20 research outputs found

    Can ecosystem-based deep-sea fishing be sustained?

    Get PDF
    Can there ever be a truly sustainable deep-sea fishery and if so, where and under what conditions? Ecosystembased fisheries management requires that this question be addressed such that habitat, bycatch species, and targeted fish populations are considered together within an ecosystem context. To this end, we convened the first workshop to develop an ecosystem approach to deep-sea fisheries and to ask whether deep-sea species could be fished sustainably. The workshop participants were able to integrate bycatch information into their framework but found it more difficult to integrate other ecosystem indicators such as habitat characteristics. (First two paragraphs from the Executive Summary

    Deep-Sea Mining With No Net Loss of Biodiversity—An Impossible Aim

    Get PDF
    Deep-sea mining is likely to result in biodiversity loss, and the significance of this to ecosystem function is not known. “Out of kind” biodiversity offsets substituting one ecosystem type (e.g., coral reefs) for another (e.g., abyssal nodule fields) have been proposed to compensate for such loss. Here we consider a goal of no net loss (NNL) of biodiversity and explore the challenges of applying this aim to deep seabed mining, based on the associated mitigation hierarchy (avoid, minimize, remediate). We conclude that the industry cannot at present deliver an outcome of NNL. This results from the vulnerable nature of deep-sea environments to mining impacts, currently limited technological capacity to minimize harm, significant gaps in ecological knowledge, and uncertainties of recovery potential of deep-sea ecosystems. Avoidance and minimization of impacts are therefore the only presently viable means of reducing biodiversity losses from seabed mining. Because of these constraints, when and if deep-sea mining proceeds, it must be approached in a precautionary and step-wise manner to integrate new and developing knowledge. Each step should be subject to explicit environmental management goals, monitoring protocols, and binding standards to avoid serious environmental harm and minimize loss of biodiversity. “Out of kind” measures, an option for compensation currently proposed, cannot replicate biodiversity and ecosystem services lost through mining of the deep seabed and thus cannot be considered true offsets. The ecosystem functions provided by deep-sea biodiversity contribute to a wide range of provisioning services (e.g., the exploitation of fish, energy, pharmaceuticals, and cosmetics), play an essential role in regulatory services (e.g., carbon sequestration) and are important culturally. The level of “acceptable” biodiversity loss in the deep sea requires public, transparent, and well-informed consideration, as well as wide agreement. If accepted, further agreement on how to assess residual losses remaining after the robust implementation of the mitigation hierarchy is also imperative. To ameliorate some of the inter-generational inequity caused by mining-associated biodiversity losses, and only after all NNL measures have been used to the fullest extent, potential compensatory actions would need to be focused on measures to improve the knowledge and protection of the deep sea and to demonstrate benefits that will endure for future generations

    Deep-Sea Origin and In-Situ Diversification of Chrysogorgiid Octocorals

    Get PDF
    The diversity, ubiquity and prevalence in deep waters of the octocoral family Chrysogorgiidae Verrill, 1883 make it noteworthy as a model system to study radiation and diversification in the deep sea. Here we provide the first comprehensive phylogenetic analysis of the Chrysogorgiidae, and compare phylogeny and depth distribution. Phylogenetic relationships among 10 of 14 currently-described Chrysogorgiidae genera were inferred based on mitochondrial (mtMutS, cox1) and nuclear (18S) markers. Bathymetric distribution was estimated from multiple sources, including museum records, a literature review, and our own sampling records (985 stations, 2345 specimens). Genetic analyses suggest that the Chrysogorgiidae as currently described is a polyphyletic family. Shallow-water genera, and two of eight deep-water genera, appear more closely related to other octocoral families than to the remainder of the monophyletic, deep-water chrysogorgiid genera. Monophyletic chrysogorgiids are composed of strictly (Iridogorgia Verrill, 1883, Metallogorgia Versluys, 1902, Radicipes Stearns, 1883, Pseudochrysogorgia Pante & France, 2010) and predominantly (Chrysogorgia Duchassaing & Michelotti, 1864) deep-sea genera that diversified in situ. This group is sister to gold corals (Primnoidae Milne Edwards, 1857) and deep-sea bamboo corals (Keratoisidinae Gray, 1870), whose diversity also peaks in the deep sea. Nine species of Chrysogorgia that were described from depths shallower than 200 m, and mtMutS haplotypes sequenced from specimens sampled as shallow as 101 m, suggest a shallow-water emergence of some Chrysogorgia species

    Taxonomy based on science is necessary for global conservation

    Get PDF
    Peer reviewe

    Out of sight, but within reach: a global history of bottom-trawled deep-sea fisheries from > 400 m depth

    No full text
    Deep-sea fish species are targeted globally by bottom trawling. The species captured are often characterized by longevity, low fecundity and slow growth making them vulnerable to overfishing. In addition, bottom trawling is known to remove vast amounts of non-target species, including habitat forming deep-sea corals and sponges. Therefore, bottom trawling poses a serious risk to deep-sea ecosystems, but the true extent of deep-sea fishery catches through history remains unknown. Here, we present catches for global bottom trawling fisheries between years 1950-2015. This study gives new insight into the history of bottom trawled deep-sea fisheries through its use of FAO capture data combined with reconstructed catch data provided by the Sea Around Us- project, which are the only records containing bycatches, discards and unreported landings for deep-sea species. We illustrate the trends and shifts of the fishing nations and discuss the life-history and catch patterns of the most prominent target species over this time period. Our results show that the landings from deep-sea fisheries are miniscule, contributing less than 0.5% to global fisheries landings. The fisheries were found to be overall under-reported by as much as 42%, leading to the removal of an estimated 25 million tons of deep-sea fish. The highest catches were of Greenland halibut in the NE Atlantic, Longfin codling from the NW Pacific and Grenadiers and Orange roughy from the SW Pacific. The results also show a diversification through the years in the species caught and reported. This historical perspective reveals that the extent and amount of deep-sea fish removed from the deep ocean exceeds previous estimates. This has significant implications for management, conservation and policy, as the economic importance of global bottom trawling is trivial, but the environmental damage imposed by this practice, is not.</p

    Out of sight, but within reach: A Global History of Bottom-Trawled Deep-Sea Fisheries from >400 m depth

    No full text
    Deep-sea fish species are targeted globally by bottom trawling. The species captured are often characterized by longevity, low fecundity and slow growth making them vulnerable to overfishing. In addition, bottom trawling is known to remove vast amounts of non-target species, including habitat forming deep-sea corals and sponges. Therefore, bottom trawling poses a serious risk to deep-sea ecosystems, but the true extent of deep-sea fishery landings through history remains unknown. Here, we present catches for global bottom trawling fisheries between years 1950-2015. This study gives new insight into the history of bottom trawled deep-sea fisheries through its use of FAO capture data combined with reconstructed landings data provided by the Sea Around Us Project, which are the only records containing bycatches, discards and unreported landings for deep-sea species. We illustrate the trends and shifts of the fishing nations and discuss the life-history and catch patterns of the most prominent target species over this time period. Our results show that the landings from deep-sea fisheries are miniscule, contributing less than 0.5 % to global fisheries landings. The fisheries were also found to be overall under-reported by as much as 43 %, leading to the removal of an estimated 25 million tonnes of deep-sea fish. The highest catches were of Greenland halibut in the NE Atlantic, Longfin codling from the NW Pacific and Grenadiers and Orange roughy from the SW Pacific. The results also show a diversification through the years in the species caught and reported. This historical perspective reveals that the extent and amount of deep-sea fish removed from the deep ocean exceeds previous estimates. This has significant implications for management, conservation and policy, as the economic importance of global bottom trawling is trivial, but the environmental damage imposed by this practice, is not

    Video2.mp4

    No full text
    <p>Deep-sea fish species are targeted globally by bottom trawling. The species captured are often characterized by longevity, low fecundity and slow growth making them vulnerable to overfishing. In addition, bottom trawling is known to remove vast amounts of non-target species, including habitat forming deep-sea corals and sponges. Therefore, bottom trawling poses a serious risk to deep-sea ecosystems, but the true extent of deep-sea fishery catches through history remains unknown. Here, we present catches for global bottom trawling fisheries between years 1950–2015. This study gives new insight into the history of bottom trawled deep-sea fisheries through its use of FAO capture data combined with reconstructed catch data provided by the Sea Around Us- project, which are the only records containing bycatches, discards and unreported landings for deep-sea species. We illustrate the trends and shifts of the fishing nations and discuss the life-history and catch patterns of the most prominent target species over this time period. Our results show that the landings from deep-sea fisheries are miniscule, contributing less than 0.5% to global fisheries landings. The fisheries were found to be overall under-reported by as much as 42%, leading to the removal of an estimated 25 million tons of deep-sea fish. The highest catches were of Greenland halibut in the NE Atlantic, Longfin codling from the NW Pacific and Grenadiers and Orange roughy from the SW Pacific. The results also show a diversification through the years in the species caught and reported. This historical perspective reveals that the extent and amount of deep-sea fish removed from the deep ocean exceeds previous estimates. This has significant implications for management, conservation and policy, as the economic importance of global bottom trawling is trivial, but the environmental damage imposed by this practice, is not.</p

    Table1.XLSX

    No full text
    <p>Deep-sea fish species are targeted globally by bottom trawling. The species captured are often characterized by longevity, low fecundity and slow growth making them vulnerable to overfishing. In addition, bottom trawling is known to remove vast amounts of non-target species, including habitat forming deep-sea corals and sponges. Therefore, bottom trawling poses a serious risk to deep-sea ecosystems, but the true extent of deep-sea fishery catches through history remains unknown. Here, we present catches for global bottom trawling fisheries between years 1950–2015. This study gives new insight into the history of bottom trawled deep-sea fisheries through its use of FAO capture data combined with reconstructed catch data provided by the Sea Around Us- project, which are the only records containing bycatches, discards and unreported landings for deep-sea species. We illustrate the trends and shifts of the fishing nations and discuss the life-history and catch patterns of the most prominent target species over this time period. Our results show that the landings from deep-sea fisheries are miniscule, contributing less than 0.5% to global fisheries landings. The fisheries were found to be overall under-reported by as much as 42%, leading to the removal of an estimated 25 million tons of deep-sea fish. The highest catches were of Greenland halibut in the NE Atlantic, Longfin codling from the NW Pacific and Grenadiers and Orange roughy from the SW Pacific. The results also show a diversification through the years in the species caught and reported. This historical perspective reveals that the extent and amount of deep-sea fish removed from the deep ocean exceeds previous estimates. This has significant implications for management, conservation and policy, as the economic importance of global bottom trawling is trivial, but the environmental damage imposed by this practice, is not.</p
    corecore