53 research outputs found

    A \u27User-Friendly\u27 Robot Operator Training Aid

    Get PDF
    There will be an increasing demand for robot operators, since more companies are using robots in production and material handling. In order to train these would-be operators, a \u27user-friendly\u27 robot operator training aid was developed. This aid helps the trainee learn how to program a robot using on-line programming, and the trainee also obtains valuable hands-on experience. Since this training aid is user-friendly and has safety features, it requires little or no previous experience with robots or computers and minimal supervision. With this training, the would-be operators will acquire a basic understanding of how they can apply this experience to the programming of large industrial robots. The RHINO XR-2 robot was used, including some of the peripheral equipment that can be easily interfaced with the RHINO. The system can control eight axes of motion. A controlling program was written in BASIC language for the Radio Shack Model III microcomputer. The computer\u27s keyboard was used to simulate a teach pendant, similar to those used with many industrial robots

    Quantitative in vivo Analyses Reveal Calcium-dependent Phosphorylation Sites and Identifies a Novel Component of the Toxoplasma Invasion Motor Complex

    Get PDF
    Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca2+-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of 32[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT) identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC)-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca2+-dependent phosphorylation patterns on three of its components - GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component

    Quantitative in vivo Analyses Reveal Calcium-dependent Phosphorylation Sites and Identifies a Novel Component of the Toxoplasma Invasion Motor Complex

    Get PDF
    Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca2+-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of 32[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT) identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC)-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca2+-dependent phosphorylation patterns on three of its components - GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component

    Wildlife collisions with aircraft: A missing component of land-use planning for airports

    Get PDF
    Projecting risks posed to aviation safety by wildlife populations is often overlooked in airport land-use planning. However, the growing dependency on civil aviation for global commerce can require increases in capacity at airports which affect land use, wildlife populations, and perspectives on aviation safety. Our objectives were to (1) review legislation that affects airports and surrounding communities relative to managing and reducing wildlife hazards to aviation; (2) identify information gaps and future research needs relative to regulated land uses on and near airports, and the effects on wildlife populations; and (3) demonstrate how information regarding wildlife responses to land-use practices can be incorporated into wildlife-strike risk assessments.We show that guidelines for land-use practices on and near airports with regard to wildlife hazards to aviation can be vague, conflicting, and scientifically ill-supported. We discuss research needs with regard to management of storm water runoff; wildlife use of agricultural crops and tillage regimens relative to revenue and safety; the role of an airport in the landscape matrix with regard to its effects on wildlife species richness and abundance; and spatial and temporal requirements of wildlife species that use airports, relative to implementing current and novel management techniques. We also encourage the development and maintenance of data sets that will allow realistic assessment of wildlife-strike risk relative to current airport conditions and anticipated changes to capacity. Land uses at airports influence wildlife populations, and understanding and incorporating these effects into planning will reduce risks posed to both aviation safety and wildlife species

    Survival and major neurodevelopmental impairment in extremely low gestational age newborns born 1990–2000: a retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is important to determine if rates of survival and major neurodevelopmental impairment in extremely low gestational age newborns (ELGANs; infants born at 23–27 weeks gestation) are changing over time.</p> <p>Methods</p> <p>Study infants were born at 23 to 27 weeks of gestation without congenital anomalies at a tertiary medical center between July 1, 1990 and June 30, 2000, to mothers residing in a thirteen-county region in North Carolina. Outcomes at one year adjusted age were compared for two epochs of birth: epoch 1, July 1, 1990 to June 30, 1995; epoch 2, July 1, 1995 to June 30, 2000. Major neurodevelopmental impairment was defined as cerebral palsy, Bayley Scales of Infant Development Mental Developmental Index more than two standard deviations below the mean, or blindness.</p> <p>Results</p> <p>Survival of ELGANs, as a percentage of live births, was 67% [95% confidence interval: (61, 72)] in epoch 1 and 71% (65, 75) in epoch 2. Major neurodevelopmental impairment was present in 20% (15, 27) of survivors in epoch 1 and 14% (10, 20) in epoch 2. When adjusted for gestational age, survival increased [odds ratio 1.5 (1.0, 2.2), p = .03] and major neurodevelopmental impairment decreased [odds ratio 0.54 (0.31, 0.93), p = .02] from epoch 1 to epoch 2.</p> <p>Conclusion</p> <p>The probability of survival increased while that of major neurodevelopmental impairment decreased during the 1990's in this regionally based sample of ELGANs.</p

    Social Bonding and Nurture Kinship: Compatibility between Cultural and Biological Approaches

    Full text link

    Phase Behavior of Aqueous Na-K-Mg-Ca-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling

    Get PDF
    A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems
    corecore