229 research outputs found

    Determining geographic areas and populations with timely access to cardiac catheterization facilities for acute myocardial infarction care in Alberta, Canada

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study uses geographic information systems (GIS) as a tool to evaluate and visualize the general accessibility of areas within the province of Alberta (Canada) to cardiac catheterization facilities. Current American and European guidelines suggest performing catheterization within 90 minutes of the first medical contact. For this reason, this study evaluates the populated places that are within a 90 minute transfer time to a city with a catheterization facility. The three modes of transport considered in this study are ground ambulance, rotary wing air ambulance and fixed wing air ambulance.</p> <p>Methods</p> <p>Reference data from the Alberta Chart of Call were interpolated into continuous travel time surfaces. These continuous surfaces allowed for the delineation of isochrones: lines that connect areas of equal time. Using Dissemination Area (DA) centroids to represent the adult population, the population numbers were extracted from the isochrones using Statistics Canada census data.</p> <p>Results</p> <p>By extracting the adult population from within isochrones for each emergency transport mode analyzed, it was found that roughly 70% of the adult population of Alberta had access within 90 minutes to catheterization facilities by ground, roughly 66% of the adult population had access by rotary wing air ambulance and that no population had access within 90 minutes using the fixed wing air ambulance. An overall understanding of the nature of air vs. ground emergency travel was also uncovered; zones were revealed where the use of one mode would be faster than the others for reaching a facility.</p> <p>Conclusion</p> <p>Catheter intervention for acute myocardial infarction is a time sensitive procedure. This study revealed that although a relatively small area of the province had access within the 90 minute time constraint, this area represented a large proportion of the population. Within Alberta, fixed wing air ambulance is not an effective means of transporting patients to a catheterization facility within the 90 minute time frame, though it becomes advantageous as a means of transportation for larger distances when there is less urgency.</p

    Brown Dwarfs in Young Moving Groups from Pan-STARRS1. I. AB Doradus

    Full text link
    Substellar members of young (\lesssim150 Myr) moving groups are valuable benchmarks to empirically define brown dwarf evolution with age and to study the low-mass end of the initial mass function. We have combined Pan-STARRS1 (PS1) proper motions with optical-IR photometry from PS1, 2MASS and WISE\textit{WISE} to search for substellar members of the AB Dor Moving Group within \approx50 pc and with spectral types of late-M to early-L, corresponding to masses down to \approx30 MJup_{Jup} at the age of the group (\approx125 Myr). Including both photometry and proper motions allows us to better select candidates by excluding field dwarfs whose colors are similar to young AB~Dor Moving Group members. Our near-IR spectroscopy has identified six ultracool dwarfs (M6-L4; \approx30-100 MJup_{Jup}) with intermediate surface gravities (INT-G) as candidate members of the AB Dor Moving Group. We find another two candidate members with spectra showing hints of youth but consistent with field gravities. We also find four field brown dwarfs unassociated with the AB Dor Moving Group, three of which have INT-G gravity classification. While signatures of youth are present in the spectra of our \approx125 Myr objects, neither their JKJ-K nor W1W2W1-W2 colors are significantly redder than field dwarfs with the same spectral types, unlike younger ultracool dwarfs. We also determined PS1 parallaxes for eight of our candidates and one previously identified AB Dor Moving Group candidate. Although radial velocities (and parallaxes, for some) are still needed to fully assess membership, these new objects provide valuable insight into the spectral characteristics and evolution of young brown dwarfs.Comment: ApJ, accepte

    Accuracy of city postal code coordinates as a proxy for location of residence

    Get PDF
    BACKGROUND: Health studies sometimes rely on postal code location as a proxy for the location of residence. This study compares the postal code location to that of the street address using a database from the Alberta Provincial Project for Outcome Assessment in Coronary Heart Disease (APPROACH(©)). Cardiac catheterization cases in an urban Canadian City were used for calendar year 1999. We determined location in meters for both the address (using the City of Calgary Street Network File in ArcView 3.2) and postal code location (using Statistic Canada's Postal Code Conversion File). RESULTS: The distance between the two estimates of location for each case were measured and it was found that 87.9% of the postal code locations were within 200 meters of the true address location (straight line distances) and 96.5% were within 500 meters of the address location (straight line distances). CONCLUSIONS: We conclude that postal code locations are a reasonably accurate proxy for address location. However, there may be research questions for which a more accurate description of location is required

    Photometric Classification of 2315 Pan-STARRS1 Supernovae with Superphot

    Get PDF
    The classification of supernovae (SNe) and its impact on our understanding of explosion physics and progenitors have traditionally been based on the presence or absence of certain spectral features. However, current and upcoming wide-field time-domain surveys have increased the transient discovery rate far beyond our capacity to obtain even a single spectrum of each new event. We must therefore rely heavily on photometric classification— connecting SN light curves back to their spectroscopically defined classes. Here, we present Superphot, an opensource Python implementation of the machine-learning classification algorithm of Villar et al., and apply it to 2315 previously unclassified transients from the Pan-STARRS1 Medium Deep Survey for which we obtained spectroscopic host-galaxy redshifts. Our classifier achieves an overall accuracy of 82%, with completenesses and purities of >80% for the best classes (SNe Ia and superluminous SNe). For the worst performing SN class (SNe Ibc), the completeness and purity fall to 37% and 21%, respectively. Our classifier provides 1257 newly classified SNe Ia, 521 SNe II, 298 SNe Ibc, 181 SNe IIn, and 58 SLSNe. These are among the largest uniformly observed samples of SNe available in the literature and will enable a wide range of statistical studies of each class

    Addressing global ruminant agricultural challenges through understanding the rumen microbiome::Past, present and future

    Get PDF
    The rumen is a complex ecosystem composed of anaerobic bacteria, protozoa, fungi, methanogenic archaea and phages. These microbes interact closely to breakdown plant material that cannot be digested by humans, whilst providing metabolic energy to the host and, in the case of archaea, producing methane. Consequently, ruminants produce meat and milk, which are rich in high-quality protein, vitamins and minerals, and therefore contribute to food security. As the world population is predicted to reach approximately 9.7 billion by 2050, an increase in ruminant production to satisfy global protein demand is necessary, despite limited land availability, and whilst ensuring environmental impact is minimized. Although challenging, these goals can be met, but depend on our understanding of the rumen microbiome. Attempts to manipulate the rumen microbiome to benefit global agricultural challenges have been ongoing for decades with limited success, mostly due to the lack of a detailed understanding of this microbiome and our limited ability to culture most of these microbes outside the rumen. The potential to manipulate the rumen microbiome and meet global livestock challenges through animal breeding and introduction of dietary interventions during early life have recently emerged as promising new technologies. Our inability to phenotype ruminants in a high-throughput manner has also hampered progress, although the recent increase in “omic” data may allow further development of mathematical models and rumen microbial gene biomarkers as proxies. Advances in computational tools, high-throughput sequencing technologies and cultivation-independent “omics” approaches continue to revolutionize our understanding of the rumen microbiome. This will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges

    Developing an inverted Barrovian sequence; insights from monazite petrochronology

    Get PDF
    In the Himalayan region of Sikkim, the well-developed inverted metamorphic sequence of the Main Central Thrust (MCT) zone is folded, thus exposing several transects through the structure that reached similar metamorphic grades at different times. In-situ LA-ICP-MS U–Th–Pb monazite ages, linked to pressure–temperature conditions via trace-element reaction fingerprints, allow key aspects of the evolution of the thrust zone to be understood for the first time. The ages show that peak metamorphic conditions were reached earliest in the structurally highest part of the inverted metamorphic sequence, in the Greater Himalayan Sequence (GHS) in the hanging wall of the MCT. Monazite in this unit grew over a prolonged period between ~37 and 16 Ma in the southerly leading-edge of the thrust zone and between ~37 and 14.5 Ma in the northern rear-edge of the thrust zone, at peak metamorphic conditions of ~790 ◦C and 10 kbar. Monazite ages in Lesser Himalayan Sequence (LHS) footwall rocks show that identical metamorphic conditions were reached ~4–6 Ma apart along the ~60 km separating samples along the MCT transport direction. Upper LHS footwall rocks reached peak metamorphic conditions of ~655 ◦C and 9 kbar between ~21 and 16 Ma in the more southerly-exposed transect and ~14.5–12 Ma in the northern transect. Similarly, lower LHS footwall rocks reached peak metamorphic conditions of ~580 ◦C and 8.5 kbar at ~16 Ma in the south, and 9–10 Ma in the north. In the southern transect, the timing of partial melting in the GHS hanging wall (~23–19.5 Ma) overlaps with the timing of prograde metamorphism (~21 Ma) in the LHS footwall, confirming that the hanging wall may have provided the heat necessary for the metamorphism of the footwall. Overall, the data provide robust evidence for progressively downwards-penetrating deformation and accretion of original LHS footwall material to the GHS hanging wall over a period of ~5 Ma. These processes appear to have occurred several times during the prolonged ductile evolution of the thrust. The preserved inverted metamorphic sequence therefore documents the formation of sequential ‘paleothrusts’ through time, cutting down from the original locus of MCT movement at the LHS–GHS protolith boundary and forming at successively lower pressure and temperature conditions. The petrochronologic methods applied here constrain a complex temporal and thermal deformation history, and demonstrate that inverted metamorphic sequences can preserve a rich record of the duration of progressive ductile thrusting

    Statistical Mechanics of Horizontal Gene Transfer in Evolutionary Ecology

    Full text link
    The biological world, especially its majority microbial component, is strongly interacting and may be dominated by collective effects. In this review, we provide a brief introduction for statistical physicists of the way in which living cells communicate genetically through transferred genes, as well as the ways in which they can reorganize their genomes in response to environmental pressure. We discuss how genome evolution can be thought of as related to the physical phenomenon of annealing, and describe the sense in which genomes can be said to exhibit an analogue of information entropy. As a direct application of these ideas, we analyze the variation with ocean depth of transposons in marine microbial genomes, predicting trends that are consistent with recent observations using metagenomic surveys.Comment: Accepted by Journal of Statistical Physic
    corecore