68 research outputs found

    Development of an in vitro model on cellular adhesion on granular natural bone mineral under dynamic seeding condition- A pilot study

    Get PDF
    Adhesion of osteogenic cells on biomaterials can be studied with static in vitro models, whereas models representing dynamic seeding conditions are rare. Herein, we present an in vitro model to study cell adhesion on granular biomaterials under dynamic seeding conditions. Radiolabeled osteogenic MC3T3-E1 cells were allowed to adhere to granules of natural bovine bone mineral (NBM) under constant rotation. Adhesion of MC3T3-E1 cells was determined by liquid scintillation counting, and cell morphology was visualized by scanning electron microscopy. Cell viability was determined by MTT assay under static and dynamic conditions, at room and body temperature, and in the presence or absence of serum. We show here that MC3T3-E1 cells rapidly adhere to NBM, reaching a peak 3 h after seeding. Attached cells display characteristic signs of spreading. Five to ten percent of total radioactivity remained on NBM after the removal of nonadherent cells. Viability is maintained at room temperature and under rotation for upto 3 h. This data suggests that the dynamic in vitro model presented here provides a tool to study cell adhesion on granular biomaterial

    Establishing an infrastructure for collaboration in primate cognition research

    Get PDF
    Inferring the evolutionary history of cognitive abilities requires large and diverse samples. However, such samples are often beyond the reach of individual researchers or institutions, and studies are often limited to small numbers of species. Consequently, methodological and site-specific-differences across studies can limit comparisons between species. Here we introduce the ManyPrimates project, which addresses these challenges by providing a large-scale collaborative framework for comparative studies in primate cognition. To demonstrate the viability of the project we conducted a case study of short-term memory. In this initial study, we were able to include 176 individuals from 12 primate species housed at 11 sites across Africa, Asia, North America and Europe. All subjects were tested in a delayed-response task using consistent methodology across sites. Individuals could access food rewards by remembering the position of the hidden reward after a 0, 15, or 30-second delay. Overall, individuals performed better with shorter delays, as predicted by previous studies. Phylogenetic analysis revealed a strong phylogenetic signal for short-term memory. Although, with only 12 species, the validity of this analysis is limited, our initial results demonstrate the feasibility of a large, collaborative open-science project. We present the ManyPrimates project as an exciting opportunity to address open questions in primate cognition and behaviour with large, diverse datasets

    Exposure assessment of process-related contaminants in food by biomarker monitoring

    Get PDF
    Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario’s and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment

    The Evolution of Primate Short-Term Memory.

    Get PDF
    Short-term memory is implicated in a range of cognitive abilities and is critical for understanding primate cognitive evolution. To investigate the effects of phylogeny, ecology and sociality on short-term memory, we tested the largest and most diverse primate sample to date (421 non-human primates across 41 species) in an experimental delayed-response task. Our results confirm previous findings that longer delays decrease memory performance across species and taxa. Our analyses demonstrate a considerable contribution of phylogeny over ecological and social factors on the distribution of short-term memory performance in primates; closely related species had more similar short-term memory abilities. Overall, individuals in the branch of Hominoidea performed better compared to Cercopithecoidea, who in turn performed above Platyrrhini and Strepsirrhini. Interdependencies between phylogeny and socioecology of a given species presented an obstacle to disentangling the effects of each of these factors on the evolution of short-term memory capacity. However, this study offers an important step forward in understanding the interspecies and individual variation in short-term memory ability by providing the first phylogenetic reconstruction of this trait’s evolutionary history. The dataset constitutes a unique resource for studying the evolution of primate cognition and the role of short-term memory in other cognitive abilities.info:eu-repo/semantics/publishedVersio

    Establishing an infrastructure for collaboration in primate cognition research

    Get PDF
    Inferring the evolutionary history of cognitive abilities requires large and diverse samples. However, such samples are often beyond the reach of individual researchers or institutions, and studies are often limited to small numbers of species. Consequently, methodological and site-specific-differences across studies can limit comparisons between species. Here we introduce the ManyPrimates project, which addresses these challenges by providing a large-scale collaborative framework for comparative studies in primate cognition. To demonstrate the viability of the project we conducted a case study of short-term memory. In this initial study, we were able to include 176 individuals from 12 primate species housed at 11 sites across Africa, Asia, North America and Europe. All subjects were tested in a delayed-response task using consistent methodology across sites. Individuals could access food rewards by remembering the position of the hidden reward after a 0, 15, or 30-second delay. Overall, individuals performed better with shorter delays, as predicted by previous studies. Phylogenetic analysis revealed a strong phylogenetic signal for short-term memory. Although, with only 12 species, the validity of this analysis is limited, our initial results demonstrate the feasibility of a large, collaborative open-science project. We present the ManyPrimates project as an exciting opportunity to address open questions in primate cognition and behaviour with large, diverse datasets

    Establishing an infrastructure for collaboration in primate cognition research

    Get PDF
    Inferring the evolutionary history of cognitive abilities requires large and diverse samples. However, such samples are often beyond the reach of individual researchers or institutions, and studies are often limited to small numbers of species. Consequently, methodological and site-specific-differences across studies can limit comparisons between species. Here we introduce the ManyPrimates project, which addresses these challenges by providing a large-scale collaborative framework for comparative studies in primate cognition. To demonstrate the viability of the project we conducted a case study of short-term memory. In this initial study, we were able to include 176 individuals from 12 primate species housed at 11 sites across Africa, Asia, North America and Europe. All subjects were tested in a delayed-response task using consistent methodology across sites. Individuals could access food rewards by remembering the position of the hidden reward after a 0, 15, or 30-second delay. Overall, individuals performed better with shorter delays, as predicted by previous studies. Phylogenetic analysis revealed a strong phylogenetic signal for short-term memory. Although, with only 12 species, the validity of this analysis is limited, our initial results demonstrate the feasibility of a large, collaborative open-science project. We present the ManyPrimates project as an exciting opportunity to address open questions in primate cognition and behaviour with large, diverse datasets

    The evolution of primate short-term memory

    Get PDF
    Short-term memory is implicated in a range of cognitive abilities and is critical for understanding primate cognitive evolution. To investigate the effects of phylogeny, ecology and sociality on short-term memory, we tested the largest and most diverse primate sample to date (421 non-human primates across 41 species) in an experimental delayed-response task. Our results confirm previous findings that longer delays decrease memory performance across species and taxa. Our analyses demonstrate a considerable contribution of phylogeny over ecological and social factors on the distribution of short-term memory performance in primates; closely related species had more similar short-term memory abilities. Overall, individuals in the branch of Hominoidea performed better compared to Cercopithecoidea, who in turn performed above Platyrrhini and Strepsirrhini. Interdependencies between phylogeny and socioecology of a given species presented an obstacle to disentangling the effects of each of these factors on the evolution of shortterm memory capacity. However, this study offers an important step forward in understanding the interspecies and individual variation in short-term memory ability by providing the first phylogenetic reconstruction of this trait’s evolutionary history. The dataset constitutes a unique resource for studying the evolution of primate cognition and the role of short-term memory in other cognitive abilities

    Rechtfertigung und Entschuldigung im englischen Strafrecht : eine Strukturanalyse der allgemeinen Strafbarkeitsvoraussetzungen aus deutscher Perspektive

    No full text
    Die Arbeit verfolgt in erster Linie eine strukturanalytische Zielsetzung. WĂ€hrend die Unterscheidung zwischen Rechtfertigung und Entschuldigung zum Einmaleins des deutschen Juristen gehört und bereits in den AnfĂ€ngerĂŒbungen an den UniversitĂ€ten als selbstverstĂ€ndlich vorausgesetzt wird, stĂ¶ĂŸt die BeschĂ€ftigung mit dem englischen Strafrecht auf ein Rechtssystem, das diese Unterscheidung zumindest nicht explizit vornimmt. Welche Friktionen durch das Fehlen dieser Unterscheidung entstehen können, durch welche Mechanismen in der praktischen Rechtsanwendung eine Kompensation erreicht werden soll und welche Grundelemente der Straftat im englischen Recht gegeben sein mĂŒssen, damit an ein menschliches Verhalten eine strafrechtliche Sanktion geknĂŒpft werden kann, ist Gegenstand dieser Untersuchung. Ein Hinterfragen von scheinbar unumstĂ¶ĂŸlichen Ergebnissen deutscher Strafrechtsdogmatik konnte dabei nicht ausbleiben

    Capuchin and rhesus monkeys but not humans show cognitive flexibility in an optional-switch task

    No full text
    Learned rules help us accurately solve many problems, but by blindly following a strategy, we sometimes fail to find more efficient alternatives. Previous research found that humans are more susceptible to this “cognitive set” bias than other primates in a nonverbal computer task. We modified the task to test one hypothesis for this difference, that working memory influences the advantage of taking a shortcut. During training, 60 humans, 7 rhesus macaques, and 22 capuchin monkeys learned to select three icons in sequence. They then completed 96 baseline trials, in which only this learned rule could be used, and 96 probe trials, in which they could also immediately select the final icon. Rhesus and capuchin monkeys took this shortcut significantly more often than humans. Humans used the shortcut more in this new, easier task than in previous work, but started using it significantly later than the monkeys. Some participants of each species also used an intermediate strategy; they began the learned rule but switched to the shortcut after selecting the first item in the sequence. We suggest that these species differences arise from differences in rule encoding and in the relative efficiency of exploiting a familiar strategy versus exploring alternatives
    • 

    corecore