198 research outputs found

    Atrial Fibrillation and the Autonomic Nervous System

    Get PDF
    Catheter ablation of atrial fibrillation (AF) has been increasingly employed as a therapeutic modality to maintain sinus rhythm. However, the procedure is potentially associated with major complications and its long-term efficacy is relatively poor. Thus, the quest for additional non-pharmacological, non-ablative therapies for the management of patients with AF continues. Present methodology for catheter ablation of AF includes pulmonary vein isolation by applying radiofrequency current around the pulmonary vein ostia, in order to prevent the ectopic activity arising from the pulmonary veins from reaching the atria and thereby inducing AF. However, this approach failed to answer the fundamental question of how the generally short episodes of focal firing in the pulmonary veins are converted into AF. Experimental work has provided many lines of evidence linking the intrinsic cardiac autonomic nervous system with focal firing from the pulmonary veins via activation of the ganglionated plexi (GP) adjacent to these veins. Autonomic denervation is common following pulmonary vein isolation and has been associated with decreased risk of AF recurrence. Recent clinical studies where GP ablation was performed either in addition to the standard procedure of pulmonary vein isolation, or as a stand-alone procedure support these experimental data. These intriguing new concepts and data linking the autonomic nervous system to AF will herein be briefly reviewed

    Ganglionated Plexi Modulate Extrinsic Cardiac Autonomic Nerve Input Effects on Sinus Rate, Atrioventricular Conduction, Refractoriness, and Inducibility of Atrial Fibrillation

    Get PDF
    ObjectivesThis study sought to systematically investigate the interactions between the extrinsic and intrinsic cardiac autonomic nervous system (ANS) in modulating electrophysiological properties and atrial fibrillation (AF) initiation.BackgroundSystematic ganglionated plexi (GP) ablation to evaluate the extrinsic and intrinsic cardiac ANS relationship has not been detailed.MethodsThe following GP were exposed in 28 dogs: anterior right GP (ARGP) near the sinoatrial node, inferior right ganglionated plexi (IRGP) at the junction of the inferior vena cava and atria, and superior left ganglionated plexi (SLGP) near the junction of left superior pulmonary vein and left pulmonary artery. With unilateral vagosympathetic trunk stimulation (0.6 to 8.0 V, 20 Hz, 0.1 ms in duration), sinus rate (SR), and ventricular rate (VR) during AF were compared before and after sequential ablation of SLGP, ARGP, and IRGP.ResultsThe SLGP ablation significantly attenuated the SR and VR slowing responses with right or left vagosympathetic trunk stimulation. Subsequent ARGP ablation produced additional effects on SR slowing but not VR slowing. After SLGP + ARGP ablation, IRGP ablation eliminated VR slowing but did not further attenuate SR slowing with vagosympathetic trunk stimulation. Unilateral right and left vagosympathetic trunk stimulation shortened the effective refractory period and increased AF inducibility of atrium and pulmonary vein near the ARGP and SLGP, respectively. The ARGP ablation eliminated ERP shortening and AF inducibility with right vagosympathetic trunk stimulation, whereas SLGP ablation eliminated ERP shortening but not AF inducibility with left vagosympathetic trunk stimulation.ConclusionsThe GP function as the “integration centers” that modulate the autonomic interactions between the extrinsic and intrinsic cardiac ANS. This interaction is substantially more intricate than previously thought

    An Ordered Inheritance Strategy for the Golgi Apparatus: Visualization of Mitotic Disassembly Reveals a Role for the Mitotic Spindle

    Get PDF
    During mitosis, the ribbon of the Golgi apparatus is transformed into dispersed tubulo-vesicular membranes, proposed to facilitate stochastic inheritance of this low copy number organelle at cytokinesis. Here, we have analyzed the mitotic disassembly of the Golgi apparatus in living cells and provide evidence that inheritance is accomplished through an ordered partitioning mechanism. Using a Sar1p dominant inhibitor of cargo exit from the endoplasmic reticulum (ER), we found that the disassembly of the Golgi observed during mitosis or microtubule disruption did not appear to involve retrograde transport of Golgi residents to the ER and subsequent reorganization of Golgi membrane fragments at ER exit sites, as has been suggested. Instead, direct visualization of a green fluorescent protein (GFP)-tagged Golgi resident through mitosis showed that the Golgi ribbon slowly reorganized into 1–3-μm fragments during G2/early prophase. A second stage of fragmentation occurred coincident with nuclear envelope breakdown and was accompanied by the bulk of mitotic Golgi redistribution. By metaphase, mitotic Golgi dynamics appeared to cease. Surprisingly, the disassembly of mitotic Golgi fragments was not a random event, but involved the reorganization of mitotic Golgi by microtubules, suggesting that analogous to chromosomes, the Golgi apparatus uses the mitotic spindle to ensure more accurate partitioning during cytokinesis

    Преступления в таможенной сфере: характеристика, выявление, ответственность

    Get PDF
    Объектом исследования является таможенный орган как средство обеспечения экономической безопасности. Цель работы - выявление проблем, возникающих у таможенных органов, как органов дознания при расследовании преступлений в сфере экономической деятельности и разработка рекомендаций, направленных на повышение эффективности правоохранительной деятельности таможенных органов как органов дознания. В процессе исследования был проведен анализ нормативно-правовой базы, регулирующей деятельность таможенных органов, а также практика расследования уголовных дел. В результате исследования были выявлены проблемы, возникающие у таможенных органов при расследовании преступлений и предложены рекомендации по решению этих проблем.The object of the research is customs authorities as tool of providing of economic safety. The goal of the work is the identification of problems, which customs authorities face while the process of investigation of crimes in economic sphere and developing some recommendations aimed to raise the efficiency of customs authorities’ activity. In the researching process there was an analysis of the regulatory framework, which adjusts the customs authorities’ activity and the practice of investigation of crimes in economic sphere. As a result of the research some problems, which customs authorities face while the process of investigation, were revealed and there are some offers aimed to solve this problems

    Role of NAD+ and ADP-Ribosylation in the Maintenance of the Golgi Structure

    Get PDF
    We have investigated the role of the ADP- ribosylation induced by brefeldin A (BFA) in the mechanisms controlling the architecture of the Golgi complex. BFA causes the rapid disassembly of this organelle into a network of tubules, prevents the association of coatomer and other proteins to Golgi membranes, and stimulates the ADP-ribosylation of two cytosolic proteins of 38 and 50 kD (GAPDH and BARS-50; De Matteis, M.A., M. DiGirolamo, A. Colanzi, M. Pallas, G. Di Tullio, L.J. McDonald, J. Moss, G. Santini, S. Bannykh, D. Corda, and A. Luini. 1994. Proc. Natl. Acad. Sci. USA. 91:1114–1118; Di Girolamo, M., M.G. Silletta, M.A. De Matteis, A. Braca, A. Colanzi, D. Pawlak, M.M. Rasenick, A. Luini, and D. Corda. 1995. Proc. Natl. Acad. Sci. USA. 92:7065–7069). To study the role of ADP-ribosylation, this reaction was inhibited by depletion of NAD+ (the ADP-ribose donor) or by using selective pharmacological blockers in permeabilized cells. In NAD+-depleted cells and in the presence of dialized cytosol, BFA detached coat proteins from Golgi membranes with normal potency but failed to alter the organelle's structure. Readdition of NAD+ triggered Golgi disassembly by BFA. This effect of NAD+ was mimicked by the use of pre–ADP- ribosylated cytosol. The further addition of extracts enriched in native BARS-50 abolished the ability of ADP-ribosylated cytosol to support the effect of BFA. Pharmacological blockers of the BFA-dependent ADP-ribosylation (Weigert, R., A. Colanzi, A. Mironov, R. Buccione, C. Cericola, M.G. Sciulli, G. Santini, S. Flati, A. Fusella, J. Donaldson, M. DiGirolamo, D. Corda, M.A. De Matteis, and A. Luini. 1997. J. Biol. Chem. 272:14200–14207) prevented Golgi disassembly by BFA in permeabilized cells. These inhibitors became inactive in the presence of pre–ADP-ribosylated cytosol, and their activity was rescued by supplementing the cytosol with a native BARS-50–enriched fraction. These results indicate that ADP-ribosylation plays a role in the Golgi disassembling activity of BFA, and suggest that the ADP-ribosylated substrates are components of the machinery controlling the structure of the Golgi apparatus

    Potential therapeutic effects of branched-chain amino acids supplementation on resistance exercise-based muscle damage in humans

    Get PDF
    Branched-chain amino acids (BCAA) supplementation has been considered an interesting nutritional strategy to improve skeletal muscle protein turnover in several conditions. In this context, there is evidence that resistance exercise (RE)-derived biochemical markers of muscle soreness (creatine kinase (CK), aldolase, myoglobin), soreness, and functional strength may be modulated by BCAA supplementation in order to favor of muscle adaptation. However, few studies have investigated such effects in well-controlled conditions in humans. Therefore, the aim of this short report is to describe the potential therapeutic effects of BCAA supplementation on RE-based muscle damage in humans. The main point is that BCAA supplementation may decrease some biochemical markers related with muscle soreness but this does not necessarily reflect on muscle functionality

    A Complete Pathway Model for Lipid A Biosynthesis in Escherichia coli.

    Get PDF
    Lipid A is a highly conserved component of lipopolysaccharide (LPS), itself a major component of the outer membrane of Gram-negative bacteria. Lipid A is essential to cells and elicits a strong immune response from humans and other animals. We developed a quantitative model of the nine enzyme-catalyzed steps of Escherichia coli lipid A biosynthesis, drawing parameters from the experimental literature. This model accounts for biosynthesis regulation, which occurs through regulated degradation of the LpxC and WaaA (also called KdtA) enzymes. The LpxC degradation signal appears to arise from the lipid A disaccharide concentration, which we deduced from prior results, model results, and new LpxK overexpression results. The model agrees reasonably well with many experimental findings, including the lipid A production rate, the behaviors of mutants with defective LpxA enzymes, correlations between LpxC half-lives and cell generation times, and the effects of LpxK overexpression on LpxC concentrations. Its predictions also differ from some experimental results, which suggest modifications to the current understanding of the lipid A pathway, such as the possibility that LpxD can replace LpxA and that there may be metabolic channeling between LpxH and LpxB. The model shows that WaaA regulation may serve to regulate the lipid A production rate when the 3-deoxy-D-manno-oct-2-ulosonic acid (KDO) concentration is low and/or to control the number of KDO residues that get attached to lipid A. Computation of flux control coefficients showed that LpxC is the rate-limiting enzyme if pathway regulation is ignored, but that LpxK is the rate-limiting enzyme if pathway regulation is present, as it is in real cells. Control also shifts to other enzymes if the pathway substrate concentrations are not in excess. Based on these results, we suggest that LpxK may be a much better drug target than LpxC, which has been pursued most often
    corecore