1,068 research outputs found

    Arbuscular mycorrhizal fungi affect phytophagous insect specialism

    Get PDF
    The majority of phytophagous insects eat very few plant species, yet the ecological and evolutionary forces that have driven such specialism are not entirely understood. The hypothesis that arbuscular mycorrhizal (AM) fungi can determine phytophagous insect specialism, through differential effects on insect growth, was tested using examples from the British flora. In the UK, plant families and species in the family Lamiaceae that are strongly mycorrhizal have higher proportions of specialist insects feeding on them than those that are weakly mycorrhizal. We suggest that AM fungi can affect the composition of insect assemblages on plants and are a hitherto unconsidered factor in the evolution of insect specialism

    Yield conditions for deformation of amorphous polymer glasses

    Full text link
    Shear yielding of glassy polymers is usually described in terms of the pressure-dependent Tresca or von Mises yield criteria. We test these criteria against molecular dynamics simulations of deformation in amorphous polymer glasses under triaxial loading conditions that are difficult to realize in experiments. Difficulties and ambiguities in extending several standard definitions of the yield point to triaxial loads are described. Two definitions, the maximum and offset octahedral stresses, are then used to evaluate the yield stress for a wide range of model parameters. In all cases, the onset of shear is consistent with the pressure-modified von Mises criterion, and the pressure coefficient is nearly independent of many parameters. Under triaxial tensile loading, the mode of failure changes to cavitation.Comment: 9 pages, 8 figures, revte

    Discrete Skyrmions in 2+1 and 3+1 Dimensions

    Get PDF
    This paper describes a lattice version of the Skyrme model in 2+1 and 3+1 dimensions. The discrete model is derived from a consistent discretization of the radial continuum problem. Subsequently, the existence and stability of the skyrmion solutions existing on the lattice are investigated. One consequence of the proposed models is that the corresponding discrete skyrmions have a high degree of stability, similar to their continuum counterparts.Comment: 18 Pages + 6 Figures, To appear in Physics Letter

    Critical perspectives on ‘consumer involvement’ in health research: epistemological dissonance and the know-do gap

    Get PDF
    Researchers in the area of health and social care (both in Australia and internationally) are encouraged to involve consumers throughout the research process, often on ethical, political and methodological grounds, or simply as ‘good practice’. This paper presents findings from a qualitative study in the UK of researchers’ experiences and views of consumer involvement in health research. Two main themes are presented in the paper. Firstly, we explore the ‘know-do gap’ which relates to the tensions between researchers’ perceptions of the potential benefits of, and their actual practices in relation to, consumer involvement. Secondly, we focus on one of the reasons for this ‘know-do gap’, namely epistemological dissonance. Findings are linked to issues around consumerism in research, lay/professional knowledges, the (re)production of professional and consumer identities and the maintenance of boundaries between consumers and researchers

    Polarization quantum properties in type-II Optical Parametric Oscillator below threshold

    Get PDF
    We study the far field spatial distribution of the quantum fluctuations in the transverse profile of the output light beam generated by a type II Optical Parametric Oscillator below threshold, including the effects of transverse walk-off. We study how quadrature field correlations depend on the polarization. We find spatial EPR entanglement in quadrature-polarization components: For the far field points not affected by walk-off there is almost complete noise suppression in the proper quadratures difference of any orthogonal polarization components. We show the entanglement of the state of symmetric intense, or macroscopic, spatial light modes. We also investigate nonclassical polarization properties in terms of the Stokes operators. We find perfect correlations in all Stokes parameters measured in opposite far field points in the direction orthogonal to the walk-off, while locally the field is unpolarized and we find no polarization squeezing.Comment: 16 pages, 18 figure

    Bluetongue and Epizootic Haemorrhagic Disease virus in local breeds of cattle in Kenya

    Get PDF
    AbstractThe presence of bluetongue virus (BTV) and Epizootic Haemorrhagic Disease virus (EHDV) in indigenous calves in western Kenya was investigated. Serum was analysed for BTV and EHDV antibodies. The population seroprevalences for BTV and EHDV for calves at 51weeks of age were estimated to be 0.942 (95% CI 0.902–0.970) and 0.637 (95% CI 0.562–0.710), respectively, indicating high levels of circulating BTV and EHDV. The odds ratio of being positive for BTV if EHDV positive was estimated to be 2.57 (95% CI 1.37–4.76). When 99 calves were tested for BTV and EHDV RNA by real-time RT-PCR, 88.9% and 63.6% were positive, respectively. Comparison of the serology and real-time RT-PCR results revealed an unexpectedly large number of calves that were negative by serology but positive by real-time RT-PCR for EHDV. Eight samples positive for BTV RNA were serotyped using 24 serotype-specific real-time RT-PCR assays. Nine BTV serotypes were detected, indicating that the cattle were infected with a heterogeneous population of BTVs. The results show that BTV and EHDV are highly prevalent, with cattle being infected from an early age

    Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions

    Full text link
    Excess contributions to the free energy due to interfaces occur for many problems encountered in the statistical physics of condensed matter when coexistence between different phases is possible (e.g. wetting phenomena, nucleation, crystal growth, etc.). This article reviews two methods to estimate both interfacial free energies and line tensions by Monte Carlo simulations of simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is based on thermodynamic integration. This method is useful to study flat and inclined interfaces for Ising lattices, allowing also the estimation of line tensions of three-phase contact lines, when the interfaces meet walls (where "surface fields" may act). A generalization to off-lattice systems is described as well. The second method is based on the sampling of the order parameter distribution of the system throughout the two-phase coexistence region of the model. Both the interface free energies of flat interfaces and of (spherical or cylindrical) droplets (or bubbles) can be estimated, including also systems with walls, where sphere-cap shaped wall-attached droplets occur. The curvature-dependence of the interfacial free energy is discussed, and estimates for the line tensions are compared to results from the thermodynamic integration method. Basic limitations of all these methods are critically discussed, and an outlook on other approaches is given

    Simulation of dimensionality effects in thermal transport

    Full text link
    The discovery of nanostructures and the development of growth and fabrication techniques of one- and two-dimensional materials provide the possibility to probe experimentally heat transport in low-dimensional systems. Nevertheless measuring the thermal conductivity of these systems is extremely challenging and subject to large uncertainties, thus hindering the chance for a direct comparison between experiments and statistical physics models. Atomistic simulations of realistic nanostructures provide the ideal bridge between abstract models and experiments. After briefly introducing the state of the art of heat transport measurement in nanostructures, and numerical techniques to simulate realistic systems at atomistic level, we review the contribution of lattice dynamics and molecular dynamics simulation to understanding nanoscale thermal transport in systems with reduced dimensionality. We focus on the effect of dimensionality in determining the phononic properties of carbon and semiconducting nanostructures, specifically considering the cases of carbon nanotubes, graphene and of silicon nanowires and ultra-thin membranes, underlying analogies and differences with abstract lattice models.Comment: 30 pages, 21 figures. Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.

    The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex

    Get PDF
    We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondence between (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.
    corecore