50 research outputs found
Multi-Object Tracking by Iteratively Associating Detections with Uniform Appearance for Trawl-Based Fishing Bycatch Monitoring
The aim of in-trawl catch monitoring for use in fishing operations is to
detect, track and classify fish targets in real-time from video footage.
Information gathered could be used to release unwanted bycatch in real-time.
However, traditional multi-object tracking (MOT) methods have limitations, as
they are developed for tracking vehicles or pedestrians with linear motions and
diverse appearances, which are different from the scenarios such as livestock
monitoring. Therefore, we propose a novel MOT method, built upon an existing
observation-centric tracking algorithm, by adopting a new iterative association
step to significantly boost the performance of tracking targets with a uniform
appearance. The iterative association module is designed as an extendable
component that can be merged into most existing tracking methods. Our method
offers improved performance in tracking targets with uniform appearance and
outperforms state-of-the-art techniques on our underwater fish datasets as well
as the MOT17 dataset, without increasing latency nor sacrificing accuracy as
measured by HOTA, MOTA, and IDF1 performance metrics
Hybrid social media:Employees' use of a boundary-spanning technology
Improved employee collaboration and communication can be facilitated by social technologies that extend within and beyond organizations. These social technologies have increasingly come to be represented by social media sites, which are used to extend workplace relationships across personal and professional boundaries in a hybrid role. This presents opportunities and risks as those boundaries are collapsed. Using boundary management as a theoretical lens, we evaluate the associations of relationship initiation between colleagues at different levels of organisations with employees’ strategies and their well-being. We also investigate relationships with social media usage, age and propensity to self-monitor and group employees using cluster analysis. We consider implications of our findings for developing more sophisticated policies, training, and guidance for employees on the use of social media as a workplace tool
Hybrid social media:Employees' use of a boundary-spanning technology
Improved employee collaboration and communication can be facilitated by social technologies that extend within and beyond organizations. These social technologies have increasingly come to be represented by social media sites, which are used to extend workplace relationships across personal and professional boundaries in a hybrid role. This presents opportunities and risks as those boundaries are collapsed. Using boundary management as a theoretical lens, we evaluate the associations of relationship initiation between colleagues at different levels of organisations with employees’ strategies and their well-being. We also investigate relationships with social media usage, age and propensity to self-monitor and group employees using cluster analysis. We consider implications of our findings for developing more sophisticated policies, training, and guidance for employees on the use of social media as a workplace tool
Minor Abnormalities of Testis Development in Mice Lacking the Gene Encoding the MAPK Signalling Component, MAP3K1
In mammals, the Y chromosome is a dominant male determinant, causing the bipotential gonad to develop as a testis. Recently, cases of familial and spontaneous 46,XY disorders of sex development (DSD) have been attributed to mutations in the human gene encoding mitogen-activated protein kinase kinase kinase 1, MAP3K1, a component of the mitogen-activated protein kinase (MAPK) signal transduction pathway. In individuals harbouring heterozygous mutations in MAP3K1, dysregulation of MAPK signalling was observed in lymphoblastoid cell lines, suggesting a causal role for these mutations in disrupting XY sexual development. Mice lacking the cognate gene, Map3k1, are viable and exhibit the eyes open at birth (EOB) phenotype on a mixed genetic background, but on the C57BL/6J genetic background most mice die at around 14.5 dpc due to a failure of erythropoiesis in the fetal liver. However, no systematic examination of sexual development in Map3k1-deficient mice has been described, an omission that is especially relevant in the case of C57BL/6J, a genetic background that is sensitized to disruptions to testis determination. Here, we report that on a mixed genetic background mice lacking Map3k1 are fertile and exhibit no overt abnormalities of testis development. On C57BL/6J, significant non-viability is observed with very few animals surviving to adulthood. However, an examination of development in Map3k1-deficient XY embryos on this genetic background revealed no significant defects in testis determination, although minor abnormalities were observed, including an increase in gonadal length. Based on these observations, we conclude that MAP3K1 is not required for mouse testis determination. We discuss the significance of these data for the functional interpretation of sex-reversing MAP3K1 mutations in humans
Preliminary results of lifetime measurements in neutron-rich 53Ti
To study the nuclear structure of neutron-rich titanium isotopes, a lifetime measurement was performed at the Grand Accélérateur National d'Ions Lourds (GANIL) facility in Caen, France. The nucleiwere produced in a multinucleon-transfer reaction by using a 6.76 MeV/u 238U beam. The Advanced Gamma Tracking Array (AGATA) was employed for the γ-ray detection and target-like recoils were identified event-by-event by the large-acceptance variable mode spectrometer (VAMOS++). Preliminary level lifetimes of the (5/2−) to 13/2− states of the yrast band in the neutron-rich nucleus 53Ti were measured for the first time employing the recoil distance Doppler-shift (RDDS) method and the compact plunger for deep inelastic reactions. The differential decay curve method (DDCM) was used to obtain the lifetimes from the RDDS data
Deciphering Cell Lineage Specification during Male Sex Determination with Single-Cell RNA Sequencing
The gonad is a unique biological system for studying cell-fate decisions. However, major questions remain regarding the identity of somatic progenitor cells and the transcriptional events driving cell differentiation. Using time-series single-cell RNA sequencing on XY mouse gonads during sex determination, we identified a single population of somatic progenitor cells prior to sex determination. A subset of these progenitors differentiates into Sertoli cells, a process characterized by a highly dynamic genetic program consisting of sequential waves of gene expression. Another subset of multipotent cells maintains their progenitor state but undergoes significant transcriptional changes restricting their competence toward a steroidogenic fate required for the differentiation of fetal Leydig cells. Our findings confirm the presence of a unique multipotent progenitor population in the gonadal primordium that gives rise to both supporting and interstitial lineages. These also provide the most granular analysis of the transcriptional events occurring during testicular cell-fate commitment
Loss of Mitogen-Activated Protein Kinase Kinase Kinase 4 (MAP3K4) Reveals a Requirement for MAPK Signalling in Mouse Sex Determination
The boygirl (byg) mouse mutant reveals that MAP3K4-mediated signaling is necessary for normal SRY expression and testis specification in the developing mouse gonad
Revisiting the Gaia Hypothesis: Maximum Entropy, Kauffman’s ‘Fourth Law’ and Physiosemeiosis
Recently, Kleidon suggested to analyze Gaia as a non-equilibrium
thermodynamic system that continuously moves away from equilibrium, driven by
maximum entropy production which materializes in hierarchically coupled
mechanisms of energetic flows via dissipation and physical work. I relate this
view with Kauffman's 'Fourth Law of Thermodynamics', which I interprete as a
proposition about the accumulation of information in evolutionary processes.
The concept of physical work is expanded to including work directed at the
capacity to work: I offer a twofold specification of Kauffman's concept of an
'autonomous agent', one as a 'self-referential heat engine', and the other in
terms of physiosemeiosis, which is a naturalized application of Peirce's theory
of signs. The conjunction of these three theoretical sources, Maximum Entropy,
Kauffman's Fourth Law, and physiosemeiosis, shows that the Kleidon restatement
of the Gaia hypothesis is equivalent to the proposition that the biosphere is
generating, processing and storing information, thus directly treating
information as a physical phenomenon. There is a fundamental ontological
continuity between the biological processes and the human economy, as both are
seen as information processing and entropy producing systems. Knowledge and
energy are not substitutes, with energy and information being two aspects of
the same underlying physical process
Gadd45 gamma and Map3k4 Interactions Regulate Mouse Testis Determination via p38 MAPK-Mediated Control of Sry Expression
SummaryLoss of the kinase MAP3K4 causes mouse embryonic gonadal sex reversal due to reduced expression of the testis-determining gene, Sry. However, because of widespread expression of MAP3K4, the cellular basis of this misregulation was unclear. Here, we show that mice lacking Gadd45γ also exhibit XY gonadal sex reversal caused by disruption to Sry expression. Gadd45γ is expressed in a dynamic fashion in somatic cells of the developing gonads from 10.5 days postcoitum (dpc) to 12.5 dpc. Gadd45γ and Map3k4 genetically interact during sex determination, and transgenic overexpression of Map3k4 rescues gonadal defects in Gadd45γ-deficient embryos. Sex reversal in both mutants is associated with reduced phosphorylation of p38 MAPK and GATA4. In addition, embryos lacking both p38α and p38β also exhibit XY gonadal sex reversal. Taken together, our data suggest a requirement for GADD45γ in promoting MAP3K4-mediated activation of p38 MAPK signaling in embryonic gonadal somatic cells for testis determination in the mouse