrons have a massless, linear dispersion, such as Weyl, line-node, and Dirac semimetals. The remarkable optical properties predicted in these materials show their versatile potential for optoelectronic uses. However, little is known of their response in the picoseconds after absorbing a photon. Here we measure the ultrafast dynamics of four materials that share non-trivial band structure topology but that differ chemically, structurally, and in their low-energy band structures: ZrSiS, which hosts a Dirac line node and Dirac points; TaAs and NbP, which are Weyl semimetals; and Sr1−y_{1-y}Mn1−z_{1-z}Sb2_2, in which Dirac fermions coexist with broken time-reversal symmetry. After photoexcitation by a short pulse, all four relax in two stages, first sub-picosecond, and then few-picosecond. Their rapid relaxation suggests that these and related materials may be suited for optical switches and fast infrared detectors. The complex change of refractive index shows that photoexcited carrier populations persist for a few picoseconds

    Black hole masses and enrichment of z ~ 6 SDSS quasars

    Full text link
    We present sensitive near-infrared spectroscopic observations for a sample of five z ~ 6 quasars. These are amongst the most distant, currently known quasars in the universe. The spectra have been obtained using ISAAC at the VLT and include the CIV, MgII and FeII lines. We measure the FeII/MgII line ratio, as an observational proxy for the Fe/alpha element ratio. We derive a ratio of 2.7+/-0.8 for our sample, which is similar to that found for lower redshift quasars, i.e., we provide additional evidence for the lack of evolution in the FeII/MgII line ratio of quasars up to the highest redshifts. This result demonstrates that the sample quasars must have undergone a major episode of iron enrichment in less than one Gyr and star formation must have commenced at z > 8. The linewidths of the MgII and CIV lines give two estimates for the black hole masses. A third estimate is given by assuming that the quasars emit at their Eddington luminosity. The derived masses using these three methods agree well, implying that the quasars are not likely to be strongly lensed. We derive central black hole masses of 0.3-5.2 10^9 solar masses. We use the difference between the redshift of MgII (a proxy for the systemic redshift of the quasar) and the onset of the Gunn Peterson trough to derive the extent of the ionized Stromgren spheres around our target quasars. The derived physical radii are about five Mpc. Using a simple ionization model, the emission of the central quasars would need of order 10^6-10^8 year to create these cavities in a surrounding intergalactic medium with a neutral fraction between 0.1 and 1.0. As the e-folding time scale for the central accreting black hole is on the order of a few times 10^7 year, it can grow by one e-folding or less within this time span.Comment: Accepted by ApJ, 15 pages, 8 figure

    Fundamental Spin Interactions Underlying the Magnetic Anisotropy in the Kitaev Ferromagnet CrI3_3

    Full text link
    We lay the foundation for determining the microscopic spin interactions in the two-dimensional (2D) ferromagnets by combining our angle-dependent ferromagnetic resonance (FMR) experiments on high quality CrI3_3 single crystals with theoretical modeling based on symmetries. In the 2D limit, ferromagnetism is stabilized by magnetic anisotropy. We find the largest anisotropy arises from Kitaev interactions of strength K ∌−5.2K~\sim-5.2 meV, larger than the Heisenberg exchange J ∌−0.2J~\sim-0.2 meV. We further discover that the symmetric off-diagonal anisotropy Γ∌−67.5\Gamma\sim-67.5 ÎŒ\mueV, though small, plays the crucial role of opening a gap in the magnon spectrum and stabilizing ferromagnetism in the 2D limit. The resolution of the FMR data is sufficient to reveal a ÎŒ\mueV-scale quadrupolar contribution in the S=3/2S=3/2 magnet. Our identification of the interactions underlying ferromagnetism and exchange anisotropies opens paths towards 2D ferromagnets with higher T_\rm{C} and magnetically frustrated quantum spin liquids based on Kitaev physics.Comment: 5 pages, 4 figure

    A prospective cohort study assessing clinical referral management & workforce allocation within a UK regional medical genetics service

    Get PDF
    Abstract Ensuring patient access to genomic information in the face of increasing demand requires clinicians to develop innovative ways of working. This paper presents the first empirical prospective observational cohort study of UK multi-disciplinary genetic service delivery. It describes and explores collaborative working practices including the utilisation and role of clinical geneticists and non-medical genetic counsellors. Six hundred and fifty new patients referred to a regional genetics service were tracked through 850 clinical contacts until discharge. Referral decisions regarding allocation of lead health professional assigned to the case were monitored, including the use of initial clinical contact guidelines. Significant differences were found in the cases led by genetic counsellors and those led by clinical geneticists. Around a sixth, 16.8% (109/650) of referrals were dealt with by a letter back to the referrer or re-directed to another service provider and 14.8% (80/541) of the remaining patients chose not to schedule an appointment. Of the remaining 461 patients, genetic counsellors were allocated as lead health professional for 46.2% (213/461). A further 61 patients did not attend. Of those who did, 86% (345/400) were discharged after one or two appointments. Genetic counsellors contributed to 95% (784/825) of total patient contacts. They provided 93.7% (395/432) of initial contacts and 26.8% (106/395) of patients were discharged at that point. The information from this study informed a planned service re-design. More research is needed to assess the effectiveness and efficiency of different models of collaborative multi-disciplinary working within genetics services. Keywords (MeSH terms) Genetic Services, Genetic Counseling, Interdisciplinary Communication, Cohort Studies, Delivery of Healthcare, Referral and Consultation

    A Path Integral Approach to Age Dependent Branching Processes

    Get PDF
    Age dependent population dynamics are frequently modeled with generalizations of the classic McKendrick-von Foerster equation. These are deterministic systems, and a stochastic generalization was recently reported in [1,2]. Here we develop a fully stochastic theory for age-structured populations via quantum field theoretical Doi-Peliti techniques. This results in a path integral formulation where birth and death events correspond to cubic and quadratic interaction terms. This formalism allows us to efficiently recapitulate the results in [1,2], exemplifying the utility of Doi-Peliti methods. Furthermore, we find that the path integral formulation for age-structured moments has an exact perturbative expansion that explicitly relates to the hereditary structure between correlated individuals. These methods are then generalized with a binary fission model of cell division

    Toward Identifying the Next Generation of Superfund and Hazardous Waste Site Contaminants

    Get PDF
    Reproduced with permission from Environmental Health Perspectives."This commentary evolved from a workshop sponsored by the National Institute of Environmental Health Sciences titled "Superfund Contaminants: The Next Generation" held in Tucson, Arizona, in August 2009. All the authors were workshop participants." doi:10.1289/ehp.1002497Our aim was to initiate a dynamic, adaptable process for identifying contaminants of emerging concern (CECs) that are likely to be found in future hazardous waste sites, and to identify the gaps in primary research that cause uncertainty in determining future hazardous waste site contaminants. Superfund-relevant CECs can be characterized by specific attributes: they are persistent, bioaccumulative, toxic, occur in large quantities, and have localized accumulation with a likelihood of exposure. Although still under development and incompletely applied, methods to quantify these attributes can assist in winnowing down the list of candidates from the universe of potential CECs. Unfortunately, significant research gaps exist in detection and quantification, environmental fate and transport, health and risk assessment, and site exploration and remediation for CECs. Addressing these gaps is prerequisite to a preventive approach to generating and managing hazardous waste sites.Support for the workshop, from which this article evolved, was provided by the National Institute of Environmental Health Sciences Superfund Research Program (P42-ES04940)
    • 

    corecore