50 research outputs found

    Support for the habitat amount hypothesis from a global synthesis of species density studies

    Get PDF
    Decades of research suggest that species richness depends on spatial characteristics of habitat patches, especially their size and isolation. In contrast, the habitat amount hypothesis predicts that (1) species richness in plots of fixed size (species density) is more strongly and positively related to the amount of habitat around the plot than to patch size or isolation; (2) habitat amount better predicts species density than patch size and isolation combined, (3) there is no effect of habitat fragmentation per se on species density and (4) patch size and isolation effects do not become stronger with declining habitat amount. Data on eight taxonomic groups from 35 studies around the world support these predictions. Conserving species density requires minimising habitat loss, irrespective of the configuration of the patches in which that habitat is contained

    Using a comparative approach to investigate the relationship between landscape and genetic connectivity among woodland salamander population

    Get PDF
    For many amphibian species, reduced landscape connectivity results in reduced genetic connectivity among populations. However, large efective population sizes (Ne) slow the rate of genetic drift, causing subdivided populations to remain genetically similar despite little gene fow among them. Therefore, it is important to address the combined efects of Ne and matrix permeability to quantify the relative importance of gene fow and genetic drift on isolated amphibian populations. We applied a landscape genetic approach to investigate how patterns of gene fow (m), Ne (inferred via Ξ) and genetic difer- entiation difer among Eastern Red-backed Salamander (Plethodon cinereus) populations in a fragmented landscape (n=4) compared to a continuous forest (n=4). We assayed a panel of 10 microsatellite markers for population genetic analyses. Additionally, we constructed and validated a distribution model to generate resistance surfaces for examining the relation- ship between landscape connectivity, m, Ξ, and genetic diferentiation (FST) using maximum-likelihood population-efects models (MLPE). Populations in continuous habitat were undiferentiated, whereas fragmented populations exhibited genetic structure driven by a single population. Results of the MLPE models in the fragmented landscape revealed spatial variation in Ξ as the best predictor of pairwise FST, followed by estimates of m, suggesting migration-drift interactions have a stronger infuence on genetic diferentiation than matrix permeability. Moreover, model coefcients for landscape resistance were comparable between landscapes. Overall, our results provide insight as to how the interaction of gene fow and genetic drift shapes population structure for a dispersal-limited species within a predominately anthropogenic landscape

    NSF SSTEM MIRRORS Data 2018-2021

    Get PDF
    With five years of funding from the National Science Foundation\u27s Scholarships in Science, Technology, Engineering and Mathematics (S-STEM) program, John Carroll University (JCU) will provide scholarships to 32 students with demonstrated financial need and academic promise. The scholarships will be awarded to first-year and transfer students who are pursuing bachelor\u27s degrees in STEM in Biology, Chemistry, Mathematics, Computer Science and Physics. The Scholars in the program will receive academic support that includes a STEM-specific orientation, a summer bridge program, cohort advising, and curricula introducing scientific thinking and research.The project goals are to improve one-year retention and four-year graduation rates, and to train and graduate scholars who will meet local, regional, and national demands for a STEM-educated workforce. This project will provide evidence-based academic and student support services designed to support the transition and success of JCU transfer student cohorts. These services include a STEM living-learning community (LLC), peer-led team learning, career development, summer research fellowships, and travel to scientific meetings. This project will contribute to education research by investigating the role of reflection (i.e., conscientious evaluation of new knowledge or experiences) in the development of student-scientists, and the influence of STEM LLCs on student persistence and sense of well-being. The ongoing process of reflection is critical for academic success, social well-being, and vocational self-efficacy. However, the importance of reflection as a tool for success in STEM disciplines is unknown. This project will assess reflection as a tool to increase retention and performance in STEM experimentally, by monitoring performance indicators for S-STEM Scholars compared to the pool of S-STEM-eligible students who were not selected for a scholarship and therefore did not participate in the program\u27s reflection activities. Finally, this project will help provide S-STEM students the opportunity to be successful in high-demand STEM disciplines

    Resolving the SLOSS dilemma for biodiversity conservation: a research agenda

    Get PDF
    The legacy of the ‘SL > SS principle’, that a single or a few large habitat patches (SL) conserve more species than several small patches (SS), is evident in decisions to protect large patches while down-weighting small ones. However, empirical support for this principle is lacking, and most studies find either no difference or the opposite pattern (SS > SL). To resolve this dilemma, we propose a research agenda by asking, ‘are there consistent, empirically demonstrated conditions leading to SL > SS?’ We first review and summarize ‘single large or several small’ (SLOSS) theory and predictions. We found that most predictions of SL > SS assume that between-patch variation in extinction rate dominates the outcome of the extinction–colonization dynamic. This is predicted to occur when populations in separate patches are largely independent of each other due to low between-patch movements, and when species differ in minimum patch size requirements, leading to strong nestedness in species composition along the patch size gradient. However, even when between-patch variation in extinction rate dominates the outcome of the extinction–colonization dynamic, theory can predict SS > SL. This occurs if extinctions are caused by antagonistic species interactions or disturbances, leading to spreading-of-risk of landscape-scale extinction across SS. SS > SL is also predicted when variation in colonization dominates the outcome of the extinction–colonization dynamic, due to higher immigration rates for SS than SL, and larger species pools in proximity to SS than SL. Theory that considers change in species composition among patches also predicts SS > SL because of higher beta diversity across SS than SL. This results mainly from greater environmental heterogeneity in SS due to greater variation in micro-habitats within and across SS habitat patches (‘across-habitat heterogeneity’), and/or more heterogeneous successional trajectories across SS than SL. Based on our review of the relevant theory, we develop the ‘SLOSS cube hypothesis’, where the combination of three variables – between-patch movement, the role of spreading-of-risk in landscape-scale population persistence, and across-habitat heterogeneity – predict the SLOSS outcome. We use the SLOSS cube hypothesis and existing SLOSS empirical evidence, to predict SL > SS only when all of the following are true: low between-patch movement, low importance of spreading-of-risk for landscape-scale population persistence, and low across-habitat heterogeneity. Testing this prediction will be challenging, as it will require many studies of species groups and regions where these conditions hold. Each such study would compare gamma diversity across multiple landscapes varying in number and sizes of patches. If the prediction is not generally supported across such tests, then the mechanisms leading to SL > SS are extremely rare in nature and the SL > SS principle should be abandoned

    Extinction filters mediate the global effects of habitat fragmentation on animals

    Get PDF
    Habitat loss is the primary driver of biodiversity decline worldwide, but the effects of fragmentation (the spatial arrangement of remaining habitat) are debated. We tested the hypothesis that forest fragmentation sensitivity—affected by avoidance of habitat edges—should be driven by historical exposure to, and therefore species’ evolutionary responses to disturbance. Using a database containing 73 datasets collected worldwide (encompassing 4489 animal species), we found that the proportion of fragmentation-sensitive species was nearly three times as high in regions with low rates of historical disturbance compared with regions with high rates of disturbance (i.e., fires, glaciation, hurricanes, and deforestation). These disturbances coincide with a latitudinal gradient in which sensitivity increases sixfold at low versus high latitudes. We conclude that conservation efforts to limit edges created by fragmentation will be most important in the world’s tropical forests

    Status Update and Interim Results from the Asymptomatic Carotid Surgery Trial-2 (ACST-2)

    Get PDF
    Objectives: ACST-2 is currently the largest trial ever conducted to compare carotid artery stenting (CAS) with carotid endarterectomy (CEA) in patients with severe asymptomatic carotid stenosis requiring revascularization. Methods: Patients are entered into ACST-2 when revascularization is felt to be clearly indicated, when CEA and CAS are both possible, but where there is substantial uncertainty as to which is most appropriate. Trial surgeons and interventionalists are expected to use their usual techniques and CE-approved devices. We report baseline characteristics and blinded combined interim results for 30-day mortality and major morbidity for 986 patients in the ongoing trial up to September 2012. Results: A total of 986 patients (687 men, 299 women), mean age 68.7 years (SD ± 8.1) were randomized equally to CEA or CAS. Most (96%) had ipsilateral stenosis of 70-99% (median 80%) with contralateral stenoses of 50-99% in 30% and contralateral occlusion in 8%. Patients were on appropriate medical treatment. For 691 patients undergoing intervention with at least 1-month follow-up and Rankin scoring at 6 months for any stroke, the overall serious cardiovascular event rate of periprocedural (within 30 days) disabling stroke, fatal myocardial infarction, and death at 30 days was 1.0%. Conclusions: Early ACST-2 results suggest contemporary carotid intervention for asymptomatic stenosis has a low risk of serious morbidity and mortality, on par with other recent trials. The trial continues to recruit, to monitor periprocedural events and all types of stroke, aiming to randomize up to 5,000 patients to determine any differential outcomes between interventions. Clinical trial: ISRCTN21144362. © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved

    Second asymptomatic carotid surgery trial (ACST-2): a randomised comparison of carotid artery stenting versus carotid endarterectomy

    Get PDF
    Background: Among asymptomatic patients with severe carotid artery stenosis but no recent stroke or transient cerebral ischaemia, either carotid artery stenting (CAS) or carotid endarterectomy (CEA) can restore patency and reduce long-term stroke risks. However, from recent national registry data, each option causes about 1% procedural risk of disabling stroke or death. Comparison of their long-term protective effects requires large-scale randomised evidence. Methods: ACST-2 is an international multicentre randomised trial of CAS versus CEA among asymptomatic patients with severe stenosis thought to require intervention, interpreted with all other relevant trials. Patients were eligible if they had severe unilateral or bilateral carotid artery stenosis and both doctor and patient agreed that a carotid procedure should be undertaken, but they were substantially uncertain which one to choose. Patients were randomly allocated to CAS or CEA and followed up at 1 month and then annually, for a mean 5 years. Procedural events were those within 30 days of the intervention. Intention-to-treat analyses are provided. Analyses including procedural hazards use tabular methods. Analyses and meta-analyses of non-procedural strokes use Kaplan-Meier and log-rank methods. The trial is registered with the ISRCTN registry, ISRCTN21144362. Findings: Between Jan 15, 2008, and Dec 31, 2020, 3625 patients in 130 centres were randomly allocated, 1811 to CAS and 1814 to CEA, with good compliance, good medical therapy and a mean 5 years of follow-up. Overall, 1% had disabling stroke or death procedurally (15 allocated to CAS and 18 to CEA) and 2% had non-disabling procedural stroke (48 allocated to CAS and 29 to CEA). Kaplan-Meier estimates of 5-year non-procedural stroke were 2·5% in each group for fatal or disabling stroke, and 5·3% with CAS versus 4·5% with CEA for any stroke (rate ratio [RR] 1·16, 95% CI 0·86–1·57; p=0·33). Combining RRs for any non-procedural stroke in all CAS versus CEA trials, the RR was similar in symptomatic and asymptomatic patients (overall RR 1·11, 95% CI 0·91–1·32; p=0·21). Interpretation: Serious complications are similarly uncommon after competent CAS and CEA, and the long-term effects of these two carotid artery procedures on fatal or disabling stroke are comparable. Funding: UK Medical Research Council and Health Technology Assessment Programme

    Molecular techniques revolutionize knowledge of basidiomycete evolution

    Full text link
    corecore